Modified Laboratory Risk Indicator and Machine Learning in Classifying Necrotizing Fasciitis from Cellulitis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Classification Methods
2.2.1. Logistic Regression
2.2.2. Decision Tree Classifier
2.2.3. Random Forest
2.3. Program for Analysis
2.4. Metrics of Model Evaluation
- Accuracy (AC) is a key metric that measures the proportion of correct predictions out of the total predictions made by the model.
- Precision (PR) is the ratio of true positive predictions to the total positive predictions made by the model, reflecting the model’s ability to minimize false positives.
- Recall (RC), also known as sensitivity or true positive rate, measures the proportion of actual positives correctly identified by the model, reflecting its ability to detect positive instances.
- F-measure (F1) is the harmonic mean of precision and recall, offering a balanced metric that reflects the model’s overall accuracy.
- Specificity (True Negative Rate) measures the proportion of actual negatives correctly identified by the model, highlighting its ability to minimize false negatives.
3. Results
3.1. Machine Learning in Classifying Necrotizing Fasciitis from Cellulitis Patients
3.2. Modified Laboratory Risk Indicator for Necrotizing Fasciitis (MLRINEC) Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chia-Peng, C.; Chung-Jen, L.; Weh-Chih, F.; Chiao-Hsuan, H. Identifying necrotizing soft tissue infection using infectious fluid analysis and clinical parameters based on machine learning algorithms. Heliyon 2024, 10, e29578. [Google Scholar] [CrossRef]
- Das, K. The utilisation of artificial intelligence in medical diagnostics. IIP Ser. 2024, 3, 156–161. [Google Scholar] [CrossRef]
- Wong, C.-H.; Khin, L.-W.; Heng, K.-S.; Tan, K.-C.; Low, C.-O. The LRINEC (Laboratory Risk Indicator for Necrotizing Fasciitis) score: A tool for distinguishing necrotizing fasciitis from other soft tissue infections. Crit. Care Med. 2004, 32, 1535–1541. [Google Scholar] [CrossRef] [PubMed]
- Borschitz, T.; Schlicht, S.; Siegel, E.; Hanke, E.; von Stebut, E. Improvement of a Clinical Score for Necrotizing Fasciitis: ‘Pain Out of Proportion’ and High CRP Levels Aid the Diagnosis. PLoS ONE 2015, 10, e0132775. [Google Scholar] [CrossRef] [PubMed]
- El-Menyar, A.; Asim, M.; Mudali, I.; Mekkodathil, A.; Latifi, R.; Al-Thani, H. The laboratory risk indicator for necrotizing fasciitis (LRINEC) scoring: The diagnostic and potential prognostic role. Scand. J. Trauma Resusc. Emerg. Med. 2017, 25, 28. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.-H.; Wu, K.-H.; Hsiao, C.-T.; Wu, S.-R.; Chang, C.-P. Utility of modified Laboratory Risk Indicator for Necrotizing Fasciitis (MLRINEC) score in distinguishing necrotizing from non-necrotizing soft tissue infections. World J. Emerg. Surg. 2021, 16, 26. [Google Scholar] [CrossRef] [PubMed]
- Panesar, A. Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes, 2nd ed.; Apress: Berkeley, CA, USA, 2021; p. 407. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chen, Y.-C.; Liou, Y.-T.; Tsai, W.-H.; Chen, L.-W. Prognostic Role of Subsequent Thrombocytopenia in Necrotizing Fasciitis without Liver Disease. Ann. Plast. Surg. 2022, 88, S99–S105. [Google Scholar] [CrossRef] [PubMed]
Predicted Result | Sum of Actual Result | |||
---|---|---|---|---|
Positive (Necrotizing Fasciitis: NF) | Negative (Cellulitis) | |||
Actual Condition | Positive (Necrotizing Fasciitis: NF) | TP | FN | TP + FN |
Negative (Cellulitis) | FP | TN | FP + TN | |
Sum of prediction result | TP + FP | FN + TN | TP + FN + FP + TN |
Independent Variables | Dependent Variables | Range | Mean | SD | Normal Value Ranges |
---|---|---|---|---|---|
CT: creatinine (mg/dL) | All | 0.4–13.5 | 1.71 | 2.58 | male: 0.6–1.2 female: 0.5–1.1 |
NF | 0.4–12.4 | 1.49 | 1.97 | ||
Non-NF | 0.4–13.5 | 1.95 | 3.07 | ||
HB: hemoglobin (g/dL) | All | 3.8–15.8 | 10.32 | 2.26 | male: 14–18 female: 12–16 |
NF | 4.9–14.6 | 9.80 | 1.73 | ||
Non-NF | 3.8–15.8 | 10.88 | 2.60 | ||
PT: platelet count (cells/mm3) | All | 14,000–842,000 | 357,444.44 | 166,993.21 | 150,000–440,000 |
NF | 14,000–842,000 | 394,148.65 | 180,543.75 | ||
Non-NF | 45,000–786,000 | 318,642.86 | 141,345.58 | ||
NA: sodium (mmol/L) | All | 49–143 | 135.08 | 8.45 | 136–144 |
NF | 49–143 | 134.00 | 10.92 | ||
Non-NF | 122–143 | 136.23 | 4.27 | ||
WBC: white blood cells (cell/mm3) | All | 3610–41,540 | 12,899.25 | 7578.10 | 4500–10,000 |
NF | 4370–41,540 | 13,162.03 | 6308.06 | ||
Non-NF | 3610–27,210 | 10,780.57 | 4812.59 | ||
CRP: C-reactive protein (mg/L) | All | Negative = 70, Positive = 74 | - | <10 mg/L | |
NF | Negative = 36, Positive = 38 | - | |||
Non-NF | Negative = 34, Positive = 36 | - |
Model | Predicted | Actual | |
---|---|---|---|
Positive (Necrotizing Fasciitis: NF) | Negative (Cellulitis) | ||
LR: Logistic Regression | Positive (Necrotizing Fasciitis: NF) | 5 | 1 |
Negative (Cellulitis) | 4 | 5 | |
DT: Decision Tree Classifier | Positive (Necrotizing Fasciitis: NF) | 9 | 3 |
Negative (Cellulitis) | 0 | 3 | |
RF: Random Forest | Positive (Necrotizing Fasciitis: NF) | 8 | 4 |
Negative (Cellulitis) | 1 | 2 |
Model | Accuracy (AC) | Precision (PR) | Recall (RC) True Positive Rate | F-Measure (F1) | Specificity (True Negative Rate) |
---|---|---|---|---|---|
LR: Logistic Regression | 66.67 | 83.33 | 55.56 | 66.67 | 83.33 |
DT: Decision Tree | 80.00 | 75.00 | 100.00 | 85.71 | 50.00 |
RF: Random Forest | 66.67 | 66.67 | 88.89 | 76.19 | 33.33 |
Variable | Result | Score |
---|---|---|
Creatinine level, mg/dL | ≤1.6 | 0 |
>1.6 | 2 | |
Hemoglobin, g/dL | >13.5 | 0 |
11–13.5 | 1 | |
<11 | 2 | |
Platelet: PT (cells/mm3) | <189,870 | 0 |
189,870–525,010 | 1 | |
>525,010 | 2 | |
Sodium Level (mmol/L) | ≥135 | 0 |
<135 | 2 | |
WBC count (cell/mm3) | <15,000 | 0 |
15,000–25,000 | 1 | |
>25,000 | 2 | |
C-reactive protein (CRP), (mg/L) | <150 (Negative) | 0 |
≥150 (Positive) | 4 |
Risk Levels from Modified Score | Necrotizing Fasciitis: NF | Cellulitis | Total |
---|---|---|---|
Low risk (Score ≤ 5) | 46 | 55 | 101 |
45.5% | 54.5% | 100.0% | |
Intermediate risk (score 6–7) | 22 | 12 | 34 |
64.7% | 35.3% | 100.0% | |
High risk (score ≥ 8) | 6 | 3 | 9 |
66.7% | 33.3% | 100.0% | |
Total | 74 | 70 | 144 |
51.40% | 48.60% | 100.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suraphee, S.; Busababodhin, P.; Chamchong, R.; Suparatanachatpun, P.; Khamthong, K. Modified Laboratory Risk Indicator and Machine Learning in Classifying Necrotizing Fasciitis from Cellulitis Patients. Appl. Sci. 2024, 14, 9241. https://doi.org/10.3390/app14209241
Suraphee S, Busababodhin P, Chamchong R, Suparatanachatpun P, Khamthong K. Modified Laboratory Risk Indicator and Machine Learning in Classifying Necrotizing Fasciitis from Cellulitis Patients. Applied Sciences. 2024; 14(20):9241. https://doi.org/10.3390/app14209241
Chicago/Turabian StyleSuraphee, Sujitta, Piyapatr Busababodhin, Rapeeporn Chamchong, Pinyo Suparatanachatpun, and Khemmanant Khamthong. 2024. "Modified Laboratory Risk Indicator and Machine Learning in Classifying Necrotizing Fasciitis from Cellulitis Patients" Applied Sciences 14, no. 20: 9241. https://doi.org/10.3390/app14209241
APA StyleSuraphee, S., Busababodhin, P., Chamchong, R., Suparatanachatpun, P., & Khamthong, K. (2024). Modified Laboratory Risk Indicator and Machine Learning in Classifying Necrotizing Fasciitis from Cellulitis Patients. Applied Sciences, 14(20), 9241. https://doi.org/10.3390/app14209241