Diagnostics of Rotating Machinery through Vibration Monitoring: Signal Processing and Pattern Analysis
1. Introduction
- Early Fault Detection: Allows for the identification of faults at an early stage, preventing catastrophic failures and reducing maintenance costs.
- Improved Reliability: Enhances the reliability and efficiency of machinery by enabling condition-based maintenance rather than time-based schedules.
- Data-Driven Decisions: Provides actionable insights based on real-time data, facilitating informed maintenance decisions.
2. An Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- Paper 1.
- Calderon-Uribe, U.; Lizarraga-Morales, R.A.; Guryev, I.V. Unbalance Detection in Induction Motors through Vibration Signals Using Texture Features. Appl. Sci. 2023, 13, 6137. https://doi.org/10.3390/app13106137
- Paper 2.
- Li, H.; Xu, B.; Zhou, F.; Huang, P. Mechanical Incipient Fault Detection and Performance Analysis Using Adaptive Teager-VMD Method. Appl. Sci. 2023, 13, 6058. https://doi.org/10.3390/app13106058
- Paper 3.
- Vacula, J.; Novotný, P. Identification of Aerodynamic Tonal Noise Sources of a Centrifugal Compressor of a Turbocharger for Large Stationary Engines. Appl. Sci. 2023, 13, 5964. https://doi.org/10.3390/app13105964
- Paper 4.
- Fu, S.; Wu, Y.; Wang, R.; Mao, M. A Bearing Fault Diagnosis Method Based on Wavelet Denoising and Machine Learning. Appl. Sci. 2023, 13, 5936. https://doi.org/10.3390/app13105936
- Paper 5.
- Tong, Q.; Lu, F.; Feng, Z.; Wan, Q.; An, G.; Cao, J.; Guo, T. A Novel Method for Fault Diagnosis of Bearings with Small and Imbalanced Data Based on Generative Adversarial Networks. Appl. Sci. 2022, 12, 7346. https://doi.org/10.3390/app12147346
- Paper 6.
- Brusa, E.; Delprete, C.; Di Maggio, L.G. Deep Transfer Learning for Machine Diagnosis: From Sound and Music Recognition to Bearing Fault Detection. Appl. Sci. 2021, 11, 11663. https://doi.org/10.3390/app112411663
- Paper 7.
- Natili, F.; Daga, A.P.; Castellani, F.; Garibaldi, L. Multi-Scale Wind Turbine Bearings Supervision Techniques Using Industrial SCADA and Vibration Data. Appl. Sci. 2021, 11, 6785. https://doi.org/10.3390/app11156785
- Paper 8.
- Daga, A.P.; Garibaldi, L.; Fasana, A.; Marchesiello, S. Performance of Envelope Demodulation for Bearing Damage Detection on CWRU Accelerometric Data: Kurtogram and Traditional Indicators vs. Targeted a Posteriori Band Indicators. Appl. Sci. 2021, 11, 6262. https://doi.org/10.3390/app11146262
- Paper 9.
- AlShalalfeh, A.; Shalalfeh, L. Bearing Fault Diagnosis Approach under Data Quality Issues. Appl. Sci. 2021, 11, 3289. https://doi.org/10.3390/app11073289
- Paper 10.
- Li, Y.; Lu, R.; Zhang, H.; Deng, F.; Yuan, J. Improvement of Intake Structures in a Two-Way Pumping Station with Experimental Analysis. Appl. Sci. 2020, 10, 6842. https://doi.org/10.3390/app10196842
References
- Diagnostics of Rotating Machinery through Vibration Monitoring: Signal Processing and Pattern Analysis. Available online: https://www.mdpi.com/journal/applsci/special_issues/DRM_VM (accessed on 10 July 2024).
- Daga, A.P.; Fasana, A.; Garibaldi, l.; Marchesiello, S. Big Data management: A Vibration Monitoring point of view. In Proceedings of the 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, Roma, Italy, 3–5 June 2020; pp. 548–553. [Google Scholar] [CrossRef]
- Fyfe, K.R.; Munck, E.D.S. Analysis of computed order tracking. Mech. Syst. Signal Process. 1997, 11, 187–205. [Google Scholar] [CrossRef]
- Borghesani, P.; Pennacchi, P.; Chatterton, S.; Ricci, R. The velocity synchronous discrete Fourier transform for order tracking in the field of rotating machinery. Mech. Syst. Signal Process. 2014, 44, 118–133. [Google Scholar] [CrossRef]
- Darlow, M.S.; Badgley, R.H.; Hogg, G.W. Application of High-Frequency Resonance Techniques for Bearing Diagnostics in Helicopter Gearboxes; Mechanical Technology Inc.: Latham, NY, USA, 1974. [Google Scholar]
- Randall, R.B.; Antoni, J. Rolling element bearing diagnostics—A tutorial. Mech. Syst. Signal Process. 2011, 25, 485–520. [Google Scholar] [CrossRef]
- Smith, W.A.; Borghesani, P.; Ni, Q.; Wang, K.; Peng, Z. Optimal demodulation-band selection for envelope-based diagnostics: A comparative study of traditional and novel tools. Mech. Syst. Signal Process. 2019, 134, 106303. [Google Scholar] [CrossRef]
- Daga, A.P.; Fasana, A.; Garibaldi, l.; Marchesiello, S. Performance of Envelope Demodulation for Bearing Damage Detection on CWRU Accelerometric Data: Kurtogram and Traditional Indicators vs. Targeted a Posteriori Band Indicators. Appl. Sci. 2021, 11, 6262. [Google Scholar] [CrossRef]
- Bauer, M.; Balaratnam, N.; Weidenauer, J.; Wagner, F.; Kley, M. Comparison of envelope demodulation methods in the analysis of rolling bearing damage. J. Vib. Control 2023, 29, 5009–5020. [Google Scholar] [CrossRef]
- Antoni, J.; Griffaton, J.; André, H.; Avendaño-Valencia, L.D.; Bonnardot, F.; Cardona-Morales, O.; Castellanos-Dominguez, G.; Daga, A.P.; Leclère, Q.; Vicuña, C.M.; et al. Feedback on the Surveillance 8 challenge: Vibration-based diagnosis of a Safran aircraft engine. Mech. Syst. Signal Process. 2017, 97, 112–144. [Google Scholar] [CrossRef]
- Qian, S.; Chen, D. Joint time-frequency analysis. IEEE Signal Process. Mag. 1999, 16, 52–67. [Google Scholar] [CrossRef]
- Daga, A.P.; Garibaldi, L. Machine Vibration Monitoring for Diagnostics through Hypothesis Testing. Information 2019, 10, 204. [Google Scholar] [CrossRef]
- Burkov, A. The Hundred-Page Machine Learning Book. Available online: https://www.amazon.com/Hundred-Page-Machine-Learning-Book/dp/199957950X (accessed on 26 September 2024).
- Viale, L.; Daga, A.P.; Fasana, A.; Garibaldi, L. Dimensionality Reduction Methods of a Clustered Dataset for the Diagnosis of a SCADA-Equipped Complex Machine. Machines 2022, 11, 36. [Google Scholar] [CrossRef]
- NASA Prognostics Data Repository. Available online: https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/ (accessed on 10 July 2024).
- Case Western Reserve University Bearing Data Center. Available online: https://engineering.case.edu/bearingdatacenter (accessed on 10 July 2024).
- Daga, A.P.; Fasana, A.; Garibaldi, L.; Marchesiello, S. The Politecnico di Torino Rolling Bearing Test Rig: Description of the Open-Access Data for Vibration Monitoring and Diagnostics [Data Set]. Zenodo. Available online: https://www.zenodo.org/records/3559553 (accessed on 10 July 2024).
- Surveillance 8 International Conference Info. Available online: https://surveillance8.sciencesconf.org/resource/page/id/17.html (accessed on 10 July 2024).
- CMMNO 2014 International Conference Info. Available online: https://cmmno2014.sciencesconf.org/resource/page/id/5.html (accessed on 10 July 2024).
- Peeters, C. Data for: Review and Comparison of Tacholess Instantaneous Speed Estimation Methods on Experimental Vibration Data. Mendeley Data, V1. 2019. Available online: https://www.data.mendeley.com/datasets/s8jrrnnj9g/1 (accessed on 10 July 2024).
- Open Energy Data Initiative (OEDI). Available online: https://data.openei.org/data_lakes#Data-Lakes-Datasets (accessed on 10 July 2024).
- Viale, L.; Daga, A.P.; Fasana, A.; Garibaldi, L. Least squares smoothed k-nearest neighbors online prediction of the remaining useful life of a NASA turbofan. Mech. Syst. Signal Process 2023, 190, 110154. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daga, A.P.; Garibaldi, L. Diagnostics of Rotating Machinery through Vibration Monitoring: Signal Processing and Pattern Analysis. Appl. Sci. 2024, 14, 9276. https://doi.org/10.3390/app14209276
Daga AP, Garibaldi L. Diagnostics of Rotating Machinery through Vibration Monitoring: Signal Processing and Pattern Analysis. Applied Sciences. 2024; 14(20):9276. https://doi.org/10.3390/app14209276
Chicago/Turabian StyleDaga, Alessandro Paolo, and Luigi Garibaldi. 2024. "Diagnostics of Rotating Machinery through Vibration Monitoring: Signal Processing and Pattern Analysis" Applied Sciences 14, no. 20: 9276. https://doi.org/10.3390/app14209276
APA StyleDaga, A. P., & Garibaldi, L. (2024). Diagnostics of Rotating Machinery through Vibration Monitoring: Signal Processing and Pattern Analysis. Applied Sciences, 14(20), 9276. https://doi.org/10.3390/app14209276