Ground Ivy (Glechoma hederacea L.) as an Innovative Additive for Enriching Wheat Bread: Study on Flour Fermentation Properties, Dough Rheological Properties and Bread Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
2.2.1. Chemical Analysis of Flour
2.2.2. Fermentation Properties of Flour
2.2.3. Farinographic Analysis of Flour and Dough
2.2.4. Laboratory Baking of Bread
2.2.5. Baking Process Parameters
2.2.6. Bread Quality Assessment
2.2.7. Total Phenolics and Flavonoids Content and Antioxidant Potential of Wheat Bread with Addition of G. hederacea Infusion
2.2.8. Chromatographic Analysis of Wheat Bread with Addition of G. hederacea Infusion
2.3. Statistical Analysis of Research Results
3. Results and Discussion
3.1. Chemical Composition of Wheat Flour
3.2. Fermentation Properties of Wheat Flour
3.3. Water Absorption Capacity of Flour and Rheological Properties of Wheat Dough
3.4. Laboratory Baking Parameters and Quality of Wheat Bread
3.5. Health-Promoting Properties of Wheat Bread with Addition of G. hederacea Infusion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eglite, A.; Kunkulberga, D. Bread choice and consumption trends. Foodbalt 2017, 1, 178–182. [Google Scholar]
- Cacak-Pietrzak, G.; Sujka, K.; Ksiezak, J.; Bojarszczuk, J.; Dziki, D. Sourdough Wheat Bread Enriched with Grass Pea and Lupine Seed Flour: Physicochemical and Sensory Properties. Appl. Sci. 2023, 13, 8664. [Google Scholar] [CrossRef]
- Shewaye, Y.; Solomon, T. Performance of Bread Wheat (Triticum aestivum L.) Line Originating from Various Sources. J. Agric. Res. 2018, 3, 2474–8846. [Google Scholar]
- Cacak-Pietrzak, G.; Dziki, D.; Gawlik-Dziki, U.; Sułek, A.; Wójcik, M.; Krajewska, A. Dandelion Flowers as an Additive to Wheat Bread: Physical Properties of Dough and Bread Quality. Appl. Sci. 2023, 13, 477. [Google Scholar] [CrossRef]
- Mollakhalili-Meybodi, N.; Sheidaei, Z.; Khorshidian, N.; Nematollahi, A.; Khanniri, E. Sensory attributes of wheat bread: A review of influential factors. J. Food Meas. Charact. 2023, 17, 2172–2181. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Salas-Mellado, M.M. Addition of chia seed mucilage for reduction of fat content in bread and cakes. Food Chem. 2017, 227, 237–244. [Google Scholar] [CrossRef]
- Romankiewicz, D.; Hassoon, W.H.; Cacak-Pietrzak, G.; Sobczyk, M.; Wirkowska-Wojdyła, M.; Ceglińska, A.; Dziki, D. The effect of chia seeds (Salvia hispanica L.) addition on quality and nutritional value of wheat bread. J. Food Qual. 2017, 2017, 7352631. [Google Scholar] [CrossRef]
- Adamczyk, G.; Ivanišová, E.; Kaszuba, J.; Bobel, I.; Khvostenko, K.; Chmiel, M.; Falendysh, N. Quality Assessment of Wheat Bread Incorporating Chia Seeds. Foods 2021, 10, 2376. [Google Scholar] [CrossRef]
- Derkanosova, N.M.; Stakhurlova, A.A.; Pshenichnaya, I.A.; Ponomareva, I.N.; Peregonchaya, O.V.; Sokolova, S.A. Amaranth as a bread enriching ingredient. Foods Raw Mater. 2020, 8, 223–231. [Google Scholar] [CrossRef]
- Wahyono, A.; Dewi, A.C.; Oktavia, S.; Jamilah, S.; Kang, W.W. Antioxidant activity and Total Phenolic Contents of Bread Enriched with Pumpkin Flour. IOP Conf. Ser. Earth Environ. Sci. 2020, 411, 012049. [Google Scholar] [CrossRef]
- Dziki, D.; Cacak-Pietrzak, G.; Gawlik-Dziki, U.; Sułek, A.; Kocira, S.; Biernacka, B. Effect of Moldavian dragonhead (Dracocephalum moldavica L.) leaves on the baking properties of wheat flour and quality of bread. CyTA 2019, 17, 536–543. [Google Scholar]
- Pycia, K.; Pawłowska, A.M.; Kaszuba, J. Assessment of the Application Possibilities of Dried Walnut Leaves (Juglans regia L.) in the Production of Wheat Bread. Appl. Sci. 2024, 14, 3468. [Google Scholar] [CrossRef]
- Pycia, K.; Pawłowska, A.M.; Kaszuba, J.; Żurek, N. Walnut Male Flowers (Juglans regia L.) as a Functional Addition to Wheat Bread. Foods 2022, 11, 3988. [Google Scholar] [CrossRef] [PubMed]
- Paucar-Menacho, L.M.; Simpalo-López, W.D.; Castillo-Martínez, W.E.; Esquivel-Paredes, L.J.; Martínez-Villaluenga, C. Reformulating Bread Using Sprouted Pseudo-cereal Grains to Enhance Its Nutritional Value and Sensorial Attributes. Foods 2022, 11, 1541. [Google Scholar] [CrossRef]
- Silagadze, M.A.; Gachechiladze, S.T.; Pruidze, E.G.; Khetsuriani, G.S.; Khvadagiani, K.B.; Pkhakadze, G.N. Development of new-generation dietary bread technologies by using soya processing products. Ann. Agrar. Sci. 2017, 15, 177–180. [Google Scholar] [CrossRef]
- Valková, V.; Ďúranová, H.; Havrlentová, M.; Ivanišová, E.; Mezey, J.; Tóthová, Z.; Gabríny, L.; Kačániová, M. Selected Physico-Chemical, Nutritional, Antioxidant and Sensory Properties of Wheat Bread Supplemented with Apple Pomace Powder as a By-Product from Juice Production. Plants 2022, 11, 1256. [Google Scholar] [CrossRef]
- Czubaszek, A.; Wojciechowicz-Budzisz, A.; Spychaj, R.; Kawa-Rygielska, J. Effect of added brewer’s spent grain on the baking value of flour and the quality of wheat bread. Molecules 2022, 27, 1624. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Kim, M.J.; Kwak, H.S.; Kim, S.S. Characteristics of Bread Made of Various Substitution Ratios of Bran Pulverized by Hammer Mill or Jet Mill. Foods 2020, 9, 48. [Google Scholar] [CrossRef]
- Opinion of the European Committee of the Regions—A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy. Society and the Environment. Deploying Local Bioeconomies Rapidly across Europe; Publications Office of the European Union: Brussels, Belgium, 2019.
- Łuczaj, Ł. Zapomniane Dzikie Rośliny Pokarmowe Południa Polski-Czyściec Błotny. Paprotka Zwyczajna. Bluszczyk Kurdybanek i Ostrożeń Łąkowy. In Proceedings of the Materiały z Konferencji Dzikie Rośliny Jadalne-Zapomniany Potencjał Przyrody, Przemyśl-Bolestraszyce, Poland, 13 September 2007; pp. 183–199.
- Hutchings, M.J.; Price, E.A.C. Glechoma hederacea L. (Nepeta glechoma Benth., N. hederacea (L.) Trev.). J. Ecol. 1998, 87, 347–364. [Google Scholar] [CrossRef]
- Tobyn, G.; Denham, A.; Whitelegg, M. Glechoma hederacea, Ground Ivy. In The Western Herbal Tradition: 2000 Years of Medicinal Plant Knowledge; Churchill Livingstone Elsevier: London, UK, 2011; pp. 181–190. [Google Scholar]
- Barnes, J.; Anderson, L.A.; Phillipson, J.D. Herbal Medicines, 3rd ed.; Pharmaceutical Press: London, UK, 2007. [Google Scholar]
- PN-EN ISO 712:2012; Cereal Grain and Cereal Products. Determination of Moisture—Reference Method. Polish Committee of Standardization: Warsaw, Poland, 2012.
- PN-EN ISO 21415-1:2007; Wheat and Wheat Flour. Gluten Content—Part 1: Determination of Wet Gluten by Manual Washing Method. Polish Committee of Standardization: Warsaw, Poland, 2007.
- Jakubczyk, T.; Haber, T. (Eds.) The Analysis of Cereals and Cereal Products; SGGW-AR: Warsaw, Poland, 1983. [Google Scholar]
- PN-EN ISO 5529:2010; Wheat. Determination of Sedimentation Index—Zeleny Test. Polish Committee of Standardization: Warsaw, Poland, 2010.
- Standard No. 107/1; ICC—International Association for Cereal Science and Technology. Determination of the Falling Number according to Hagberg—As a Measure of the Degree of Alpha-Amylase Activity in Grain and Flour. International Association for Cereal Science and Technology: Vienna, Austria, 2003.
- PN-ISO 7305:2001; Cereal Products. Determination of Fat Acidity. Polish Committee of Standardization: Warsaw, Poland, 2001.
- Supplemental Manual for BZS SZ 2005 Type Laser Fermentograph; Sadkiewicz Instruments: Bydgoszcz, Poland, 2009.
- Standard No. 115/1; ICC—International Association for Cereal Science and Technology. Method for Using the Brabender Farinograph. International Association for Cereal Science and Technology: Vienna, Austria, 2003.
- American Association of Cereal Chemists International. Approved Methods of Analysis. Method 10-05.01, Guidelines for Measurement of Volume by Rapeseed Displacement, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) during Maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. Food Drug Anal. 2020, 10, 3. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Kaszuba, J.; Jańczak-Pieniążek, M.; Migut, D.; Kapusta, I.; Buczek, J. Comparison of the Antioxidant and Sensorial Properties of Kvass Produced from Mountain Rye Bread with the Addition of Selected Plant Raw Materials. Foods 2024, 13, 357. [Google Scholar] [CrossRef]
- Pawłowska, A.M.; Żurek, N.; Kapusta, I.; De Leo, M.; Braca, A. Antioxidant and Antiproliferative Activities of Phenolic Extracts of Eriobotrya japonica (Thunb.) Lindl. Fruits and Leaves. Plants 2023, 12, 3221. [Google Scholar] [CrossRef]
- PN-A-74022:2003; Cereal Products. Wheat Flour. Polish Committee of Standardization: Warsaw, Poland, 2003.
- Wysocka, K.; Cacak-Pietrzak, G.; Feledyn-Szewczyk, B.; Studnicki, M. The Baking Quality of Wheat Flour (Triticum aestivum L.) Obtained from Wheat Grains Cultivated in Various Farming Systems (Organic vs. Integrated vs. Conventional). Appl. Sci. 2024, 14, 1886. [Google Scholar] [CrossRef]
- Santetti, G.S.; Dacoreggio, M.V.; Inácio, H.P.; Biduski, B.; Hoff, R.B.; Freire, C.B.F.; Amboni, R.D.D.M.C. The addition of yerba mate leaves on bread dough has influences on fermentation time and the availability of phenolic compounds? LWT 2021, 146, 111442. [Google Scholar] [CrossRef]
- Rubio, F.T.V.; Maciel, G.M.; da Silva, M.V.; Corrêa, V.G.; Peralta, R.M.; Haminiuk, C.W.I. Enrichment of waste yeast with bioactive compounds from grape pomace as an innovative and emerging technology: Kinetics, isotherms and bioaccessibility. Innov. Food Sci. Emerg. Technol. 2018, 45, 18–28. [Google Scholar] [CrossRef]
- Sobczyk, A.; Pycia, K.; Jaworska, G.; Kaszuba, J. Comparison of fermentation strength of the flours obtained from the grain of old varieties and modern breeding lines of spelt (Triticum aestivum ssp. spelta). J. Food Process. Preserv. 2017, 41, e13293. [Google Scholar] [CrossRef]
- Belcar, J.; Sobczyk, A.; Sekutowski, T.R.; Stankowski, S.; Gorzelany, J. Evaluation of flours from ancient varieties of wheat (einkorn, emmer, spelt) used in production of bread. Acta Univ. Cibiniensis. Ser. E Food Technol. 2021, 25, 53–66. [Google Scholar] [CrossRef]
- Picker, P.; Vogl, S.; McKinnon, R.; Mihaly-Bison, J.; Binder, M.; Atanasov, A.G.; Kopp, B. Plant extracts in cell-based anti-inflammatory assays—Pitfalls and considerations related to removal of activity masking bulk components. Phytochem. Lett. 2014, 10, xli–xlvii. [Google Scholar] [CrossRef]
- Gwiazdowska, D.; Uwineza, P.A.; Frąk, S.; Juś, K.; Marchwińska, K.; Gwiazdowski, R.; Waśkiewicz, A. Antioxidant, antimicrobial and antibiofilm properties of Glechoma hederacea extracts obtained by supercritical fluid extraction, using different extraction conditions. Appl. Sci. 2022, 12, 3572. [Google Scholar] [CrossRef]
- Šeremet, D.; Durgo, K.; Kosanović, J.; Huđek Turković, A.; Mandura Jarić, A.; Vojvodić Cebin, A.; Komes, D. Studying the Functional Potential of Ground Ivy (Glechoma hederacea L.) Extract Using an In Vitro Methodology. Int. J. Mol. Sci. 2023, 24, 16975. [Google Scholar] [CrossRef]
- Mukkundur Vasudevaiah, A.; Chaturvedi, A.; Kulathooran, R.; Dasappa, I. Effect of green coffee extract on rheological, physico-sensory and antioxidant properties of bread. J. Food Sci. Technol. 2017, 54, 1827–1836. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Dziki, D.; Gawlik-Dziki, U.; Sułek, A.; Kalisz, S.; Sujka, K. Effect of the Addition of Dried Dandelion Roots (Taraxacum officinale F.H. Wigg.) on Wheat Dough and Bread Properties. Molecules 2021, 26, 7564. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Sun, F.; Li, X.; Wang, P.; Sun, J.; He, G. Tannins improve dough mixing properties through affecting physicochemical and structural properties of wheat gluten proteins. Food Res. Int. 2015, 69, 64–71. [Google Scholar] [CrossRef]
- Delcour, J.A.; Joye, I.J.; Pareyt, B.; Wilderjans, E.; Brijs, K.; Lagrain, B. Wheat gluten functionality as a quality determinant in cereal-based food products. Annu. Rev. Food Sci. Technol. 2012, 3, 469–492. [Google Scholar] [CrossRef] [PubMed]
- Kłosok, K.; Welc-Stanowska, R.; Nawrocka, A. Changes in the conformation and biochemical properties of gluten network after phenolic acid supplementation. J. Cereal Sci. 2023, 110, 103651. [Google Scholar] [CrossRef]
- Wójcik, M.; Różyło, R.; Łysiak, G.; Kulig, R.; Cacak-Pietrzak, G. Textural and sensory properties of wheat bread fortified with nettle (Urtica dioica L.) produced by the scalded flour method. J. Food Process. Preserv. 2021, 45, e15851. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Różyło, R.; Dziki, D.; Gawlik-Dziki, U.; Sułek, A.; Biernacka, B. Cistus incanus L. as an innovative functional additive to wheat bread. Foods 2019, 8, 349. [Google Scholar] [CrossRef]
- Adamczyk, G.; Posadzka, Z.; Witczak, T.; Witczak, M. Comparison of the Rheological Behavior of Fortified Rye–Wheat Dough with Buckwheat, Beetroot and Flax Fiber Powders and Their Effect on the Final Product. Foods 2023, 12, 559. [Google Scholar] [CrossRef] [PubMed]
- Cacak-Pietrzak, G.; Dziki, D.; Gawlik-Dziki, U.; Parol-Nadłonek, N.; Kalisz, S.; Krajewska, A.; Stępniewska, S. Wheat Bread Enriched with Black Chokeberry (Aronia melanocarpa L.) Pomace: Physicochemical Properties and Sensory Evaluation. Appl. Sci. 2023, 13, 6936. [Google Scholar] [CrossRef]
- Hutchings, J.B. (Ed.) Food Colour and Appearance, 2nd ed.; Aspen Publishers: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Xu, J.; Wang, W.; Li, Y. Dough properties, bread quality, and associated interactions with added phenolic compounds: A review. J. Funct. Foods 2019, 52, 629–639. [Google Scholar] [CrossRef]
- Koh, B.-K.; Ng, P.K.W. Effects of ferulic acid and transglutaminase on hard wheat flour dough and bread. Cereal Chem. 2009, 86, 18–22. [Google Scholar] [CrossRef]
- Nicks, F.; Richel, A.; Dubrowski, T.; Wathelet, B.; Wathelet, J.-P.; Blecker, C.; Paquot, M. Effect of new synthetic PEGylated ferulic acids in comparison with ferulic acid and commercial surfactants on the properties of wheat flour dough and bread: Effect of ferulic acid on flour dough and bread. J. Sci. Food Agric. 2013, 93, 2415–2420. [Google Scholar] [CrossRef]
- Sławińska, N.; Kluska, M.; Moniuszko-Szajwaj, B.; Stochmal, A.; Woźniak, K.; Olas, B. New Aspect of Composition and Biological Properties of Glechoma hederacea L. Herb: Detailed Phytochemical Analysis and Evaluation of Antioxidant, Anticoagulant Activity and Toxicity in Selected Human Cells and Plasma In Vitro. Nutrients 2023, 15, 1671. [Google Scholar] [CrossRef]
- Cho, K.; Choi, Y.J.; Ahn, Y.H. Identification of Polyphenol Glucuronide Conjugates in Glechoma hederacea var. longituba Hot Water Extracts by High-Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS). Molecules 2020, 25, 4713. [Google Scholar] [CrossRef]
- Hahm, Y.H.; Cho, K.; Ahn, Y.H. Compositional Characteristics of Glucuronide Conjugates in Regional Glechoma hederacea var. longituba Herbal Extracts Using a Set of Polyphenolic Marker Compounds. Plants 2021, 10, 2353. [Google Scholar] [CrossRef]
- Sile, I.; Krizhanovska, V.; Nakurte, I.; Mezaka, I.; Kalane, L.; Filipovs, J.; Vecvanags, A.; Pugovics, O.; Grinberga, S.; Dambrova, M.; et al. Wild-Grown and Cultivated Glechoma hederacea L.: Chemical Composition and Potential for Cultivation in Organic Farming Conditions. Plants 2022, 11, 819. [Google Scholar] [CrossRef]
- El-Aasr, M.; Nohara, T.; Ikeda, T.; Abu-Risha, S.E.; Elekhnawy, E.; Tawfik, H.O.; Shoeib, N.; Attia, G. LC-MS/MS metabolomics profiling of Glechoma hederacea L. methanolic extract; in vitro antimicrobial and in vivo with in silico wound healing studies on Staphylococcus aureus infected rat skin wound. Nat. Prod. Res. 2023, 37, 1730–1734. [Google Scholar] [CrossRef]
- Dziki, D.; Hassoon, W.H.; Biernacka, B.; Gawlik-Dziki, U. Dried and powdered leaves of parsley as a functional additive to wheat bread. Appl. Sci. 2022, 12, 7930. [Google Scholar] [CrossRef]
- Skendi, A.; Irakli, M.; Chatzopoulou, P.; Papageorgiou, M. Aromatic plants of Lamiaceae family in a traditional bread recipe: Effects on quality and phytochemical content. J. Food Biochem. 2019, 43, e13020. [Google Scholar] [CrossRef] [PubMed]
- Das, L.; Raychaudhuri, U.; Chakraborty, R. Supplementation of common white bread by coriander leaf powder. Food Sci. Biotechnol. 2012, 21, 425–433. [Google Scholar] [CrossRef]
- Raba, D.N.; Moigradean, D.; Poiana, M.A.; Popa, M.; Jianu, I. Antioxidant capacity and polyphenols content for garlic and basil flavored bread. J. Agroaliment. Process. Technol. 2007, 13, 163–168. [Google Scholar]
- Wójcik, M.; Dziki, D.; Gawlik-Dziki, U.; Różyło, R. Development of no-salt herbal bread using a method based on scalded flour. LWT 2021, 145, 111329. [Google Scholar] [CrossRef]
Flour Quality Parameters | Wheat Flour (Type 650) |
---|---|
Moisture content [%] | 14.40 ± 0.03 |
Falling number [s] | 438 ± 10 |
Wet gluten content [%] | 34.87 ± 0.14 |
Zeleny sedimentation indicator [cm3] | 33 ± 2 |
Protein content [% d.w.] | 13.67 ± 0.12 |
Fat acidity [mg KOH/100 g d.w.] | 116.21 ± 9.55 |
Ash content [% d.w.] | 0.74 ± 0.01 |
Sample | Optimal Time of Dough Fermentation [min] | Total Volume of CO2 Produced in Fermentation Time [cm3] | Volume of CO2 Released Outside the Dough in Fermentation Time [cm3] | Volume of CO2 Retained in the Dough in Fermentation Time [cm3] |
---|---|---|---|---|
control | 55.0 c ± 1.4 | 254.5 c ± 3.5 | 55.0 c ± 1.4 | 199.5 b ± 4.9 |
A | 58.0 c ± 0.0 | 277.5 c ± 13.4 | 62.5 d ± 0.7 | 215.0 b ± 12.7 |
B | 45.0 b ± 1.4 | 185.5 b ± 16.3 | 43.0 b ± 1.4 | 142.5 a ± 14.8 |
C | 39.0 a ± 1.4 | 150.5 a ± 7.8 | 31.0 a ± 0.0 | 119.5 a ± 7.8 |
Sample | Water Absorption of Flour [%] | Dough Properties | |||
---|---|---|---|---|---|
Development Time [min] | Stability [min] | Softening [FU] | FQN | ||
control | 54.0 a ± 0.0 | 2.3 a ± 0.1 | 9.1 a ± 0.5 | 45 a ± 3 | 95 a ± 4 |
A | 55.5 a,b ± 0.1 | 2.5 a ± 0.4 | 11.1 a ± 1.4 | 39 a ± 6 | 121 b ± 15 |
B | 56.7 b ± 0.2 | 7.0 b ± 0.4 | 10.7 a ± 1.1 | 81 b ± 2 | 115 b ± 5 |
C | 57.0 c ± 0.2 | 7.6 b ± 0.9 | 11.3 b ± 0.9 | 104 c ± 4 | 124 b ± 8 |
Sample | Bread Baking Process | Quality Parameters of Bread | |||||
---|---|---|---|---|---|---|---|
Dough Yield [%] | Oven Loss [%] | Bread Yield [%] | Loaf Volume [cm3] | Specific Volume [cm3/g] | Moisture of Bread [%] | Crumb Porosity [%] | |
control | 157.9 a ± 0.1 | 10.2 a ± 0.5 | 132.3 a ± 0.9 | 550 b ± 14 | 2.63 b ± 0.05 | 45.02 a ± 0.54 | 80 b ± 3 |
A | 157.3 a ± 0.2 | 9.6 a ± 0.1 | 133.9 a ± 0.1 | 530 b ± 14 | 2.49 b ± 0.07 | 45.34 a ± 0.59 | 76 b ± 3 |
B | 158.1 a ± 0.1 | 9.9 a ± 0.0 | 134.0 a ± 0.3 | 505 a,b ± 7 | 2.38 a,b ± 0.04 | 44.19 a ± 0.66 | 74 a,b ± 0 |
C | 158.3 a ± 0.2 | 9.6 a ± 0.7 | 134.1 a ± 0.9 | 470 a ± 28 | 2.22 a ± 0.15 | 44.82 a ± 0.30 | 68 a ± 3 |
Sample | L* | a* | b* | ∆E |
---|---|---|---|---|
crust | ||||
control | 57.19 a ± 6.21 | 13.60 b ± 0.96 | 30.29 b ± 2.96 | - |
A | 59.12 a ± 4.27 | 12.78 b ± 1.44 | 31.67 b ± 1.23 | 2.51 |
B | 57.62 a ± 3.31 | 12.28 b ± 1.72 | 30.06 b ± 1.16 | 1.41 |
C | 58.27 a ± 3.13 | 10.17 a ± 1.26 | 27.51 a ± 1.99 | 5.81 |
crumb | ||||
control | 69.32 c ± 0.81 | 2.05 c ± 0.06 | 19.19 b ± 0.36 | - |
A | 66.87 b ± 0.98 | 1.59 a ± 0.10 | 18.56 a ± 0.44 | 2.57 |
B | 59.49 a ± 1.90 | 1.90 b ± 0.12 | 19.21 b ± 0.48 | 9.84 |
C | 58.24 a ± 2.46 | 2.28 d ± 0.18 | 20.18 c ± 0.41 | 11.12 |
Sample | Hardness [N] | Springiness [-] | Chewiness [N] | Cohesiveness [-] |
---|---|---|---|---|
control | 7.35 a ± 1.91 | 0.75 b ± 0.03 | 3.58 a ± 0.78 | 0.65 b ± 0.02 |
A | 8.47 a ± 2.05 | 0.69 a ± 0.01 | 3.61 a ± 0.85 | 0.62 a,b ± 0.01 |
B | 8.97 a ± 0.49 | 0.69 a ± 0.03 | 3.85 a ± 0.33 | 0.63 a,b ± 0.02 |
C | 9.05 a ± 1.20 | 0.70 a ± 0.02 | 3.95 a ± 0.66 | 0.62 a ± 0.02 |
Sample | Total Phenolic Content (TPC) [mg GAE/100 g d.w.] | Total Flavonoid Content (TFC) [mg QE/100 g d.w.] |
---|---|---|
control | 21.39 a ± 0.61 | 1.49 a ± 0.01 |
A | 30.47 b ± 2.53 | 2.52 b ± 0.01 |
B | 52.44 c ± 0.86 | 5.09 c ± 0.01 |
C | 65.50 d ± 4.07 | 8.60 d ± 0.04 |
Sample | ABTS | FRAP |
---|---|---|
mMol TE/100 g d.w. | ||
control | 470.58 a ± 9.06 | 47.68 a ± 2.06 |
A | 562.09 b ± 1.35 | 69.35 b ± 0.36 |
B | 708.29 c ± 1.35 | 127.15 c ± 5.85 |
C | 743.07 d ± 3.50 | 150.49 d ± 0.04 |
No. | Compound | Rt | λmax | [M − H]− m/z | Content | ||||
---|---|---|---|---|---|---|---|---|---|
Control | A | B | C | ||||||
min | nm | MS | MS/MS | μg/1 g d.w. | |||||
1 | Chlorogenic acid | 2.93 | 299 sh, 324 | 353 | 191 | n.d. | n.d. | 33.71 a ± 0.30 | 84.66 a ± 0.74 |
2 | Cryptochlorogenic acid | 3.05 | 299 sh, 324 | 353 | 191 | n.d. | 20.22 b ± 0.18 | 100.68 c ± 0.88 | 223.50 b ± 1.96 |
3 | Caffeoylthreonic acid | 3.37 | 299 sh, 324 | 297 | 179 | 1.06 a ± 0.01 | 49.95 c ± 0.44 | 154.27 b ± 1.36 | 298.43 d ± 2.62 |
4 | Rutin | 4.43 | 255,352 | 609 | 301 | n.d. | 614.61 h ± 5.40 | 1505.64 i ± 13.22 | 2597.33 h ± 22.81 |
5 | Hyperoside | 4.62 | 253, 350 | 463 | 301 | n.d. | 112.42 e ± 0.99 | 234.04 e ± 2.06 | 467.41 c ± 4.11 |
6 | Quercetin 3-O-(6″-malonylhexoside | 4.89 | 255, 347 | 549 | 301 | n.d. | 79.70 d ± 0.70 | 289.13 f ± 2.54 | 485.39 c ± 4.26 |
7 | Kaempferol 3-O-robinbioside | 4.95 | 262, 341 | 593 | 285 | 56.61 c ± 0.50 | 400.08 g ± 3.51 | 834.99 h ± 7.33 | 1521.45 g ± 13.36 |
8 | Vitexin 2″-O-rhamnoside | 5.18 | 267, 333 | 577 | 293 | n.d. | 44.83 a ± 0.39 | 122.57 d ± 1.08 | 232.45 b ± 2.04 |
9 | Rosmarinic acid | 5.60 | 329 | 359 | 161 | 21.36 b ± 0.19 | 128.61 f ± 1.13 | 536.08 g ± 4.71 | 990.58 f ± 8.70 |
10 | Apigenin | 6.11 | 267, 331 | 269 | 225 | n.d. | n.d. | 36.00 a ± 0.32 | 93.41 a ± 0.82 |
11 | 3-O-methyl-rosmarinic acid | 6.73 | 328 | 373 | 179 | n.d. | 43.60 a ± 0.38 | 159.17 b ± 1.39 | 332.62 e ± 2.91 |
Total | 79.03 ± 0.69 | 1493.99 ± 13.12 | 4006.27 ± 35.19 | 7674.97 ± 67.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pycia, K.; Pawłowska, A.M.; Posadzka, Z.; Kaszuba, J. Ground Ivy (Glechoma hederacea L.) as an Innovative Additive for Enriching Wheat Bread: Study on Flour Fermentation Properties, Dough Rheological Properties and Bread Quality. Appl. Sci. 2024, 14, 9392. https://doi.org/10.3390/app14209392
Pycia K, Pawłowska AM, Posadzka Z, Kaszuba J. Ground Ivy (Glechoma hederacea L.) as an Innovative Additive for Enriching Wheat Bread: Study on Flour Fermentation Properties, Dough Rheological Properties and Bread Quality. Applied Sciences. 2024; 14(20):9392. https://doi.org/10.3390/app14209392
Chicago/Turabian StylePycia, Karolina, Agata Maria Pawłowska, Zuzanna Posadzka, and Joanna Kaszuba. 2024. "Ground Ivy (Glechoma hederacea L.) as an Innovative Additive for Enriching Wheat Bread: Study on Flour Fermentation Properties, Dough Rheological Properties and Bread Quality" Applied Sciences 14, no. 20: 9392. https://doi.org/10.3390/app14209392
APA StylePycia, K., Pawłowska, A. M., Posadzka, Z., & Kaszuba, J. (2024). Ground Ivy (Glechoma hederacea L.) as an Innovative Additive for Enriching Wheat Bread: Study on Flour Fermentation Properties, Dough Rheological Properties and Bread Quality. Applied Sciences, 14(20), 9392. https://doi.org/10.3390/app14209392