An Enhanced Particle Filtering Method Leveraging Particle Swarm Optimization for Simultaneous Localization and Mapping in Mobile Robots Navigating Unknown Environments
Abstract
:1. Introduction
2. Related Works
2.1. PSO
2.2. FastSLAM
2.3. Related Work of Integrating FastSLAM with Evolutionary Algorithm
3. FastSLAM-PSO
Algorithm 1. FastSLAM-PSO |
---|
1 Initialize world, robot, motion model, and measurement model |
2 Initialize particles with initial pose and occupancy grid |
3 Loop over each control step in the scene: |
4 Move the robot according to the control input |
5 Update the trajectory of the robot |
6 Sense the environment to obtain measurements |
7 Optimize the pose of all particles using PSO |
8 For each particle: |
9 Generate an initial guess from the motion model |
10 Perform scan matching to refine the guess |
11 Use the motion model to predict the pose |
12 Calculate the weight of each particle based on the likelihood of the measurements |
13 Normalize the weights |
14 Select the best particle as the estimated robot pose |
15 Perform adaptive resampling if the effective number of samples is low |
16 Update the occupancy grid for each particle based on the true measurements |
17 End loop |
4. Experiments
4.1. Experiment Setting
4.2. Comparison between FastSLAM and FastSLAM-PSO
4.2.1. Small-Scale Scenario
4.2.2. Large-Scale Scenario
4.2.3. Square Scenario
4.2.4. Time Analysis
4.3. Analysis of the Population Parameters N
4.4. Analysis of Mapping Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–110. [Google Scholar] [CrossRef]
- Ribeiro, N.F.; Santos, C.P. Inertial measurement units: A brief state of the art on gait analysis. In Proceedings of the 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG), Coimbra, Portugal, 16–18 February 2017; pp. 1–4. [Google Scholar]
- Agunbiade, O.; Zuva, T. Simultaneous Localization and mapping in application to autonomous robot. In Proceedings of the 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC), Mon Tresor, Mauritius, 6–7 December 2018; pp. 1–5. [Google Scholar]
- Bresson, G.; Alsayed, Z.; Yu, L.; Glaser, S. Simultaneous localization and mapping: A survey of current trends in autonomous driving. IEEE Trans. Intell. Veh. 2017, 2, 194–220. [Google Scholar] [CrossRef]
- Montemerlo, M. FastSLAM: A factored solution to the simultaneous localization and mapping problem. In Proceeding of the AAAI02 Eighteenth National Conference on Artificial Intelligence, Edmonton, AB, Canada, 28 July–1 August 2002. [Google Scholar]
- Teslić, L.; Škrjanc, I.; Klančar, G. EKF-based localization of a wheeled mobile robot in structured environments. J. Intell. Robot. Syst. 2011, 62, 187–203. [Google Scholar] [CrossRef]
- Kim, C.; Sakthivel, R.; Chung, W.K. Unscented FastSLAM: A robust and efficient solution to the slam problem. IEEE Trans. Robot. 2008, 24, 808–820. [Google Scholar] [CrossRef]
- Talebi, S.P.; Godsill, S.J.; Mandic, D.P. Filtering Structures for α-Stable Systems. IEEE Control Syst. Lett. 2023, 7, 553–558. [Google Scholar] [CrossRef]
- Lv, T.Z.; Zhao, C.X. An improved FastSLAM algorithm based on revised genetic resampling and SR-UPF. Int. J. Autom. Comput. 2018, 15, 325–334. [Google Scholar] [CrossRef]
- Pei, F.J.; Li, H.Y.; Cheng, Y.H. An improved FastSLAM system based on distributed structure for autonomous robot navigation. J. Sens. 2014, 2014, 456289. [Google Scholar] [CrossRef]
- Lei, X.; Feng, B.; Wang, G.; Liu, W.; Yang, Y. A novel fastslam framework based on 2d lidar for autonomous mobile robot. Electronics 2020, 9, 695. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Kulkarni, M.N.K.; Patekar, M.S.; Bhoskar, M.T.; Kulkarni, M.O.; Kakandikar, G.M.; Nandedkar, V.M. Particle swarm optimization applications to mechanical engineering—A review. Mater. Today Proc. 2015, 2, 2631–2639. [Google Scholar] [CrossRef]
- Jahandideh-Tehrani, M.; Bozorg-Haddad, O.; Loáiciga, H.A. Application of particle swarm optimization to water management: An introduction and overview. Environ. Monit. Assess. 2020, 192, 281. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, R.; Hidetoshi, O.Y.A.; Hoshi, Y. Verification of grid based fastslam with multiple candidates of particles. Proc. Int. Conf. New Trends Appl. Sci. 2023, 1, 85–90. [Google Scholar] [CrossRef]
- Karaçam, S.; Navruz, T.S. An improved adaptive FastSLAM algorithm with time-varying noise estimator. Asian J. Control 2013, 25, 2617–2627. [Google Scholar] [CrossRef]
- Lingesh, R.S.; Annapoorani, G. Assistive mobile robot navigation and localization using FastSLAM algorithm. In Proceedings of the 2023 5th International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 5–8 August 2023; pp. 1807–1813. [Google Scholar]
- Vahdat, R.; NourAshrafoddin, N.; Ghidary, S.S. Mobile robot global localization using differential evolution and particle swarm optimization. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 1527–1534. [Google Scholar]
- Moreno, L.; Garrido, S.; Muñoz, M.L. Evolutionary filter for robust mobile robot global localization. Robot. Auton. Syst. 2006, 54, 590–600. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Wang, P.; Chen, Z.H. An improved particle filter for mobile robot localization based on particle swarm optimization. Expert Syst. Appl. 2019, 135, 181–193. [Google Scholar] [CrossRef]
- Zhang, G.L.; Yao, E.L.; Tang, W.J.; Xu, J. An improved particle filter SLAM algorithm in similar environments. Appl. Mech. Mater. 2014, 590, 677–682. [Google Scholar] [CrossRef]
- Moreno, L.; Martín, F.; Muñoz, M.L.; Garrido, S. Differential evolution markov chain filter for global localization. J. Intell. Robot. Syst. 2016, 82, 513–536. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, G.; Zhang, B.; Chen, H.; Deng, W.; Deng, W. An enhanced distributed differential evolution algorithm for portfolio optimization problems. Eng. Appl. Artif. Intell. 2023, 121, 106004. [Google Scholar] [CrossRef]
FastSLAM | FastSLAM-DE | FastSLAM-PSO | |
---|---|---|---|
Scene_1 | 4101.973994 | 7867.448255 | 7140.355758 |
Scene_2 | 7334.884456 | 16145.49226 | 15157.19925 |
Scene_3 | 6159.537662 | 12651.76538 | 11456.88336 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, X.; Zhao, W.; Tang, L.; Zhao, H.; Mei, X. An Enhanced Particle Filtering Method Leveraging Particle Swarm Optimization for Simultaneous Localization and Mapping in Mobile Robots Navigating Unknown Environments. Appl. Sci. 2024, 14, 9426. https://doi.org/10.3390/app14209426
Bian X, Zhao W, Tang L, Zhao H, Mei X. An Enhanced Particle Filtering Method Leveraging Particle Swarm Optimization for Simultaneous Localization and Mapping in Mobile Robots Navigating Unknown Environments. Applied Sciences. 2024; 14(20):9426. https://doi.org/10.3390/app14209426
Chicago/Turabian StyleBian, Xu, Wanqiu Zhao, Ling Tang, Hong Zhao, and Xuesong Mei. 2024. "An Enhanced Particle Filtering Method Leveraging Particle Swarm Optimization for Simultaneous Localization and Mapping in Mobile Robots Navigating Unknown Environments" Applied Sciences 14, no. 20: 9426. https://doi.org/10.3390/app14209426
APA StyleBian, X., Zhao, W., Tang, L., Zhao, H., & Mei, X. (2024). An Enhanced Particle Filtering Method Leveraging Particle Swarm Optimization for Simultaneous Localization and Mapping in Mobile Robots Navigating Unknown Environments. Applied Sciences, 14(20), 9426. https://doi.org/10.3390/app14209426