Waste Bread as Raw Material for Ethanol Production: Effect of Mash Preparation Methods on Fermentation Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Enzymatic Preparations
- Termamyl SC (α-amylase from Bacillus stearothermophilus, EC 3.2.1.1),
- SAN Extra (glucan 1,4-α-glucosidase from Aspergillus niger, EC 3.2.1.3),
- Viscoferm® (a multienzyme complex containing non-starch-degrading enzymes: cellulase, EC 3.2.1.4; xylanase (endo-1,4-), EC 3.2.1.8; and β-glucanase (endo-1,3(4)-), EC 3.2.1.6),
- Neutrase® (neutral protease from Bacillus amyloliquefaciens, EC.3.4.24.28).
- GC 626 (acid α-amylase from Trichoderma reesei, EC 3.2.1.1),
- Stargen 002® (a blend of α-amylase from Aspergillus kawachi expressed in Trichoderma reesei, EC 3.2.1.1, and glucoamylase from Trichoderma reesei, EC 3.2.1.3).
- As supportive preparations, the aforementioned Viscoferm® and Neutrase® were applied.
2.3. Yeast
2.4. Preparation and Fermentation of Sweet Mashes
2.5. Distillation
2.6. Analytical Methods
2.7. Calculations
2.8. Statistical Analysis
3. Results and Discussion
3.1. The Chemical Composition of Raw Materials
3.2. Chemical Characteristic of Mashes and Fermentation Results
3.3. Chemical Composition of the Obtained Distillates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sachs, J.D.; Kroll, C.; Lafortune, G.; Fuller, G.; Woelm, F. Sustainable Development Report 2022; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Jung, J.M.; Kim, J.Y.; Kim, J.H.; Kim, S.M.; Jung, S.; Song, H.; Kwon, E.; Choi, Y.E. Zero-waste strategy by means of valorization of bread waste. J. Clean. Prod. 2022, 6, 365–370. [Google Scholar] [CrossRef]
- Samray, M.N.; Masatcioglu, T.M.; Koksel, H. Bread crumbs extrudates: A new approach for reducing bread waste. J. Cereal Sci. 2019, 85, 130–136. [Google Scholar] [CrossRef]
- Brancoli, P.; Lundin, M.; Bolton, K.; Eriksson, M. Bread loss rates at the supplier-retailer interface. Analysis of risk factors to support waste prevention measures. Resour. Conserv. Recycl. 2019, 147, 128–136. [Google Scholar] [CrossRef]
- Staszewska, E. Bread returns and their management. PPiC 2008, 10, 34–35. (In Polish) [Google Scholar]
- Bedford, E. Share of Tesco Store Food Waste in the United Kingdom (UK) in 2021/22, by Category Breakdown. Statista. Available online: https://www.statista.com/statistics/490863/tesco-group-united-kingdom-uk-food-waste-by-category/ (accessed on 15 August 2024).
- Dymchenko, A.; Geršl, M.; Gregor, T. Trends in bread waste utilisation. Trends Food Sci. Technol. 2023, 132, 93–102. [Google Scholar] [CrossRef]
- Zhang, A.Y.; Sun, Z.; Leung, C.; Han, W.; Li, M.; Lin, C.S. Valorisation of bakery waste for succinic acid production. Green Chem. 2013, 15, 690–695. [Google Scholar] [CrossRef]
- Verni, M.; Minisci, A.; Convertino, S.; Nionelli, L.; Rizzello, C.G. Wasted bread as substrate for the cultivation of starters for the food industry. Food Microbiol. 2020, 11, 22–28. [Google Scholar] [CrossRef]
- Korzeniowska-Ginter, R.; Dereszewska, A. The scale of waste of bakery products in households. Ann. Pol. Assoc. Agric. Agribus. Econ. 2018, 20, 91–97. (In Polish) [Google Scholar] [CrossRef]
- Narisetty, V.; Cox, R.; Willoughby, N.; Aktas, E.; Tiwari, B.; Matharu, A.S.; Salonitis, K.; Kumar, V. Recycling bread waste into chemical building blocks using a circular biorefining approach. Sustain. Energ. Fuels 2021, 5, 4842–4849. [Google Scholar] [CrossRef]
- Kiran, E.U.; Trzciński, A.P.; Liu, Y. Bioconversion of food waste to energy: A review. Fuel 2014, 134, 389–399. [Google Scholar] [CrossRef]
- Muñoz, I.; Flury, K.; Jungbluth, N.; Rigarlsford, G.; i Canals, L.M.; King, H. Life cycle assessment of bio-based ethanol produced from different agricultural feedstocks. Int. J. Life Cycle Assess. 2014, 19, 109–119. [Google Scholar] [CrossRef]
- Mihajlovski, K.R.; Milić, M.; Pecarski, D.; Dimitrijević-Branković, S. Statistical optimization of bioethanol production from waste bread hydrolysate: Scientific paper. J. Serb. Chem. Soc. 2021, 86, 651–662. [Google Scholar] [CrossRef]
- Narisetty, V.; Nagarajan, S.; Gadkari, S.; Ranade, V.V.; Zhang, J.; Patchigolla, K.; Bhatnagar, A.; Awasthi, K.M.; Pandey, A.; Kumar, V. Process optimization for recycling of bread waste into bioethanol and biomethane: A circular economy approach. Energy Convers. Manag. 2022, 266, 115784. [Google Scholar] [CrossRef]
- Pietrzak, W.; Kawa-Rygielska, J. Ethanol fermentation of waste bread using granular starch hydrolyzing enzyme: Effect of raw material pretreatment. Fuel 2014, 134, 250–256. [Google Scholar] [CrossRef]
- Kawa-Rygielska, J.; Pietrzak, W.; Lennartsson, P.R. High-efficiency conversion of bread residues to ethanol and edible biomass using filamentous fungi at high solids loading: A biorefinery approach. Appl. Sci. 2022, 12, 6405. [Google Scholar] [CrossRef]
- Dziki, D. Possibilities of Using Bread Withdrawn from the Market. Available online: https://mistrzbranzy.pl/artykuly/pokaz/artykul-1741.html (accessed on 18 September 2024). (In Polish).
- Technical Data Sheet. SafSpirit™ HG-1. Available online: https://fermentis.com/en/product/safspirit-hg-1/ (accessed on 10 June 2024).
- Dziekońska-Kubczak, U.; Berłowska, J.; Dziugan, P.; Patelski, P.; Pielech-Przybylska, K.; Balcerek, M. Nitric acid pretreatment of jerusalem artichoke stalks for enzymatic saccharification and bioethanol production. Energies 2018, 11, 2153. [Google Scholar] [CrossRef]
- Lane, R.H. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Helrich, K., Ed.; Association of Official Analytical Chemists, Inc.: Arlington, WA, USA, 1995; Volume 2, pp. 777–796. [Google Scholar]
- Polish Standard PN-A-79528-6; Spirit (Ethyl Alcohol). Test Methods. Determination of Methyl Alcohol Content. Polish Committee for Standardization: Warsaw, Poland, 2000.
- Polish Standard PN-A-79528-4; Spirit (Ethyl Alcohol). Test Methods. Determination of Aldehydes Content. Polish Committee for Standardization: Warsaw, Poland, 2000.
- Polish Standard PN-A-79528-7; Spirit (Ethyl Alcohol). Test Methods. Determination of Acidity. Polish Committee for Standardization: Warsaw, Poland, 2001.
- Pomeranz, Y. Biochemical, Functional and nutritive changes during storage. In Storage of Cereal Grains and Their Products; Christensen, C.M., Ed.; Monograph Series; American Association of Cereal Chemists: St. Paul, MN, USA, 1974; pp. 56–114. [Google Scholar]
- Wilkin, D.R.; Stenning, B.C. Moisture Content of Cereal Grains. Available online: https://cereals.ahdb.org.uk/publications/1989/september/01/moisture-content-of-cereal-grains.aspx (accessed on 15 May 2024).
- Rhazi, L.; Méléard, B.; Daaloul, O.; Grignon, G.; Branlard, G.; Aussenac, T. Genetic and environmental variation in starch content, starch granule distribution and starch polymer molecular characteristics of french bread wheat. Foods 2021, 10, 205. [Google Scholar] [CrossRef]
- Mesta-Corral, M.; Gómez-García, R.; Balagurusamy, N.; Torres-León, C.; Hernández-Almanza, A.Y. Technological and Nutritional Aspects of Bread Production: An overview of current status and future challenges. Foods 2024, 13, 2062. [Google Scholar] [CrossRef]
- Paterson, A.; Swanston, J.S.; Piggott, J.R. Production of fermentable extracts from cereals and fruits. In Fermented Beverage Production; Lea, A.G.H., Piggott, J., Eds.; Springer Science + Business: New York, NY, USA, 1995; pp. 1–24. [Google Scholar]
- Ben Rejeb, I.; Charfi, I.; Baraketi, S.; Hached, H.; Gargouri, M. Bread Surplus: A Cumulative Waste or a Staple Material for High-Value Products? Molecules 2022, 27, 8410. [Google Scholar] [CrossRef]
- Lineback, D.R.; Rasper, V.F. Wheat carbohydrates. In Wheat: Chemistry and Technology, 3rd ed.; Pomeranz, Y., Ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 1998; Volume 1, pp. 277–372. [Google Scholar]
- Fanuel, M.; Ropartz, D.; Guillon, F.; Saulnier, L.; Rogniaux, H. Distribution of cell wall hemicelluloses in the wheat grain endosperm: A 3D perspective. Planta 2018, 248, 1505–1513. [Google Scholar] [CrossRef]
- Schweizer, T.F.; Würsch, P. Analysis of dietary fiber. In The Analysis of Dietary Fiber in Food; James, W.P.T., Theander, O., Eds.; Marcel Dekker: New York, NY, USA, 1981; pp. 203–216. [Google Scholar]
- Diowksz, A. Taste as a key element of bread quality. In Bread—Taste, Health, Economy; SITSpoż Publishing House: Warsaw, Poland, 2019; pp. 21–39. [Google Scholar]
- Liu, X.; Jia, B.; Sun, X.; Ai, J.; Wang, L.; Wang, C.; Zhao, F.; Zhan, J.; Huang, W. Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. J. Food Sci. 2015, 80, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Pielech-Przybylska, K.; Balcerek, M.; Klebeko, M.; Dziekońska-Kubczak, U.; Hebdzyński, M. Ethanolic fermentation of rye mashes: Factors influencing the formation of aldehydes and process efficiency. Biomolecules 2022, 12, 1085. [Google Scholar] [CrossRef] [PubMed]
- Balcerek, M.; Pielech-Przybylska, K. Effect of simultaneous saccharification and fermentation conditions of native triticale starch on the dynamics and efficiency of process and composition of the distillates obtained. J. Chem. Technol. Biotechnol. 2013, 88, 615–622. [Google Scholar] [CrossRef]
- Strąk-Graczyk, E.; Balcerek, M. Effect of pre-hydrolysis on simultaneous saccharification and fermentation of native rye starch. Food Bioprocess Technol. 2020, 13, 923–936. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch retrogradation: A Comprehensive review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Nowotna, A.; Buksa, K.; Gambuś, H.; Ziobro, R.; Krawontka, J.; Sabat, R.; Gryszkin, A. Retrogradation of rye starch pastes. Acta Sci. Pol. Technol. Aliment. 2007, 6, 95–102. [Google Scholar]
- Russell, I. Understanding yeast fundamentals. In The Alcohol Textbook, 4th ed.; Jacques, K.A., Lyons, T.P., Kelsall, D.R., Eds.; Alltech Inc.: Nicholasville, KY, USA, 2003; pp. 85–120. [Google Scholar]
- Kotarska, K.; Czupryński, B.; Kłosowski, G. Effect of various activators on the course of alcoholic fermentation. J. Food Eng. 2006, 77, 965–971. [Google Scholar] [CrossRef]
- Balcerek, M.; Pielech-Przybylska, K.; Dziekońska-Kubczak, U.; Patelski, P.; Strąk, E. Fermentation results and chemical composition of agricultural distillates obtained from rye and barley grains and the corresponding malts as a source of amylolytic enzymes and starch. Molecules 2016, 21, 1320. [Google Scholar] [CrossRef]
- Broda, M.; Grajek, W. Microbial contaminations during bioethanol production. Sci. Tech. Mag. Ferment. Fruit Veg. Ind. 2009, 53, 58–60. [Google Scholar]
- Lagos, M.A.P.; Caviativa, J.A.C.; Pinzón, D.C.T.; Roa, D.H.R.; Basso, T.O.; Lozano, M.E.V. Xylose metabolization by a Saccharomyces cerevisiae strain isolated in Colombia. Indian J. Microbiol. 2023, 63, 84–90. [Google Scholar] [CrossRef]
- Graves, T.; Narendranath, N.V.; Dawson, K. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash. Appl. Microbiol. Biotechnol. 2007, 73, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Baroň, M.; Fiala, J. Chasing after minerality, relationship to yeast nutritional stress and succinic acid production. Czech J. Food Sci. 2012, 30, 188–193. [Google Scholar] [CrossRef]
- Yalcin, S.K.; Yesim Ozbas, Z. Effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine strains of Saccharomyces cerevisiae from Turkey. Brazilian J. Microbiol. 2008, 39, 325–332. [Google Scholar] [CrossRef]
- Szoege, H.M.; Wiśniewski, M. Economic and ecological aspects of energy ethanol production in small agricultural distilleries. Agric. Eng. 2013, 2, 215–224. (In Polish) [Google Scholar]
- Balcerek, M.; Pielech-Przybylska, K. Effect of supportive enzymes on chemical composition and viscosity of rye mashes obtained by PSL method and efficiency of their fermentation. Eur. Food Res. Technol. 2009, 229, 141–151. [Google Scholar] [CrossRef]
- Pielech-Przybylska, K.; Balcerek, M.; Nowak, A.; Wojtczak, M.; Czyżowska, A.; Dziekońska-Kubczak, U.; Patelski, P. The effect of different starch liberation and saccharification methods on the microbial contaminations of distillery mashes, fermentation efficiency, and spirits quality. Molecules 2017, 22, 1647. [Google Scholar] [CrossRef]
- Nikolaou, M.; Stavraki, C.; Bousoulas, Ι.; Malamis, D.; Loizidou, M.; Mai, S.; Barampouti, E.M. Valorisation of bakery waste via the bioethanol pathway. Energy 2023, 280, 128185. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union. Regulation (EU) 2019/787 of the European Parliament and of the Council. Off. J. Eur. Union 2019, 130, 1–54. [Google Scholar]
- Plutowska, B.; Biernacka, P.; Wardencki, W. Identification of volatile compounds in raw spirits of different organoleptic quality. J. Inst. Brew. 2010, 116, 433–439. [Google Scholar] [CrossRef]
- Polish Standard PN-A-79523:2002; Agricultural Distillate; Polish Committee for Standardization: Warsaw, Poland, 2002.
- Davídek, T.; Devaud, S.; Robert, F.; Blank, I. Sugar fragmentation in the Maillard reaction cascade: Isotope labeling studies on the formation of acetic acid by a hydrolytic α-dicarbonyl cleavage mechanism. J. Agric. Food Chem. 2006, 54, 6667–6676. [Google Scholar] [CrossRef]
- Piggot, R. From pot stills to continuous stills: Flavor modification by distillation. In The Alcohol Textbook, 4th ed.; Jacques, K.A., Lyons, T.P., Kelsall, D.R., Eds.; Nottingham University Press: Nottingham, UK, 2003; pp. 259–266. [Google Scholar]
- Black, K.; Walker, G. Yeast Fermentation for Production of Neutral Distilled Spirits. Appl. Sci. 2023, 13, 4927. [Google Scholar] [CrossRef]
- Bekatorou, A. Alcohol: Properties and determination. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: London, UK, 2016; Volume 1, pp. 88–96. [Google Scholar]
- Awad, O.I.; Ali, O.M.; Mamat, R.; Abdullah, A.A.; Najafi, G.; Kamarulzaman, M.K.; Yusri, I.M.; Noor, M.M. Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 69, 1232–1242. [Google Scholar] [CrossRef]
Parameters | Wheat Bread | Wheat–Rye Bread | ||
---|---|---|---|---|
Content [g/100 g Dry Mass] | ||||
Mean | SD | Mean | SD | |
Moisture * | 24.35 b | 0.15 | 19.80 a | 0.37 |
Total protein (Nx6.25) | 7.08 b | 0.01 | 8.18 a | 0.05 |
Total reducing sugars expressed as glucose, incl.: | 3.03 a | 0.20 | 2.02 b | 0.31 |
Maltotriose | 0.20 a | 0.01 | 0.21 a | 0.01 |
Maltose | 0.22 a | 0.01 | 0.12 b | 0.01 |
Glucose | 2.58 a | 0.24 | 1.66 b | 0.20 |
Starch | 71.70 b | 1.71 | 77.16 a | 4.98 |
Xylose | 0.16 b | 0.03 | 0.49 a | 0.02 |
Arabinose | 0.11 b | 0.04 | 0.27 a | 0.00 |
Succinic acid | 0.04 a | 0.01 | 0.04 a | 0.01 |
Lactic acid | 0.05 b | 0.01 | 0.10 a | 0.01 |
Acetic acid | 0.04 b | 0.01 | 0.07 a | 0.01 |
Glycerol | 0.04 b | 0.01 | 0.14 a | 0.01 |
Parameter | Wheat Bread-Based Mashes | Wheat–Rye Bread-Based Mashes | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PLS-SSF | PLS-SHF | NSH-N/A | PLS-SSF | PLS-SHF | NSH-N/A | NSH-A | ||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Extract [% w/w] | 17.60 c | 0.28 | 18.93 b | 0.17 | 20.00 a | 0.10 | 16.40 d | 0.21 | 18.00 c | 0.10 | 20.00 a | 0.10 | 20.00 a | 0.10 |
Total reducing sugars expressed as glucose [g/L], incl.: | 120.44 d | 1.58 | 135.25 c | 1.22 | 145.92 a | 0.12 | 113.43 e | 1.67 | 102.49 f | 1.20 | 140.34 b | 0.17 | 148.24 a | 0.13 |
Maltotriose | 0.95 b | 0.17 | 5.85 a | 0.05 | 0.13 de | 0.02 | 0.60 c | 0.06 | 0.32 d | 0.02 | 0.11 e | 0.00 | 0.12 e | 0.00 |
Maltose | 35.10 a | 3.74 | 8.12 b | 0.11 | 0.29 c | 0.02 | 33.79 a | 1.70 | 0.88 c | 0.04 | 1.15 c | 0.01 | 0.29 c | 0.01 |
Glucose | 82.57 e | 5.91 | 120.45 c | 3.67 | 145.48 ab | 1.85 | 77.29 e | 1.62 | 101.23 d | 2.34 | 139.01 b | 1.13 | 147.81 a | 0.51 |
Dextrin [g/L] | 22.71 f | 0.21 | 23.97 f | 0.25 | 68.50 a | 0.09 | 30.84 e | 1.10 | 51.53 b | 0.46 | 45.11 c | 0.57 | 38.02 d | 0.34 |
Parameter | Wheat Bread-Based Mashes | Wheat–Rye Bread-Based Mashes | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PLS-SSF | PLS-SHF | NSH-N/A | PLS-SSF | PLS-SHF | NSH-N/A | NSH-A | ||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Apparent extract [% w/w] | 0.71 bc | 0.07 | 1.11 a | 0.06 | 0.70 bc | 0.01 | 0.63 c | 0.02 | 0.78 b | 0.01 | 0.76 b | 0.02 | 0.75 b | 0.02 |
Ethanol [g/L] | 71.42 b | 1.32 | 70.95 b | 1.02 | 85.68 a | 0.02 | 72.50 b | 2.53 | 72.54 b | 1.64 | 81.52 a | 2.25 | 80.95 a | 2.11 |
Total reducing sugars expressed as glucose [g/L], incl.: | 0.32 c | 0.08 | 4.34 a | 0.35 | 0.90 b | 0.05 | 0.30 c | 0.01 | 0.23 c | 0.01 | 0.98 b | 0.01 | 1.09 b | 0.03 |
Maltotriose | 0.16 ab | 0.06 | 0.21 a | 0.07 | 0.07 bc | 0.00 | 0.09 bc | 0.00 | 0.02 c | 0.00 | 0.07 bc | 0.00 | 0.07 bc | 0.00 |
Maltose | 0.14 d | 0.01 | 0.31 c | 0.05 | 0.72 b | 0.09 | 0.18 cd | 0.03 | 0.14 d | 0.02 | 0.80 ab | 0.07 | 0.90 a | 0.01 |
Glucose | 0.01 c | 0.00 | 3.79 a | 0.42 | 2.07 b | 0.15 | 0.02 c | 0.01 | 0.05 c | 0.01 | 0.08 c | 0.02 | 0.07 c | 0.02 |
Dextrin [g/L] | 1.94 a | 0.09 | 1.87 a | 0.56 | 0.72 b | 0.12 | 2.52 a | 0.58 | 1.89 a | 0.13 | 0.75 b | 0.02 | 0.44 b | 0.08 |
Other compounds [g/L]: | ||||||||||||||
Xylose | 0.16 c | 0.01 | 0.10 cd | 0.02 | 0.16 c | 0.01 | 0.37 a | 0.02 | 0.03 d | 0.01 | 0.27 b | 0.05 | 0.36 a | 0.05 |
Arabinose | 0.02 c | 0.00 | 0.03 c | 0.00 | 0.01 c | 0.00 | 0.01 c | 0.00 | 0.10 a | 0.02 | 0.06 b | 0.01 | 0.03 c | 0.00 |
Citric acid | 0.25 a | 0.01 | 0.22 a | 0.01 | 0.21 a | 0.02 | 0.01 c | 0.00 | 0.09 b | 0.01 | 0.07 bc | 0.05 | 0.12 b | 0.03 |
Succinic acid | 0.92 c | 0.11 | 1.01 bc | 0.03 | 1.09 bc | 0.08 | 1.24 ab | 0.02 | 1.05 bc | 0.02 | 1.47 a | 0.15 | 1.53 a | 0.22 |
Lactic acid | 0.62 cd | 0.08 | 2.61 a | 0.14 | 0.50 d | 0.05 | 0.81 c | 0.21 | 1.14 b | 0.05 | 0.46 d | 0.05 | 0.39 d | 0.05 |
Formic acid | 0.23 a | 0.01 | 0.05 b | 0.01 | 0.06 b | 0.02 | 0.09 b | 0.01 | 0.07 b | 0.03 | 0.06 b | 0.01 | 0.05 b | 0.01 |
Acetic acid | 0.09 cd | 0.02 | 0.24 ab | 0.05 | 0.31 a | 0.08 | 0.07 d | 0.02 | 0.28 ab | 0.04 | 0.22 abc | 0.06 | 0.15 bcd | 0.03 |
Glycerol | 7.23 b | 0.35 | 7.01 b | 0.16 | 7.97 a | 0.13 | 7.10 b | 0.09 | 6.71 b | 0.55 | 8.25 a | 0.03 | 8.36 a | 0.02 |
Parameter [g/L alcohol 100% v/v] | Wheat Bread-Based Mashes | Wheat–Rye Bread-Based Mashes | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PLS-SSF | PLS-SHF | NSH-N/A | PLS-SSF | PLS-SHF | NSH-N/A | NSH-A | ||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Methanol | 0.200 b | 0.04 | 0.240 b | 0.03 | 0.200 b | 0.03 | 0.150 b | 0.02 | 0.300 a | 0.08 | 0.210 b | 0.02 | 0.190 b | 0.03 |
Aldehydes as acetaldehyde | 0.170 c | 0.01 | 0.120 d | 0.01 | 0.160 c | 0.02 | 0.220 a | 0.02 | 0.180 bc | 0.01 | 0.233 a | 0.02 | 0.210 ab | 0.01 |
Acidity as acetic acid | 0.620 d | 0.01 | 0.940 a | 0.04 | 0.723 c | 0.05 | 0.583 d | 0.04 | 0.620 d | 0.01 | 0.710 c | 0.01 | 0.850 b | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balcerek, M.; Dziekońska-Kubczak, U.; Pielech-Przybylska, K.; Oleszczak, A.; Koń, M.; Patelski, A.M. Waste Bread as Raw Material for Ethanol Production: Effect of Mash Preparation Methods on Fermentation Efficiency. Appl. Sci. 2024, 14, 9565. https://doi.org/10.3390/app14209565
Balcerek M, Dziekońska-Kubczak U, Pielech-Przybylska K, Oleszczak A, Koń M, Patelski AM. Waste Bread as Raw Material for Ethanol Production: Effect of Mash Preparation Methods on Fermentation Efficiency. Applied Sciences. 2024; 14(20):9565. https://doi.org/10.3390/app14209565
Chicago/Turabian StyleBalcerek, Maria, Urszula Dziekońska-Kubczak, Katarzyna Pielech-Przybylska, Anna Oleszczak, Magdalena Koń, and Andrea Maria Patelski. 2024. "Waste Bread as Raw Material for Ethanol Production: Effect of Mash Preparation Methods on Fermentation Efficiency" Applied Sciences 14, no. 20: 9565. https://doi.org/10.3390/app14209565
APA StyleBalcerek, M., Dziekońska-Kubczak, U., Pielech-Przybylska, K., Oleszczak, A., Koń, M., & Patelski, A. M. (2024). Waste Bread as Raw Material for Ethanol Production: Effect of Mash Preparation Methods on Fermentation Efficiency. Applied Sciences, 14(20), 9565. https://doi.org/10.3390/app14209565