AI-Driven Particulate Matter Estimation Using Urban CCTV: A Comparative Analysis Under Various Experimental Conditions
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Image Data
3.2. Weather Observation Data
3.3. Weather Public Data
3.4. Data Preprocessing
3.5. ResNet-Based Methods for Image Classification and PM2.5 Prediction
4. Empirical Analysis
4.1. Data Analysis Design
4.2. Comparison of Analysis Results Using Deep Learning Models
4.3. Comparison of Analysis Results Using Learning Variables and Observation Conditions
5. Discussion
5.1. Analysis Results Based on Deep Learning Models
5.2. Comparison of Analysis Results in Line with Learning Variables and Observation Conditions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Won, T.; Eo, Y.D.; Sung, H.K.; Chong, K.S.; Youn, J. Effect of the Learning Image Combinations and Weather Parameters in the PM Estimation from CCTV Images. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2020, 38, 573–581. [Google Scholar] [CrossRef]
- Won, T.; Eo, Y.D.; Jo, S.M.; Song, J.; Youn, J. Estimation of PM concentrations at night time using CCTV images in the area around the road. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2021, 39, 393–399. [Google Scholar] [CrossRef]
- Hong, S.; Lee, J. A Method for Inferring Fine Dust Concentration Using CCTV. J. Korea Inst. Inf. Commun. Eng. 2019, 23, 1234–1239. [Google Scholar] [CrossRef]
- Choi, W.C.; Cheong, K.S. A Study on Selection of Image Analyzing CCTV Location for Local Fine Dust Observation based on Fuzzy AHP. J. Korea Plann. Assoc. 2022, 57, 150–160. [Google Scholar] [CrossRef]
- Korean Statistical Information Service. Available online: https://kosis.kr/ (accessed on 8 June 2024).
- Air Korea. Available online: https://www.airkorea.or.kr/web/ (accessed on 10 June 2024).
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jacke, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neur. Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Behnke, S. Hierarchical Neural Networks for Image Interpretation, Lecture Notes in Computer Science, 2766; Springer: Heidelberg/Berlin, Germany, 2003. [Google Scholar]
- Song, A.R.; Kim, Y.I. Deep Learning-based Hyperspectral Image Classification with Application to Environmental Geographic Information Systems. Korean J. Rem. Sens. 2017, 33, 1061–1073, (In Korean with English Abstract). [Google Scholar]
- Chakma, A.; Vizena, B.; Cao, T.; Lin, J.; Zhang, J. Image-based air quality analysis using deep convolutional neural network. In Proceedings of the 2017 IEEE International Conferences on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3949–3952. [Google Scholar] [CrossRef]
- Ko, K.K.; Jung, E.S. Improving Air Pollution Prediction System through Multimodal Deep Learning Model Optimization. Appl. Sci. 2022, 12, 10405. [Google Scholar] [CrossRef]
- Karen, S.; Andrew, Z. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar]
- Wang, Z.; Zheng, X.; Li, D.; Zhang, H.; Yang, Y.; Pan, H. A VGGNet-like approach for classifying and segmenting coal dust particles with overlapping regions. Comp. Industr. 2021, 132, 103506. [Google Scholar] [CrossRef]
- Wang, Z.; Li, D.; Zheng, X.; Xie, D. A Novel Coal Dust Characteristic Extraction to Enable Particle Size Analysis. IEEE 2021, 70, 9513512. [Google Scholar] [CrossRef]
- Bo, Q.; Yang, W.; Rijal, N.; Xie, Y.; Feng, U.; Zhang, J. Particle Pollution Estimation from Images Using Convolutional Neural Network and Weather Features. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3433–3437. [Google Scholar] [CrossRef]
- Silva, A.; Ranasinghe, R.; Sounthararajah, A.; Haghighi, H.; Kodikara, J. Beyond Conventional Monitoring: A Semantic Segmentation Approach to Quantifying Traffic-Induced Dust on Unsealed Roads. Sensors 2024, 24, 510. [Google Scholar] [CrossRef]
- Li, B.; Mao, B. Real Time Dust Detection with Image Pyramid and Improved ResNeSt. IEEE 2023, 2023, 152–155. [Google Scholar] [CrossRef]
- Yin, S.; Li, T.; Cheng, X.; Wu, J. Remote sensing estimation of surface PM2.5 concentrations using a deep learning model improved by data augmentation and a particle size constraint. Atmosph. Environ. 2022, 287, 119282. [Google Scholar] [CrossRef]
- Atreya, Y.; Mukherjee, A. Efficient Resnet Model for Atmospheric Visibility Classification. In Proceedings of the 2021 2nd Global Conference for Advancement in Technology (GCAT), Bangalore, India, 1–3 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, S.; Yin, J.; Zhou, Z. A comprehensive evaluation method for dust pollution: Digital image processing and deep learning approach. J. Hazard. Mater. 2024, 475, 134761. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Yu, H.; Yoon, J.; Park, E. Micro-Locational Fine Dust Prediction Utilizing Machine Learning and Deep Learning Models. Comput. Syst. Sci. Eng. 2024, 48, 413–429. [Google Scholar] [CrossRef]
- Jeon, S.; Son, Y.S. Prediction of fine dust PM10 using a deep neural network model. Korean J. Appl. Stat. 2018, 31, 265–285. [Google Scholar] [CrossRef]
- Jang, S.B. Dust Prediction System based on Incremental Deep Learning. J. Converg. Cult. Technol. 2023, 9, 301–307. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Sun, J.; He, Q.; Kong, L.; Liu, X. Monitoring and prediction of dust concentration in an open-pit mine using a deep-learning algorithm. J. Environ. Health Sci. Eng. 2021, 19, 401–414. [Google Scholar] [CrossRef]
- Xiong, R.; Tang, P. Machine learning using synthetic images for detecting dust emissions on construction sites. Smart Sustain. Built Environ. 2021, 10, 487–503. [Google Scholar] [CrossRef]
- Lee, K.H.; Hwang, W.S.; Choi, M.R. Design of a 1-D CRNN Model for Prediction of Fine Dust Risk Level. J. Digit. Converg. 2021, 19, 215–220. [Google Scholar] [CrossRef]
- Hwang, C.H.; Shin, K.W. CNN-LSTM Combination Method for Improving Particular Matter Contamination (PM2.5) Prediction Accuracy. J. Korea Inst. Inf. Commun. Eng. 2020, 24, 57–64. [Google Scholar] [CrossRef]
- Lou, C.; Liu, H.; Li, Y.; Peng, Y.; Wang, J.; Dai, L. Relationships of relative humidity with PM 2.5 and PM 10 in the Yangtze River Delta, China. Environ. Monit. Assess. 2017, 189, 582. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmosph. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Park, C.S. Variations of PM10 concentration in Seoul during 2015 and relationships to weather condition. J. Assoc. Korean Photo-Geogr. 2017, 27, 47–64. [Google Scholar]
- Lee, J.H.; Kim, Y.M.; Kim, Y.K. Spatial panel analysis for PM2.5 concentration in Korea. J. Korean Data Inf. Sci. Soc. 2017, 28, 473–481. [Google Scholar]
- Kim, H.L.; Moon, T.H. Machine learning-based Fine Dust Prediction Model using Meteorological data and Fine Dust data. J. Korean Assoc. Geogr. Inf. Stud. 2021, 24, 92–111. [Google Scholar] [CrossRef]
- Choi, W.H.; Cheong, K.S. Analysis of the Factors Affecting Fine Dust Concentration Before and After COVID-19. J. Korean Soc. Hazard Mitig. 2021, 21, 395–402. [Google Scholar] [CrossRef]
- Open MET Data Portal. Available online: https://data.kma.go.kr/ (accessed on 10 June 2024).
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R. Support Vector Regression, Efficient Learning Machines; Springer: NewYork, NY, USA, 2015; pp. 67–80. Available online: https://link.springer.com/chapter/10.1007/978-1-4302-5990-9_4 (accessed on 15 June 2024).
- Sung, S.H.; Kim, S.; Ryu, M.H. A Comparative Study on the Performance of Machine Learning Models for the Prediction of Fine Dust: Focusing on Domestic and Overseas Factors. Innov. Stud. 2020, 15, 339–357. [Google Scholar] [CrossRef]
- Chen, T.; Giestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar] [CrossRef]
- Hwang, H.; Kim, S.; Song, G. XGBoost Model to Identify Potential Factors Improving and Deteriorating Elderly Cognition. J. Korean Inst. Next Gener. Comput. 2018, 14, 16–24. [Google Scholar]
Category | Data Name | Data Type | Data Value | Collection Methods | |
---|---|---|---|---|---|
CCTV image data for an experiment | ID | DeviceID | Varchar | KICT_1 | NVR |
Position coordinates (latitude) | Latitude | Float8 | 37.67102804 | ||
Position coordinates (longitude) | Longitude | Float8 | 126.7394964 | ||
Image data | Video | Video | Image data | ||
Date/time | Date_Time | Date | 21 April 2022 20:17:05 |
Division (Unit) | Data Name | Format | Data Value | Generation Cycle | Collection Methods |
---|---|---|---|---|---|
PM (µg/m3) | FineDust_PM2.5 | Float4 | 35 | 30 s | Simple PM observation equipment |
PM (µg/m3) | FineDust_PM10 | Float4 | 50 | ||
Position coordinates (latitude) | Latitude | Float8 | 37.67102804 | ||
Position coordinates (longitude) | Longitude | Float8 | 126.7394964 | ||
Atmospheric temperature (°C) | Out_Temperature | Float4 | 25.9 | 1 min | RWIS observation |
Humidity (%) | Out_Humidity | Float4 | 84.7 | ||
Illuminance (lx) | Illumination | Float8 | 600 | ||
Wind direction | Wind_Direction | Varchar | “north, east, and northwest” | ||
Wind velocity (m/s) | Wind_Speed | Float4 | 2.5 |
Division (Unit) | Data Name | Format | Data Value | Generation Cycle | Collection Methods |
---|---|---|---|---|---|
PM (µg/m3) | FineDust_PM2.5 | Float4 | 35 | 1 h | AirKorea |
PM (µg/m3) | FineDust_PM10 | Float4 | 50 | 1 h | |
Location information | Location | Varchar | “Juyeop-dong and Burim-dong” | 1 h | |
Meteorological conditions | Weather | Varchar | “Sunny, cloudyand rainy” | 1 h | Open MET Data Portal |
Atmospheric temperature (°C) | Temperature | Float4 | 25.9 | 1 h | |
Wind velocity (m/s) | Wind_Speed | Float4 | 2.5 | 1 h | |
Humidity (%) | Out_Humidity | Float4 | 84.7 | 1 h | |
Atmospheric pressure (hpa) | Air_Pressure | Float4 | 1016.0 | 3 h | |
Precipitation (mm/h) | Rain_Strength | Float4 | 10.032 | 1 h | |
Cloud amount (decile) | Cloud_Amount | Float4 | 9.5 | 1 day |
Experimental Condition | Deep Learning Model | Data Collection Date | Time | No. of Data Points | Variable | Application of Distribution Per Class | Application of Outlier Removal Algorithm | Analysis Results | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dependent Variable | Input Variables | |||||||||||
Observation Data | Public Data | Solar Incidence Angle | RMSE | MAPE | ||||||||
Experiment 1. Comparison of model structures (regression and classification) | ResNet regression model | 21 Apr. 2021~14 Feb. 2022 | 08–18 | 178,316 | PM2.5 | o | x | x | x | x | 23.1 | 271.71 |
ResNet classification model | 21 Apr. 2021~14 Feb. 2022 | 08–18 | 178,316 | PM2.5 | o | x | x | x | x | 5.93 | 32.41 | |
Experiment 2. Comparison of the number of ResNet layers | ResNet50 + SVR | 21 Apr. 2021~14 Feb. 2022 | 08–18 | 178,316 | PM2.5 | o | o | o | x | x | 6.26 | 36.06 |
ResNet152 + SVR | 21 Apr. 2021~14 Feb. 2022 | 08–18 | 178,316 | PM2.5 | o | o | o | x | x | 6.18 | 33.75 | |
Experiment 3. Machine learning model comparison | ResNet152 + SVR | 21 Apr. 2021~14 Feb. 2022 | 08–18 | 178,316 | PM2.5 | o | o | o | x | x | 7.33 | 35.90 |
ResNet152 + XGBoost | 21 Apr. 2021~14 Feb. 2022 | 08–18 | 178,316 | PM2.5 | o | o | o | x | x | 3.32 | 25.52 | |
Experiment 4. DL and DL-ML model comparison | ResNet152 | 21 Apr. 2021~14 Feb. 2022 | 08–18 | 178,316 | PM2.5 | o | o | o | x | x | 5.66 | 34.04 |
ResNet152 + XGBoost | 21 Apr. 2021~14 Feb. 2022 | 08–18 | 178,316 | PM2.5 | o | o | o | x | x | 3.32 | 25.52 |
Experimental Condition | Deep Learning Model | Data Collection Dates | Time | No. of Data | Variables | Application of Distribution Per Class | Application of Outlier Removal Algorithm | Analysis Results | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dependent Variable | Input Variables | |||||||||||
Observation Data | Public Data | Solar Incidence Angle | RMSE | MAPE | ||||||||
Experiment 1. Exclusion of nighttime | ResNet152 + SVR | 21 Apr. ~19 Jul. 2021 | 08–22 | 143,504 | PM2.5 | o | o | x | x | x | 3.30 | 41.02 |
ResNet152 + SVR | 21 Apr. ~19 Jul. 2021 | 08–18 | 95,039 | PM2.5 | o | o | x | x | x | 3.12 | 38.67 | |
Experiment 2. Addition of solar incidence angle variable | ResNet152 + SVR | 21 Apr. ~19 Jul. 2021 | 08–18 | 95,039 | PM2.5 | o | o | x | x | x | 3.12 | 38.67 |
ResNet152 + SVR | 21 Apr. ~19 Jul. 2021 | 08–18 | 95,039 | PM2.5 | o | o | o | x | x | 2.94 | 36.21 | |
Experiment 3. Application of distribution per PM class | ResNet152 | 21 Apr. 2021~14 Feb. 2022 | 08–18 | 178,316 | PM2.5 | o | x | x | x | x | 4.42 | 27.43 |
ResNet152 | 21 Apr. 2021~14 Feb. 2022 | 08–18 | 96,500 | PM2.5 | o | x | x | o | x | 4.18 | 25.19 | |
Experiment 4. Application of outlier removal algorithm | ResNet152 + XGBoost | 21 Apr. 2021~14 Feb. 2022 | 08–18 | 100,000 | PM2.5 | o | o | o | o | x | 4.01 | 21.70 |
ResNet152 + XGBoost | 21 Apr. 2021~14 Feb. 2022 | 08–18 | 100,000 | PM2.5 | o | o | o | o | o | 3.61 | 19.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.; Sung, H.; Chong, K. AI-Driven Particulate Matter Estimation Using Urban CCTV: A Comparative Analysis Under Various Experimental Conditions. Appl. Sci. 2024, 14, 9629. https://doi.org/10.3390/app14219629
Choi W, Sung H, Chong K. AI-Driven Particulate Matter Estimation Using Urban CCTV: A Comparative Analysis Under Various Experimental Conditions. Applied Sciences. 2024; 14(21):9629. https://doi.org/10.3390/app14219629
Chicago/Turabian StyleChoi, Woochul, Hongki Sung, and Kyusoo Chong. 2024. "AI-Driven Particulate Matter Estimation Using Urban CCTV: A Comparative Analysis Under Various Experimental Conditions" Applied Sciences 14, no. 21: 9629. https://doi.org/10.3390/app14219629
APA StyleChoi, W., Sung, H., & Chong, K. (2024). AI-Driven Particulate Matter Estimation Using Urban CCTV: A Comparative Analysis Under Various Experimental Conditions. Applied Sciences, 14(21), 9629. https://doi.org/10.3390/app14219629