Parallel Continuum Delta: On the Performance Analysis of Flexible Quasi-Translational Robots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cosserat Rods Deformation Modelling
2.2. Analysis of Flexible Manipulators with Cosserat Rods
2.2.1. Forward Kinematics Problem
2.2.2. Translational and Rotational Ellipsoids
2.2.3. Inverse Kinematics Problem
2.3. Delta-Type Flexible Parallel Manipulators
2.3.1. Forward Kinematics
2.3.2. Inverse Kinematics
3. Results
3.1. Workspace Analysis of Parallel Continuum Delta Robots
Load Influence on the Workspace
3.2. Experimental Validation of the Keops-Delta Prototype
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bryson, C.E.; Rucker, D.C. Toward parallel continuum manipulators. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 778–785. [Google Scholar]
- Seriani, S.; Gallina, P.; Scalera, L.; Lughi, V. Development of n-DoF Preloaded Structures for Impact Mitigation in Cobots. J. Mech. Robot. 2018, 5, 051009. [Google Scholar] [CrossRef]
- Hüsing, E.; Weidemann, C.; Lorenz, M.; Corves, B.; Hüsing, M. Determining Robotic Assistance for Inclusive Workplaces for People with Disabilities. Robotics 2021, 10, 44. [Google Scholar] [CrossRef]
- Iwatsuki, N.; Sawada, E.; Igarashi, J.; Ikeda, I. Motion Analysis and Control of a Flexible Spatial Closed-Loop Mechanism Made of a Certain Thin Elastic Plate. In Proceedings of the IFToMM WC2023, MMS 148, Tokyo, Japan, 5–10 November 2023; pp. 139–148. [Google Scholar] [CrossRef]
- Howell, L.L. Compliant Mechanisms; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- McClintock, H.; Temel, F.Z.; Doshi, N.; Koh, J.s.; Wood, R.J. The milliDelta: A high-bandwidth, high-precision, millimeter-scale Delta robot. Sci. Robot. 2018, 3, eaar3018. [Google Scholar] [CrossRef]
- Black, C.B.; Till, J.; Rucker, D.C. Parallel Continuum Robots: Modeling, Analysis, and Actuation-Based Force Sensing. IEEE Trans. Robot. 2018, 34, 29–47. [Google Scholar] [CrossRef]
- Rucker, D.C.; III, R.J.W. Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading. IEEE Trans. Robot. 2011, 27, 1033–1044. [Google Scholar] [CrossRef]
- Till, J.; Bryson, C.E.; Chung, S.; Orekhov, A.; Rucker, D.C. Efficient computation of multiple coupled Cosserat rod models for real-time simulation and control of parallel continuum manipulators. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 5067–5074. [Google Scholar] [CrossRef]
- Orekhov, A.L.; Aloi, V.A.; Rucker, D.C. Modeling parallel continuum robots with general intermediate constraints. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 6142–6149. [Google Scholar] [CrossRef]
- Till, J.; Rucker, D.C. Elastic Stability of Cosserat Rods and Parallel Continuum Robots. IEEE Trans. Robot. 2017, 33, 718–733. [Google Scholar] [CrossRef]
- Zaccaria, F.; Idá, E.; Briot, S. A Boundary Computation Algorithm for the Workspace Evaluation of Continuum Parallel Robots. ASME. J. Mech. Robot. 2023, 16, 041010. [Google Scholar] [CrossRef]
- Laribi, M.; Romdhane, L.; Zeghloul, S. Analysis and dimensional synthesis of the DELTA robot for a prescribed workspace. Mech. Mach. Theory 2007, 42, 859–870. [Google Scholar] [CrossRef]
- Stock, M.; Miller, K. Optimal Kinematic Design of Spatial Parallel Manipulators: Application to Linear Delta Robot. J. Mech. Des. 2003, 125, 292–301. [Google Scholar] [CrossRef]
- Vischer, P.; Clavel, R. Kinematic calibration of the parallel Delta robot. Robotica 1998, 16, 207–218. [Google Scholar] [CrossRef]
- Mirz, C.; Hüsing, M.; Takeda, Y.; Corves, B. Active Dynamic Balancing of Delta Robots in pick-and-place Tasks. In Advances in Mechanism and Machine Science; Okada, M., Ed.; Springer Nature: Cham, Switzerland, 2023; pp. 255–265. [Google Scholar]
- Cheng, H.; Li, W. Reducing the Frame Vibration of Delta Robot in pick-and-place Application: An Acceleration Profile Optimization Approach. Shock Vib. 2018, 2018, 2945314. [Google Scholar] [CrossRef]
- Weber, A. Delta Robots Feed the Need for Speed. Assembly 2015, 58, 28–31. [Google Scholar]
- Wang, Y.; Liu, J.; Guo, M.; Wang, L. Research on the printing error of tilted vertical beams in delta-robot 3D printers. Rapid Prototyp. J. 2021, 9, 051009. [Google Scholar] [CrossRef]
- Mitsantisuk, C.; Stapornchaisit, S.; Niramitvasu, N.; Ohishi, K. Force sensorless control with 3D workspace analysis for haptic devices based on delta robot. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 001747–001752. [Google Scholar] [CrossRef]
- Merlet, J. Parallel Robots; Springer: Cham, Switzerland, 2006. [Google Scholar] [CrossRef]
- Hüsing, M.; Weidemann, C.; Keunecke, S.C.; Hüsing, E.; Youness-Sinaky, R.; Jansen, C. IIDEA Project, RWTH Aachen University. 2024. Available online: https://www.iidea.rwth-aachen.de (accessed on 16 September 2024).
- Mandischer, N.; Gürtler, M.; Weidemann, C.; Hüsing, E.; Bezrucav, S.O.; Gossen, D.; Brünjes, V.; Hüsing, M.; Corves, B. Toward Adaptive Human–Robot Collaboration for the Inclusion of People with Disabilities in Manual Labor Tasks. Electronics 2023, 12, 1118. [Google Scholar] [CrossRef]
- IGUS. Drylin Robot Delta. 2024. Available online: https://www.igus.es/product/20437?artNr=DLE-DR-0050 (accessed on 1 October 2024).
- Wu, G.; Shi, G. Experimental statics calibration of a multi-constraint parallel continuum robot. Mech. Mach. Theory 2019, 136, 72–85. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, X.; Xu, K. Continuum Delta Robot: A Novel Translational Parallel Robot with Continuum Joints. In Proceedings of the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, New Zealand, 9–12 July 2018; pp. 748–755. [Google Scholar] [CrossRef]
- Böttcher, G.; Lilge, S.; Burgner-Kahrs, J. Design of a Reconfigurable Parallel Continuum Robot with Tendon-Actuated Kinematic Chains. IEEE Robot. Autom. Lett. 2021, 6, 1272–1279. [Google Scholar] [CrossRef]
- Lilge, S.; Burgner-Kahrs, J. Kinetostatic Modeling of Tendon-Driven Parallel Continuum Robots. IEEE Trans. Robot. 2023, 39, 1563–1579. [Google Scholar] [CrossRef]
- Maraje, S.; Nurahmi, L.; Caro, S. Operation Modes Comparison of a Reconfigurable 3-PRS Parallel Manipulator Based on Kinematic Performance. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference: 40th Mechanisms and Robotics Conference, Charlotte, NC, USA, 21–24 August 2016. [Google Scholar] [CrossRef]
- Nurahmi, L.; Caro, S.; Wenger, P. Operation Modes and Singularities of 3-PRS Parallel Manipulators with Different Arrangements of P-Joints. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference: 39th Mechanisms and Robotics Conference, Boston, MA, USA, 2–5 August 2015. [Google Scholar] [CrossRef]
- Altuzarra, O.; Tagliavini, L.; Lei, Y.; Petuya, V.; Ruiz-Erezuma, J.L. On Constraints and Parasitic Motions of a Tripod Parallel Continuum Manipulator. Machines 2023, 11, 71. [Google Scholar] [CrossRef]
- Holst, G.L.; Teichert, G.H.; Jensen, B.D. Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms. J. Mech. Des. 2011, 133, 051002. [Google Scholar] [CrossRef]
- Altuzarra, O.; Caballero, D.; Campa, F.J.; Pinto, C. Position analysis in planar parallel continuum mechanisms. Mech. Mach. Theory 2019, 132, 13–29. [Google Scholar] [CrossRef]
- Altuzarra, O.; Merlet, J.P. Certified Kinematics Solution of 2-DOF Planar Parallel Continuum Mechanisms. In Advances in Mechanism and Machine Science; Uhl, T., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 197–208. [Google Scholar]
- Altuzarra, O.; Urizar, M.; Cichella, M.; Petuya, V. Kinematic Analysis of three degrees of freedom planar parallel continuum mechanisms. Mech. Mach. Theory 2023, 185, 105311. [Google Scholar] [CrossRef]
- Duan, X.; Yan, W.; Chen, G.; Wang, H. Analysis and validation of a planar parallel continuum manipulator with variable Cartesian stiffness. Mech. Mach. Theory 2022, 177, 105030. [Google Scholar] [CrossRef]
- Chen, G.; Kang, Y.; Liang, Z.; Zhang, Z.; Wang, H. Kinetostatics modeling and analysis of parallel continuum manipulators. Mech. Mach. Theory 2021, 163, 104380. [Google Scholar] [CrossRef]
- Briot, S.; Boyer, F. A Geometrically Exact Assumed Strain Modes Approach for the Geometrico- and Kinemato-Static Modelings of Continuum Parallel Robots. IEEE Trans. Robot. 2023, 39, 1527–1543. [Google Scholar] [CrossRef]
- Lang, H.; Linn, J.; Arnold, M. Multi-body dynamics simulation of geometrically exact Cosserat rods. Multibody Syst. Dyn. 2011, 25, 285–312. [Google Scholar] [CrossRef]
- Bouri, M.; Clavel, R. The Linear Delta: Developments and Applications. In Proceedings of the Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK), Munich, Germany, 7–9 June 2010; pp. 1–8. [Google Scholar]
- Briot, S.; Goldsztejn, A. Singularity Conditions for Continuum Parallel Robots. IEEE Trans. Robot. 2022, 38, 507–525. [Google Scholar] [CrossRef]
- Zaccaria, F.; Idá, E.; Briot, S.; Carricato, M. Workspace Computation of Planar Continuum Parallel Robots. IEEE Robot. Autom. Lett. 2022, 7, 2700–2707. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altuzarra, O.; Urizar, M.; Hernández, A.; Amezua, E. Parallel Continuum Delta: On the Performance Analysis of Flexible Quasi-Translational Robots. Appl. Sci. 2024, 14, 9744. https://doi.org/10.3390/app14219744
Altuzarra O, Urizar M, Hernández A, Amezua E. Parallel Continuum Delta: On the Performance Analysis of Flexible Quasi-Translational Robots. Applied Sciences. 2024; 14(21):9744. https://doi.org/10.3390/app14219744
Chicago/Turabian StyleAltuzarra, Oscar, Mónica Urizar, Alfonso Hernández, and Enrique Amezua. 2024. "Parallel Continuum Delta: On the Performance Analysis of Flexible Quasi-Translational Robots" Applied Sciences 14, no. 21: 9744. https://doi.org/10.3390/app14219744
APA StyleAltuzarra, O., Urizar, M., Hernández, A., & Amezua, E. (2024). Parallel Continuum Delta: On the Performance Analysis of Flexible Quasi-Translational Robots. Applied Sciences, 14(21), 9744. https://doi.org/10.3390/app14219744