Impulse Controllability for Singular Hybrid Coupled Systems
Abstract
:1. Introduction
2. Notations and Preliminaries
3. Results
4. Illustrative Examples
- , , , , ,
- ,
- (),
- ,
- ,
- (),
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Wang, X.; Chen, G. Pinning a complex dynamical network to its equilibrium. IEEE Trans. Automat. Contr. Circuits Syst.—I Regul. Pap. 2004, 51, 2074–2085. [Google Scholar] [CrossRef]
- Wang, X.F. Complex networks: Topology, dynamics, and synchronization. Int. J. Bifurc. Chaos 2002, 5, 885–916. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ’small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.J.; Ho, D.C.W.; Cao, J.D. Synchronization analysis of singular hybrid coupled networks. Phys. Lett. A 2008, 372, 6633–6637. [Google Scholar] [CrossRef]
- Dror, F.; Emilia, F. Decentralized networked control of systems with local networks: A time-delay approach. IEEE Trans. Automat. Contr. 2016, 69, 201–209. [Google Scholar]
- Xiong, W.J.; Zhang, D.; Cao, J.D. Impulsive synchronisation of singular hy brid coupled net works with time-varying nonlinear perturbation. Int. J. Syst. Sci. 2016, 48, 417–424. [Google Scholar] [CrossRef]
- He, P.; Zhang, Q.L.; Jing, C.C.; Chen, C.Z.; Fan, T. Robust exponential synchronization for neutral complex networks with discrete and distributed time-varying delays: A descriptor model transformation method. Optim. Control. Appl. Methods 2013, 35, 676–695. [Google Scholar] [CrossRef]
- Huang, J.; Bo, Y.C.; Wang, H.Y. Robust control of delay-dependent ts fuzzy system based on method of descriptor model transformation. Artif. Intell. Rev. 2010, 34, 205–220. [Google Scholar]
- Hou, M. Controllability and elimination of impulsive modes in descriptor systems. IEEE Trans. Automat. Contr. 2004, 49, 1723–1727. [Google Scholar] [CrossRef]
- Duan, G.R.; Wu, A.G. I-controllablizability in descriptor linear systems. Dyn. Contin. Discret. Impuls. Syst.—A—Anal. 2005, 13, 1197–1204. [Google Scholar]
- Duan, G.R.; Wu, A.G.; Zhao, Y.; Yu, H.H. Revisit to I-controllablisability for descriptor linear systems. IET Control. Theory Appl. 2007, 1, 975–987. [Google Scholar]
- Wu, A.G.; Duan, G.R.; Zhao, S.M. Impulsive-mode controllablisability in descriptor linear systems. IET Control. Theory Appl. 2007, 1, 558–563. [Google Scholar] [CrossRef]
- Wu, A.G.; Duan, G.R.; Yu, H.H. Impulsive-mode controllablizability revisited for descriptor linear systems. Asian J. Control 2009, 11, 358–363. [Google Scholar] [CrossRef]
- Chu, D.L.; Ho, D.W.C. Necessary and sufficient conditions for the output feedback regularization of descriptor systems. IEEE Trans. Automat. Contr. 1999, 44, 405–412. [Google Scholar] [CrossRef]
- Wang, D.H.; Soh, C.B. On regularizing singular systems by decentralized outpue feedback. IEEE Trans. Automat. Contr. 1999, 44, 148–152. [Google Scholar] [CrossRef]
- Zhang, G.S.; Liu, W.Q. Impulsive mode elimination for descriptor systems by a structured P-D feedback. IEEE Trans. Automat. Contr. 2011, 56, 2968–2973. [Google Scholar] [CrossRef]
- Hou, M.; Terra, P.C. Causal observability of descriptor systems. IEEE Trans. Automat. Contr. 1999, 44, 158–163. [Google Scholar] [CrossRef]
- Ishihara, J.Y.; Terra, M.H. Impulse controllability and observability of rectangular descriptor systems. IEEE Trans. Automat. Contr. 2001, 46, 991–994. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Li, J.; Ren, J.C. Impulsive Controllability/Observability for Interconnected Descriptor Systems with Two Subsystems. Math. Probl. Eng. 2015, 5, 1–14. [Google Scholar] [CrossRef]
- Ji, X.; Lu, J.; Li, X. Pinning Impulsive Synchronization of Complex Dynamical Network: A Stabilizing Delay Perspective. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 3091–3095. [Google Scholar] [CrossRef]
- Wo, S.L.; Li, F.; Zhou, Y. Non-fragile observer-based robust control for uncertain systems via aperiodically intermittent control. Inf. Sci. 2021, 537, 239–261. [Google Scholar]
- Ali, Z.; Mohamed, B. A unified H∞ adaptive observer synthesis method for a class of systems with both Lipschitz and monotone nonlinearities. Syst. Control. Lett. 2009, 58, 282–288. [Google Scholar]
- Yang, D.M.; Zhang, Q.L.; Yao, B. Descriptor Systems; Science Press: Beijing, China, 2003. [Google Scholar]
- Ruan, D.G.; Yu, H.H.; Wu, A.G.; Zhang, X. Analysis and Design of Descriptor Linear Systems; Science Press: Beijing, China, 2010. [Google Scholar]
- Bunse-Gerstner, A.; Mehrmann, V.; Nichols, N.K. Regularization of singular systems by output feedback. IEEE Trans. Automat. Contr. 1994, 39, 1742–1748. [Google Scholar] [CrossRef]
- Wang, G.S.; Yang, Z.H. Generalized Inverse Matrix and Application; Beijing University of Technology Press: Beijing, China, 2006. [Google Scholar]
- Ma, Y.C.; Zang, Q.L.; Tong, S. Stability and Stabilization for a class of dynamic systems. Chinese Fournal Eng. Math. 2007, 24, 175–178. [Google Scholar]
- Boyd, S.; Vandenberghe, L. Convex Optimization with Engineering Applications; Lecture Notes; Stanford University: Stanford, CA, USA, 2001. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, X.; Jiang, X. Impulse Controllability for Singular Hybrid Coupled Systems. Appl. Sci. 2024, 14, 9773. https://doi.org/10.3390/app14219773
Li J, Zhang X, Jiang X. Impulse Controllability for Singular Hybrid Coupled Systems. Applied Sciences. 2024; 14(21):9773. https://doi.org/10.3390/app14219773
Chicago/Turabian StyleLi, Jian, Xuefeng Zhang, and Xiong Jiang. 2024. "Impulse Controllability for Singular Hybrid Coupled Systems" Applied Sciences 14, no. 21: 9773. https://doi.org/10.3390/app14219773
APA StyleLi, J., Zhang, X., & Jiang, X. (2024). Impulse Controllability for Singular Hybrid Coupled Systems. Applied Sciences, 14(21), 9773. https://doi.org/10.3390/app14219773