Time Series Forecasting of Thermal Systems Dispatch in Legal Amazon Using Machine Learning
Abstract
:1. Introduction
- The time series forecasting of thermal dispatch is an indicator that can be used for evaluating energy prices, which is an important concern in insulated thermal systems since the prices are related.
- The bagging ensemble learning method proved to be an appropriate structure, having a lower computational demand compared to the LSTM network based on deep learning. The bagging approach proved to be a better approach than the boosting and stacking ensemble approaches.
- The ensemble learning approaches were shown to be stable having few differences when several experiments were performed considering random initialization.
2. Related Work
Dataset
3. Proposed Method
3.1. Stacking Ensemble Learning Model
3.2. Boosting Ensemble Learning Model
3.3. Bagging Ensemble Learning Model
3.4. Parameters
3.5. Benchmarking
3.6. Evaluation Setup
4. Results and Discussion
4.1. Ensemble Learning Model Evaluation
4.2. Statistical Evaluation
4.3. Comparative Analysis
4.4. Comparison to Other Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thirugnanam, K.; Kerk, S.K.; Yuen, C.; Liu, N.; Zhang, M. Energy management for renewable microgrid in reducing diesel generators usage with multiple types of battery. IEEE Trans. Ind. Electron. 2018, 65, 6772–6786. [Google Scholar] [CrossRef]
- Lei, L.; Tan, Y.; Dahlenburg, G.; Xiang, W.; Zheng, K. Dynamic energy dispatch based on deep reinforcement learning in IoT-driven smart isolated microgrids. IEEE Internet Things J. 2020, 8, 7938–7953. [Google Scholar] [CrossRef]
- Das, I.; Cañizares, C.A. Renewable energy integration in diesel-based microgrids at the Canadian arctic. Proc. IEEE 2019, 107, 1838–1856. [Google Scholar] [CrossRef]
- de Oliveira, A.K.V.; de Azevedo, K.L.R.; Dos Santos, D.O.; Aghaei, M.; Rüther, R.; Orabona, R.; Naspolini, H. Assessing the Potential of Green Hydrogen in Decarbonizing Off-Grid Amazonian Communities. In Proceedings of the 2023 International Conference on Future Energy Solutions (FES), Vaasa, Finland, 12–14 June 2023; IEEE: New York, NY, USA, 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Uhunamure, S.E.; Shale, K. A time-varying approach to the nexus between environmental related technologies, renewable energy consumption and environmental sustainability in South Africa. Sci. Rep. 2023, 13, 4860. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, X.; Ghias, A.M.; Chen, Z. Coordinated carbon capture systems and power-to-gas dynamic economic energy dispatch strategy for electricity–gas coupled systems considering system uncertainty: An improved soft actor–critic approach. Energy 2023, 271, 126965. [Google Scholar] [CrossRef]
- Ahmed, I.; Rehan, M.; Basit, A.; Hong, K.S. Greenhouse gases emission reduction for electric power generation sector by efficient dispatching of thermal plants integrated with renewable systems. Sci. Rep. 2022, 12, 12380. [Google Scholar] [CrossRef]
- Akinyemi, A.S.; Musasa, K.; Davidson, I.E. Analysis of voltage rise phenomena in electrical power network with high concentration of renewable distributed generations. Sci. Rep. 2022, 12, 7815. [Google Scholar] [CrossRef]
- dos Santos, K.V.; Colonetti, B.; Finardi, E.C.; Zavala, V.M. Accelerated dual dynamic integer programming applied to short-term power generation scheduling. Int. J. Electr. Power Energy Syst. 2023, 145, 108689. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, W.; Chen, Z.; Li, R.; Niu, Y. Modeling and optimal dispatch of a carbon-cycle integrated energy system for low-carbon and economic operation. Energy 2022, 240, 122795. [Google Scholar] [CrossRef]
- Xiang, Y.; Wu, G.; Shen, X.; Ma, Y.; Gou, J.; Xu, W.; Liu, J. Low-carbon economic dispatch of electricity-gas systems. Energy 2021, 226, 120267. [Google Scholar] [CrossRef]
- Long, Y.; Li, Y.; Wang, Y.; Cao, Y.; Jiang, L.; Zhou, Y.; Deng, Y.; Nakanishi, Y. Low-carbon economic dispatch considering integrated demand response and multistep carbon trading for multi-energy microgrid. Sci. Rep. 2022, 12, 6218. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, Y.; Wei, S. Long-term electricity consumption forecasting method based on system dynamics under the carbon-neutral target. Energy 2022, 244, 122572. [Google Scholar] [CrossRef]
- Muniz, R.N.; Stefenon, S.F.; Buratto, W.G.; Nied, A.; Meyer, L.H.; Finardi, E.C.; Kuhl, R.M.; S’a, J.A.S.d.; Rocha, B.R.P.d. Tools for measuring energy sustainability: A comparative review. Energies 2020, 13, 2366. [Google Scholar] [CrossRef]
- Brandão, P.C.; de Souza, A.L.; Rousset, P.; Simas, F.N.B.; de Mendonça, B.A.F. Forest biomass as a viable pathway for sustainable energy supply in isolated villages of Amazonia. Environ. Dev. 2021, 37, 100609. [Google Scholar] [CrossRef]
- Morawski, A.P.; de Araújo, L.R.; Schiaffino, M.S.; de Oliveira, R.C.; Chun, A.; Ribeiro, L.C.; Santos, J.J.C.S.; Donatelli, J.L.M.; Cunha, C.C.M. On the suitable superstructure thermoeconomic optimization of a waste heat recovery system for a Brazilian diesel engine power plant. Energy Convers. Manag. 2021, 234, 113947. [Google Scholar] [CrossRef]
- Barbosa, M.O.; Peyerl, D.; Mendes, A.B. The economic and environmental benefits of adopting natural gas in isolated systems of Amazonas state, Brazil. Environ. Dev. 2023, 47, 100889. [Google Scholar] [CrossRef]
- Li, F.; Zheng, H.; Li, X.; Yang, F. Day-ahead city natural gas load forecasting based on decomposition-fusion technique and diversified ensemble learning model. Appl. Energy 2021, 303, 117623. [Google Scholar] [CrossRef]
- Kanaan, L.; Ismail, L.S.; Gowid, S.; Meskin, N.; Massoud, A.M. Optimal energy dispatch engine for PV-DG-ESS hybrid power plants considering battery degradation and carbon emissions. IEEE Access 2023, 11, 58506–58515. [Google Scholar] [CrossRef]
- Taheri, S.I.; Salles, M.B.; Costa, E.C. Optimal cost management of distributed generation units and microgrids for virtual power plant scheduling. IEEE Access 2020, 8, 208449–208461. [Google Scholar] [CrossRef]
- Yu, H.; Yang, Y.; Li, B.; Liu, B.; Guo, Y.; Wang, Y.; Guo, Z.; Meng, R. Research on the community electric carbon emission prediction considering the dynamic emission coefficient of power system. Sci. Rep. 2023, 13, 5568. [Google Scholar] [CrossRef]
- Galicia, A.; Talavera-Llames, R.; Troncoso, A.; Koprinska, I.; Martínez-Álvarez, F. Multi-step forecasting for big data time series based on ensemble learning. Knowl.-Based Syst. 2019, 163, 830–841. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; Stefenon, S.F.; de Lima, J.D.; Nied, A.; Mariani, V.C.; Coelho, L.S. Electricity price forecasting based on self-adaptive decomposition and heterogeneous ensemble learning. Energies 2020, 13, 5190. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; da Silva, R.G.; Moreno, S.R.; Mariani, V.C.; dos Santos Coelho, L. Efficient bootstrap stacking ensemble learning model applied to wind power generation forecasting. Int. J. Electr. Power Energy Syst. 2022, 136, 107712. [Google Scholar] [CrossRef]
- Sopelsa Neto, N.F.; Stefenon, S.F.; Meyer, L.H.; Ovejero, R.G.; Leithardt, V.R.Q. Fault prediction based on leakage current in contaminated insulators using enhanced time series forecasting models. Sensors 2022, 22, 6121. [Google Scholar] [CrossRef] [PubMed]
- Alba, E.L.; Oliveira, G.A.; Ribeiro, M.H.D.M.; Rodrigues, E.O. Electricity Consumption Forecasting: An Approach Using Cooperative Ensemble Learning with SHapley Additive exPlanations. Forecasting 2024, 6, 839–863. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Seman, L.O.; da Silva, L.S.A.; Mariani, V.C.; dos Santos Coelho, L. Hypertuned temporal fusion transformer for multi-horizon time series forecasting of dam level in hydroelectric power plants. Int. J. Electr. Power Energy Syst. 2024, 157, 109876. [Google Scholar] [CrossRef]
- Starke, L.; Hoppe, A.F.; Sartori, A.; Stefenon, S.F.; Santana, J.F.D.P.; Leithardt, V.R.Q. Interference recommendation for the pump sizing process in progressive cavity pumps using graph neural networks. Sci. Rep. 2023, 13, 16884. [Google Scholar] [CrossRef]
- Surek, G.A.S.; Seman, L.O.; Stefenon, S.F.; Mariani, V.C.; Coelho, L.S. Video-based human activity recognition using deep learning approaches. Sensors 2023, 23, 6384. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Seman, L.O.; Schutel Furtado Neto, C.; Nied, A.; Seganfredo, D.M.; Garcia da Luz, F.; Sabino, P.H.; Torreblanca González, J.; Quietinho Leithardt, V.R. Electric field evaluation using the finite element method and proxy models for the design of stator slots in a permanent magnet synchronous motor. Electronics 2020, 9, 1975. [Google Scholar] [CrossRef]
- dos Santos, G.H.; Seman, L.O.; Bezerra, E.A.; Leithardt, V.R.Q.; Mendes, A.S.; Stefenon, S.F. Static attitude determination using convolutional neural networks. Sensors 2021, 21, 6419. [Google Scholar] [CrossRef]
- Larcher, J.H.K.; Stefenon, S.F.; dos Santos Coelho, L.; Mariani, V.C. Enhanced multi-step streamflow series forecasting using hybrid signal decomposition and optimized reservoir computing models. Expert Syst. Appl. 2024, 255, 124856. [Google Scholar] [CrossRef]
- Singh, G.; Stefenon, S.F.; Yow, K.C. Interpretable visual transmission lines inspections using pseudo-prototypical part network. Mach. Vis. Appl. 2023, 34, 41. [Google Scholar] [CrossRef]
- Medeiros, A.; Sartori, A.; Stefenon, S.F.; Meyer, L.H.; Nied, A. Comparison of artificial intelligence techniques to failure prediction in contaminated insulators based on leakage current. J. Intell. Fuzzy Syst. 2022, 42, 3285–3298. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Kasburg, C.; Freire, R.Z.; Silva Ferreira, F.C.; Bertol, D.W.; Nied, A. Photovoltaic power forecasting using wavelet Neuro-Fuzzy for active solar trackers. J. Intell. Fuzzy Syst. 2021, 40, 1083–1096. [Google Scholar] [CrossRef]
- Pazikadin, A.R.; Rifai, D.; Ali, K.; Malik, M.Z.; Abdalla, A.N.; Faraj, M.A. Solar irradiance measurement instrumentation and power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years research trend. Sci. Total Environ. 2020, 715, 136848. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Khalid, M. A review on the selected applications of forecasting models in renewable power systems. Renew. Sustain. Energy Rev. 2019, 100, 9–21. [Google Scholar] [CrossRef]
- Corso, M.P.; Stefenon, S.F.; Singh, G.; Matsuo, M.V.; Perez, F.L.; Leithardt, V.R.Q. Evaluation of visible contamination on power grid insulators using convolutional neural networks. Electr. Eng. 2023, 105, 3881–3894. [Google Scholar] [CrossRef]
- Souza, B.J.; Stefenon, S.F.; Singh, G.; Freire, R.Z. Hybrid-YOLO for classification of insulators defects in transmission lines based on UAV. Int. J. Electr. Power Energy Syst. 2023, 148, 108982. [Google Scholar] [CrossRef]
- Borré, A.; Seman, L.O.; Camponogara, E.; Stefenon, S.F.; Mariani, V.C.; Coelho, L.S. Machine fault detection using a hybrid CNN-LSTM attention-based model. Sensors 2023, 23, 4512. [Google Scholar] [CrossRef]
- Buratto, W.G.; Muniz, R.N.; Nied, A.; Barros, C.F.d.O.; Cardoso, R.; Gonzalez, G.V. Wavelet CNN-LSTM time series forecasting of electricity power generation considering biomass thermal systems. IET Gener. Transm. Distrib. 2024, 1–15. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Seman, L.O.; Klaar, A.C.R.; Ovejero, R.G.; Leithardt, V.R.Q. Hypertuned-YOLO for interpretable distribution power grid fault location based on EigenCAM. Ain Shams Eng. J. 2024, 15, 102722. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Singh, G.; Souza, B.J.; Freire, R.Z.; Yow, K.C. Optimized hybrid YOLOu-Quasi-ProtoPNet for insulators classification. IET Gener. Transm. Distrib. 2023, 17, 3501–3511. [Google Scholar] [CrossRef]
- da Silva, E.C.; Finardi, E.C.; Stefenon, S.F. Enhancing hydroelectric inflow prediction in the Brazilian power system: A comparative analysis of machine learning models and hyperparameter optimization for decision support. Electr. Power Syst. Res. 2024, 230, 110275. [Google Scholar] [CrossRef]
- Vargas, S.A.; Esteves, G.R.T.; Maçaira, P.M.; Bastos, B.Q.; Cyrino Oliveira, F.L.; Souza, R.C. Wind power generation: A review and a research agenda. J. Clean. Prod. 2019, 218, 850–870. [Google Scholar] [CrossRef]
- Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Mohamed Shah, N. Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renew. Power Gener. 2019, 13, 1009–1023. [Google Scholar] [CrossRef]
- Nazir, M.S.; Alturise, F.; Alshmrany, S.; Nazir, H.M.J.; Bilal, M.; Abdalla, A.N.; Sanjeevikumar, P.; Ali, Z.M. Wind generation forecasting methods and proliferation of artificial neural network: A review of five years research trend. Sustainability 2020, 12, 3778. [Google Scholar] [CrossRef]
- Seman, L.O.; Stefenon, S.F.; Mariani, V.C.; Coelho, L.S. Ensemble learning methods using the Hodrick–Prescott filter for fault forecasting in insulators of the electrical power grids. Int. J. Electr. Power Energy Syst. 2023, 152, 109269. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Freire, R.Z.; Meyer, L.H.; Corso, M.P.; Sartori, A.; Nied, A.; Klaar, A.C.R.; Yow, K.C. Fault detection in insulators based on ultrasonic signal processing using a hybrid deep learning technique. IET Sci. Meas. Technol. 2020, 14, 953–961. [Google Scholar] [CrossRef]
- Yang, S.; Liu, J. Time-Series Forecasting Based on High-Order Fuzzy Cognitive Maps and Wavelet Transform. IEEE Trans. Fuzzy Syst. 2018, 26, 3391–3402. [Google Scholar] [CrossRef]
- Ustundag, B.B.; Kulaglic, A. High-Performance Time Series Prediction With Predictive Error Compensated Wavelet Neural Networks. IEEE Access 2020, 8, 210532–210541. [Google Scholar] [CrossRef]
- Yamasaki, M.; Freire, R.Z.; Seman, L.O.; Stefenon, S.F.; Mariani, V.C.; dos Santos Coelho, L. Optimized hybrid ensemble learning approaches applied to very short-term load forecasting. Int. J. Electr. Power Energy Syst. 2024, 155, 109579. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Seman, L.O.; Sopelsa Neto, N.F.; Meyer, L.H.; Mariani, V.C.; Coelho, L.d.S. Group method of data handling using Christiano-Fitzgerald random walk filter for insulator fault prediction. Sensors 2023, 23, 6118. [Google Scholar] [CrossRef]
- Xu, K.; Chen, L.; Patenaude, J.M.; Wang, S. Kernel representation learning with dynamic regime discovery for time series forecasting. In Pacific-Asia Conference on Knowledge Discovery and Data Mining; Springer: Singapore, 2024; pp. 251–263. [Google Scholar] [CrossRef]
- Xu, K.; Chen, L.; Patenaude, J.M.; Wang, S. Rhine: A regime-switching model with nonlinear representation for discovering and forecasting regimes in financial markets. In 2024 SIAM International Conference on Data Mining (SDM); SIAM: Bangkok, Thailand, 2024; pp. 526–534. [Google Scholar] [CrossRef]
- Klaar, A.C.R.; Stefenon, S.F.; Seman, L.O.; Mariani, V.C.; Coelho, L.S. Optimized EWT-Seq2Seq-LSTM with attention mechanism to insulators fault prediction. Sensors 2023, 23, 3202. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Seman, L.O.; Aquino, L.S.; dos Santos Coelho, L. Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants. Energy 2023, 274, 127350. [Google Scholar] [CrossRef]
- Branco, N.W.; Cavalca, M.S.M.; Stefenon, S.F.; Leithardt, V.R.Q. Wavelet LSTM for fault forecasting in electrical power grids. Sensors 2022, 22, 8323. [Google Scholar] [CrossRef] [PubMed]
- Stefenon, S.F.; Seman, L.O.; Mariani, V.C.; Coelho, L.S. Aggregating prophet and seasonal trend decomposition for time series forecasting of Italian electricity spot prices. Energies 2023, 16, 1371. [Google Scholar] [CrossRef]
- Klaar, A.C.R.; Stefenon, S.F.; Seman, L.O.; Mariani, V.C.; Coelho, L.S. Structure optimization of ensemble learning methods and seasonal decomposition approaches to energy price forecasting in Latin America: A case study about Mexico. Energies 2023, 16, 3184. [Google Scholar] [CrossRef]
- Júnior, E.P.S.; Martins, K.D.L.D.C.; Silva, M.V.B.D.; Maurício, C.F.B.; Menezes, R.S.C.; Coelho Junior, L.M. Forest Bioelectricity in Brazil: Distribution and Spatial-Time Dependence. IEEE Access 2022, 10, 132822–132835. [Google Scholar] [CrossRef]
- Hafeez, G.; Alimgeer, K.S.; Qazi, A.B.; Khan, I.; Usman, M.; Khan, F.A.; Wadud, Z. A Hybrid Approach for Energy Consumption Forecasting With a New Feature Engineering and Optimization Framework in Smart Grid. IEEE Access 2020, 8, 96210–96226. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Bruns, R.; Sartori, A.; Meyer, L.H.; Ovejero, R.G.; Leithardt, V.R.Q. Analysis of the ultrasonic signal in polymeric contaminated insulators through ensemble learning methods. IEEE Access 2022, 10, 33980–33991. [Google Scholar] [CrossRef]
- Moon, J.; Jung, S.; Rew, J.; Rho, S.; Hwang, E. Combination of short-term load forecasting models based on a stacking ensemble approach. Energy Build. 2020, 216, 109921. [Google Scholar] [CrossRef]
- Júnior, D.S.d.O.S.; de Mattos Neto, P.S.; de Oliveira, J.F.; Cavalcanti, G.D. A hybrid system based on ensemble learning to model residuals for time series forecasting. Inf. Sci. 2023, 649, 119614. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Y.; Zhang, W.; Feng, R. A novel ensemble deep learning model with dynamic error correction and multi-objective ensemble pruning for time series forecasting. Inf. Sci. 2021, 544, 427–445. [Google Scholar] [CrossRef]
- Liu, H.; Yu, C.; Wu, H.; Duan, Z.; Yan, G. A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting. Energy 2020, 202, 117794. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Ribeiro, M.H.D.M.; Nied, A.; Mariani, V.C.; Coelho, L.S.; Leithardt, V.R.Q.; Silva, L.A.; Seman, L.O. Hybrid wavelet stacking ensemble model for insulators contamination forecasting. IEEE Access 2021, 9, 66387–66397. [Google Scholar] [CrossRef]
- Tan, M.; Yuan, S.; Li, S.; Su, Y.; Li, H.; He, F. Ultra-Short-Term Industrial Power Demand Forecasting Using LSTM Based Hybrid Ensemble Learning. IEEE Trans. Power Syst. 2020, 35, 2937–2948. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; dos Santos Coelho, L. Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series. Appl. Soft Comput. 2020, 86, 105837. [Google Scholar] [CrossRef]
- Andiojaya, A.; Demirhan, H. A bagging algorithm for the imputation of missing values in time series. Expert Syst. Appl. 2019, 129, 10–26. [Google Scholar] [CrossRef]
- Li, T.; Liu, X.; Lin, Z.; Morrison, R. Ensemble offshore Wind Turbine Power Curve modelling—An integration of Isolation Forest, fast Radial Basis Function Neural Network, and metaheuristic algorithm. Energy 2022, 239, 122340. [Google Scholar] [CrossRef]
- Kecman, V.; Zigic, L. Algorithms for direct L2 support vector machines. In Proceedings of the IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings, Alberobello, Italy, 23–25 June 2014; IEEE: New York, NY, USA, 2014; pp. 419–424. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Ribeiro, M.H.D.M.; Nied, A.; Yow, K.C.; Mariani, V.C.; Coelho, L.S.; Seman, L.O. Time series forecasting using ensemble learning methods for emergency prevention in hydroelectric power plants with dam. Electr. Power Syst. Res. 2022, 202, 107584. [Google Scholar] [CrossRef]
- Wambacq, J.; Ulloa, J.; Lombaert, G.; François, S. Interior-point methods for the phase-field approach to brittle and ductile fracture. Comput. Methods Appl. Mech. Eng. 2021, 375, 113612. [Google Scholar] [CrossRef]
- Haeser, G.; Ramos, A. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization. J. Optim. Theory Appl. 2020, 187, 469–487. [Google Scholar] [CrossRef]
- Kasburg, C.; Stefenon, S.F. Deep learning for photovoltaic generation forecast in active solar trackers. IEEE Lat. Am. Trans. 2019, 17, 2013–2019. [Google Scholar] [CrossRef]
- Chimmula, V.K.R.; Zhang, L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solitons Fractals 2020, 135, 109864. [Google Scholar] [CrossRef] [PubMed]
- Stefenon, S.F.; Kasburg, C.; Nied, A.; Klaar, A.C.R.; Ferreira, F.C.S.; Branco, N.W. Hybrid deep learning for power generation forecasting in active solar trackers. IET Gener. Transm. Distrib. 2020, 14, 5667–5674. [Google Scholar] [CrossRef]
- Wang, W.; Shao, J.; Jumahong, H. Fuzzy inference-based LSTM for long-term time series prediction. Sci. Rep. 2023, 13, 20359. [Google Scholar] [CrossRef]
- Elshamy, R.; Abu-Elnasr, O.; Elhoseny, M.; Elmougy, S. Improving the efficiency of RMSProp optimizer by utilizing Nestrove in deep learning. Sci. Rep. 2023, 13, 8814. [Google Scholar] [CrossRef]
- Ahmed, F.R.; Alsenany, S.A.; Abdelaliem, S.M.F.; Deif, M.A. Development of a hybrid LSTM with chimp optimization algorithm for the pressure ventilator prediction. Sci. Rep. 2023, 13, 20927. [Google Scholar] [CrossRef]
- Fernandes, F.; Stefenon, S.F.; Seman, L.O.; Nied, A.; Ferreira, F.C.S.; Subtil, M.C.M.; Klaar, A.C.R.; Leithardt, V.R.Q. Long short-term memory stacking model to predict the number of cases and deaths caused by COVID-19. J. Intell. Fuzzy Syst. 2022, 6, 6221–6234. [Google Scholar] [CrossRef]
- Salehi, S. Employing a Time Series Forecasting Model for Tourism Demand Using ANFIS. J. Inf. Organ. Sci. 2022, 46, 157–172. [Google Scholar] [CrossRef]
- Fatemi, S.E.; Parvini, H. The impact assessments of the ACF shape on time series forecasting by the ANFIS model. Neural Comput. Appl. 2022, 34, 12723–12736. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Freire, R.Z.; Coelho, L.S.; Meyer, L.H.; Grebogi, R.B.; Buratto, W.G.; Nied, A. Electrical insulator fault forecasting based on a wavelet neuro-fuzzy system. Energies 2020, 13, 484. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; da Silva, R.G.; Moreno, S.R.; Canton, C.; Larcher, J.H.K.; Stefenon, S.F.; Mariani, V.C.; dos Santos Coelho, L. Variational mode decomposition and bagging extreme learning machine with multi-objective optimization for wind power forecasting. Appl. Intell. 2024, 1, 1. [Google Scholar] [CrossRef]
- Moreno, S.R.; Seman, L.O.; Stefenon, S.F.; dos Santos Coelho, L.; Mariani, V.C. Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition. Energy 2024, 292, 130493. [Google Scholar] [CrossRef]
Solver | Kernel | MSE | MAE | MAPE (%) | R2 | Time (s) |
---|---|---|---|---|---|---|
ISDA | LIN | 1.49 | 1.76 | 7.03 | 0.4198 | 1.28 |
RBF | 3.78 | 3.13 | 1.32 | 0.4735 | 0.65 | |
POLY | 1.03 | 1.58 | 5.39 | - | 40.89 | |
L1QP | LIN | 1.49 | 1.76 | 7.02 | 0.4202 | 10.53 |
RBF | 4.06 | 3.28 | 1.39 | 0.5812 | 12.62 | |
POLY | 1.25 | 3.67 | 1.21 | - | 9.33 | |
SMO | LIN | 1.48 | 1.76 | 7.02 | 0.4218 | 2.70 |
RBF | 4.06 | 3.27 | 1.39 | 0.5809 | 10.57 | |
POLY | 8.92 | 1.64 | 5.51 | - | 95.33 |
Solver | Kernel | MSE | MAE | MAPE (%) | R2 | Time (s) |
---|---|---|---|---|---|---|
ISDA | LIN | 1.25 | 1.20 | 5.50 | 0.5111 | 31.82 |
RBF | 4.48 | 4.06 | 1.94 | 0.7461 | 6.74 | |
POLY | 4.43 | 2.06 | 7.56 | - | 1136.64 | |
L1QP | LIN | 5.19 | 1.03 | 4.96 | 0.7977 | 179.57 |
RBF | 4.66 | 4.15 | 1.98 | 0.8181 | 167.07 | |
POLY | 5.03 | 1.86 | 6.86 | - | 214.36 | |
SMO | LIN | 8.51 | 1.54 | 7.88 | 0.6682 | 49.58 |
RBF | 4.66 | 4.17 | 2.00 | 0.8156 | 4.74 | |
POLY | 6.83 | 2.30 | 8.70 | - | 1847.39 |
Solver | Kernel | MSE | MAE | MAPE (%) | R2 | Time (s) |
---|---|---|---|---|---|---|
ISDA | LIN | 6.39 | 4.20 | 1.02 | 0.9751 | 9.71 |
RBF | 4.21 | 3.42 | 1.48 | 0.6403 | 1.91 | |
POLY | 1.00 | 2.65 | 1.00 | - | 430.01 | |
L1QP | LIN | 6.39 | 4.23 | 9.71 | 0.9751 | 36.75 |
RBF | 4.48 | 3.55 | 1.54 | 0.7482 | 41.035 | |
POLY | 4.03 | 6.01 | 1.91 | 0.5721 | 37.813 | |
SMO | LIN | 6.36 | 3.77 | 7.34 | 0.9752 | 16.97 |
RBF | 4.49 | 3.56 | 1.54 | 0.7494 | 1.52 | |
POLY | 4.43 | 6.99 | 2.24 | - | 865.87 |
Stacking | Boosting | Bagging | ||
---|---|---|---|---|
MSE | Max | 1.48 | 1.40 | 6.44 |
Min | 1.48 | 3.80 | 6.29 | |
Mean | 1.48 | 8.57 | 6.38 | |
Std Deviation | 8.82 | 2.63 | 3.35 | |
Variance | 7.78 | 6.90 | 1.12 | |
MAE | Max | 1.76 | 2.14 | 4.57 |
Min | 1.76 | 7.90 | 3.7 | |
Mean | 1.76 | 1.62 | 4.04 | |
Std Deviation | 1.15 | 3.25 | 1.83 | |
Variance | 1.32 | 1.06 | 3.34 | |
MAPE | Max | 7.02 | 1.19 | 1.22 |
Min | 7.02 | 3.65 | 7.25 | |
Mean | 7.02 | 8.44 | 8.90 | |
Std Deviation | 3.59 | 2.05 | 1.18 | |
Variance | 1.29 | 4.19 | 1.39 | |
R2 | Max | 4.22 | 8.52 | 9.75 |
Min | 4.22 | 4.56 | 9.75 | |
Mean | 4.22 | 6.66 | 9.75 | |
Std Deviation | - | 1.02 | 1.31 | |
Variance | - | 1.05 | 1.71 |
Model | Method | Evaluated Parameter | MSE | MAE | MAPE (%) | R2 | Time (s) |
---|---|---|---|---|---|---|---|
LSTM | RMSprop | 10 | 1.65 | 1.81 | 7.31 | 0.3576 | 42.21 |
50 | 6.06 | 8.31 | 2.89 | 0.7634 | 27.81 | ||
100 | 5.11 | 8.21 | 3.11 | 0.8006 | 29.40 | ||
500 | 2.88 | 6.33 | 2.87 | 0.8876 | 55.55 | ||
Adam | 10 | 1.22 | 1.55 | 6.33 | 0.5246 | 27.65 | |
50 | 3.31 | 5.29 | 2.07 | 0.8710 | 29.76 | ||
100 | 1.06 | 2.00 | 0.71 | 0.9586 | 28.72 | ||
500 | 1.75 | 5.38 | 2.19 | 0.9317 | 56.04 | ||
SGDM | 10 | 1.25 | 1.58 | 6.50 | 0.5133 | 25.97 | |
50 | 5.88 | 8.03 | 3.06 | 0.7705 | 26.16 | ||
100 | 4.79 | 6.65 | 2.39 | 0.8131 | 26.72 | ||
500 | 1.26 | 1.14 | 0.29 | 0.9510 | 53.84 | ||
ANFIS | FCM | 10 | 1.71 | 6.00 | 2.66 | 0.9334 | 6.11 |
20 | 2.59 | 7.87 | 3.49 | 0.8991 | 11.16 | ||
30 | 1.20 | 1.53 | 6.48 | - | 17.15 | ||
40 | 2.85 | 6.35 | 2.60 | - | 25.99 | ||
50 | 2.16 | 5.82 | 2.51 | - | 37.936 | ||
Bagged Model | - | - | 6.36 | 4.04 | 8.95 | 0.9752 | 15.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buratto, W.G.; Muniz, R.N.; Cardoso, R.; Nied, A.; da Costa, C.T., Jr.; Gonzalez, G.V. Time Series Forecasting of Thermal Systems Dispatch in Legal Amazon Using Machine Learning. Appl. Sci. 2024, 14, 9806. https://doi.org/10.3390/app14219806
Buratto WG, Muniz RN, Cardoso R, Nied A, da Costa CT Jr., Gonzalez GV. Time Series Forecasting of Thermal Systems Dispatch in Legal Amazon Using Machine Learning. Applied Sciences. 2024; 14(21):9806. https://doi.org/10.3390/app14219806
Chicago/Turabian StyleBuratto, William Gouvêa, Rafael Ninno Muniz, Rodolfo Cardoso, Ademir Nied, Carlos Tavares da Costa, Jr., and Gabriel Villarrubia Gonzalez. 2024. "Time Series Forecasting of Thermal Systems Dispatch in Legal Amazon Using Machine Learning" Applied Sciences 14, no. 21: 9806. https://doi.org/10.3390/app14219806
APA StyleBuratto, W. G., Muniz, R. N., Cardoso, R., Nied, A., da Costa, C. T., Jr., & Gonzalez, G. V. (2024). Time Series Forecasting of Thermal Systems Dispatch in Legal Amazon Using Machine Learning. Applied Sciences, 14(21), 9806. https://doi.org/10.3390/app14219806