Multi-Sensor Photoelectric Fire Alarm Device Implementation for Early Fire Detection in Campsites
Abstract
:1. Introduction
2. Related Studies
3. Multi-Sensor Photoelectric Fire Detection System
3.1. Relationship Between Weather and Fire Occurrence
3.1.1. Data for Analysis
3.1.2. The Relationship Model Between Fire Occurrence and Temperature and Humidity
3.1.3. Statistical Evaluation
3.2. Multi Sensor Photoelectric Fire Detection System Design
3.2.1. Photoelectric Fire Detector
3.2.2. Prototype Design and Implementation of the Proposed Multi-Sensor Photoelectric Fire Alarm
4. Experiments and Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Time | Temeperature | Humidity | Bright | Threshold | Note |
17:55:40 | 43 | 38 | 888.85 | 893.6243 | |
17:55:41 | 43 | 38 | 885.05 | 893.6243 | |
17:55:42 | 43 | 38 | 884.4 | 893.6243 | |
17:55:43 | 43 | 37 | 886.85 | 891.1383 | |
17:55:44 | 43 | 37 | 883.3 | 891.1383 | |
17:55:45 | 43 | 37 | 886 | 891.1383 | |
17:55:47 | 43 | 37 | 888.25 | 891.1383 | |
17:55:48 | 43 | 37 | 892.95 | 891.138 | multi-sensor photoelectric fire detector |
17:55:49 | 43 | 37 | 898.25 | 891.1383 | |
17:55:50 | 43 | 36 | 898.4 | 888.6523 | |
17:55:51 | 43 | 36 | 898.5 | 888.6523 | |
17:55:52 | 43 | 36 | 901.2 | 888.6523 | |
17:55:53 | 43 | 36 | 900.25 | 888.6523 | |
17:55:54 | 43 | 36 | 896.75 | 888.6523 | |
17:55:56 | 43 | 36 | 892.4 | 888.6523 | |
17:55:57 | 43 | 36 | 892.9 | 888.6523 | |
17:55:58 | 43 | 36 | 890.85 | 888.6523 | |
17:55:59 | 43 | 35 | 885.75 | 886.1664 | |
17:56:00 | 43 | 35 | 886.15 | 886.1664 | |
17:56:01 | 43 | 35 | 884.9 | 886.1664 | |
17:56:02 | 43 | 35 | 885.75 | 886.1664 | |
17:56:03 | 43 | 35 | 889.8 | 886.1664 | |
17:56:05 | 43 | 35 | 893.65 | 886.1664 | |
17:56:06 | 43 | 35 | 891.95 | 886.1664 | |
17:56:08 | 43 | 34 | 892.95 | 883.6804 | |
17:56:09 | 43 | 34 | 894.7 | 883.6804 | |
17:56:10 | 43 | 34 | 896.4 | 883.6804 | |
17:56:11 | 43 | 34 | 892.65 | 883.6804 | |
17:56:12 | 43 | 34 | 888.05 | 883.6804 | |
17:56:14 | 43 | 33 | 888.9 | 881.1944 | |
17:56:15 | 43 | 33 | 889.6 | 881.1944 | |
17:56:16 | 44 | 33 | 884.9 | 880.7265 | |
17:56:17 | 44 | 33 | 884.15 | 880.7265 | |
17:56:18 | 44 | 33 | 882.2 | 880.7265 | |
17:56:19 | 44 | 33 | 885.8 | 880.7265 | |
17:56:22 | 44 | 33 | 887 | 880.7265 | |
17:56:23 | 44 | 33 | 888.35 | 880.7265 | |
17:56:24 | 44 | 32 | 890.95 | 878.2405 | |
17:56:25 | 44 | 32 | 892.1 | 878.2405 | |
17:56:26 | 44 | 32 | 897.65 | 878.2405 | |
17:56:28 | 44 | 32 | 898 | 878.24 | photoelectric fire detector |
References
- McNamee, M.; Meacham, B.; van Hees, P.; Bisby, L.; Chow, W.K.; Coppalle, A.; Dobashi, R.; Dlugogorski, B.; Fahy, R.; Fleischmann, C.; et al. IAFSS agenda 2030 for a fire safe world. Fire Saf. J. 2019, 110, 102889. [Google Scholar] [CrossRef]
- National Emergency Management Agency. National Fire Data System (NFDS). Available online: http://www.nfds.go.kr/ (accessed on 28 August 2024).
- Marchetti, L.J. Fire Dynamics Series: Fire Protection Fundamentals; PDHonline Course M282; PDH Online|PDH Center: Fairfax, VA, USA, 2020; Available online: https://pdhonline.com/courses/m282/FireProtectionFundamentals.pdf (accessed on 28 August 2024).
- The Korea Times. Five Die in Campsite Blaze. Available online: https://www.koreatimes.co.kr/www/nation/2023/11/511_175636.html (accessed on 23 November 2023).
- The Korea Herald. Winter Camping Alert: 5 Dead over Weekend Apparently of Carbon Monoxide Poisoning. Available online: https://www.koreaherald.com/view.php?ud=20231113000679 (accessed on 23 August 2024).
- BNN. Couple and Grandson Die from Carbon Monoxide Poisoning in Tent. Available online: https://bnn.network/breaking-news/accidents/couple-and-grandson-die-from-carbon-monoxide-poisoning-in-tent/ (accessed on 28 August 2024).
- Fire Accident at a Glamping Site on Ganghwa Island in South Korea, on March, 2015. Available online: https://www.youtube.com/watch?v=dUhfXLmVM_k (accessed on 23 November 2023).
- Khan, F.; Xu, Z.; Sun, J.; Khan, F.M.; Ahmed, A.; Zhao, Y. Recent advances in sensors for fire detection. Sensors 2022, 22, 3310. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sánchez del Río Saez, J.; Ao, X.; Vázquez-López, A.; Xu, X.; Xu, B.; Wang, D.-Y. Smart low-temperature responsive fire alarm based on MXene/graphene oxide film with wireless transmission: Remote real-time luminosity detection. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129641. [Google Scholar] [CrossRef]
- Song, D.; Kim, K.; Lee, S. An relational analysis between humidity temperature and fire occurrence using public data. Fire Sci. Eng. 2014, 28, 82–90. [Google Scholar] [CrossRef]
- Korean Fire Industry & Technology Institute (KFI). Production Status of Firefighting Products by Manufacturer. Available online: https://www.kfi.or.kr/portal/openDataFsuplPrdc/openDataFsuplPrdc/opnFsuplPrdc.do?menuNo=500329 (accessed on 28 August 2024).
- Wu, L.; Chen, L.; Hao, X. Multi-sensor data fusion algorithm for indoor fire early warning based on BP neural network. Information 2021, 12, 59. [Google Scholar] [CrossRef]
- National Fire Agency of South Korea. (n.d.). National Fire Information System. Available online: https://www.data.go.kr/data/15044003/fileData.do (accessed on 28 August 2024).
- Korea Meteorological Administration. (n.d.). Automated Weather Observation System (AWS). Available online: https://data.kma.go.kr/data/grnd/selectAwsRltmList.do (accessed on 28 August 2024).
- Ryu, J.; Kwak, D. Flame Detection Using Appearance-Based Pre-Processing and Convolutional Neural Network. Appl. Sci. 2021, 11, 5138. [Google Scholar] [CrossRef]
- Saponara, S.; Elhanashi, A.; Gagliardi, A. Real-time video fire/smoke detection based on CNN in antifire surveillance systems. J. Real-Time Image Process. 2021, 18, 889–900. [Google Scholar] [CrossRef]
- Hayashi, Y.; Akimoto, Y.; Hiramatsu, N.; Masunishi, K.; Saito, T.; Yamazaki, H.; Nakamura, N.; Kojima, A. Smoldering fire detection using low-power capacitive MEMS hydrogen sensor for future fire alarm. J. Micromech. Microeng. 2023, 33, 105006. [Google Scholar] [CrossRef]
- Qiu, X.; Wei, Y.; Li, N.; Guo, A.; Zhang, E.; Li, C.; Peng, Y.; Wei, J.; Zang, Z. Development of an early warning fire detection system based on a laser spectroscopic carbon monoxide sensor using a 32-bit system-on-chip. Infrared Phys. Technol. 2019, 96, 44–51. [Google Scholar] [CrossRef]
- Bogue, R. Sensors for fire detection. Sens. Rev. 2013, 33, 99–103. [Google Scholar] [CrossRef]
- Jain, P.; Castellanos-Acuna, D.; Coogan, S.C.P.; Abatzoglou, J.T.; Flannigan, M.D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Chang. 2022, 12, 63–70. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Han, J.W.; Kim, D.W.; Kim, T.F. Evaluating impact factors of forest fire occurrences in Gangwon Province using PLS-SEM: A focus on drought and meteorological factors. J. Korean Soc. Civ. Eng. 2021, 41, 209–217. [Google Scholar]
- Kang, S.; Won, M.; Yoon, S. Large fire forecasting depending on the changing wind speed and effective humidity in Korean red pine forests through a case study. J. Korean Assoc. Geogr. Inf. Stud. 2016, 19, 146–156. [Google Scholar] [CrossRef]
- Choi, H.; Lee, E. Analysis of a fire in a parked camping car. J. Korean Soc. Hazard Mitig. 2019, 19, 217–223. [Google Scholar] [CrossRef]
- Lee, E. Causes of and Preventive Measures against Camping Car Fires. J. Korean Soc. Hazard Mitig. 2022, 2, 87–96. [Google Scholar] [CrossRef]
- Almeida, M.; Azinheira, J.R.; Barata, J. Analysis of fire hazard in camping park areas. Fire Technol. 2016, 53, 553–575. [Google Scholar] [CrossRef]
- Fraser, J.F.; Choo, K.L.; Kimble, R.M.; Sutch, D. The morning after the night before: Campfires revisited. Med. J. Aust. 2003, 178, 30. [Google Scholar] [CrossRef] [PubMed]
- Dekking, F.M.; Kraaikamp, C.; Lopuhaä, H.P.; Meester, L.E. A Modern Introduction to Probability and Statistics; Springer Texts in Statistics; Springer: London, UK, 2005; ISBN 978-1-85233-896-1. [Google Scholar] [CrossRef]
- Craven, B.D.; Islam, S.M.N. Ordinary least-squares regression. In SAGE Dictionary of Quantitative Management Research; Sage Publications: London, UK, 2011; pp. 224–228. [Google Scholar]
- Draper, N.R.; Smith, H. Applied Regression Analysis; Wiley-Interscience: New York, NY, USA, 1998; ISBN 978-0-471-17082-2. [Google Scholar]
- Craney, T.A.; Surles, J.G. Model-dependent variance inflation factor cutoff values. Qual. Eng. 2002, 14, 391–403. [Google Scholar] [CrossRef]
- Hoseo University Industry-Academic Cooperation Foundation. Development of the User-Oriented Addressable P-type Automatic Fire Alarm System.; National Emergency Management Agency (NEMA): Canberra, Australia, 2012.
- ETC. DHT11 Temperature & Humidity Sensor Datasheet. Available online: https://pdf1.alldatasheet.co.kr/datasheet-pdf/download/1440068/ETC/DHT11.html (accessed on 28 August 2024).
- MCP3008 10-bit Analog-to-Digital Converter (ADC). Datasheet. Available online: https://cdn-shop.adafruit.com/datasheets/MCP3008.pdf (accessed on 23 November 2023).
Location | Location Name | Day | Temperature (°C) | Humidity (%) |
---|---|---|---|---|
116 | Gwanak-gu | 2021-01-01 1:00 | −12.3 | 74 |
116 | Gwanak-gu | 2021-01-01 2:00 | −11.6 | 75 |
116 | Gwanak-gu | 2021-01-01 3:00 | −12 | 74 |
116 | Gwanak-gu | 2021-01-01 4:00 | −11.6 | 76 |
116 | Gwanak-gu | 2021-01-01 5:00 | −10.8 | 60 |
116 | Gwanak-gu | 2021-01-01 6:00 | −10.5 | 54 |
116 | Gwanak-gu | 2021-01-01 7:00 | −9.8 | 37 |
116 | Gwanak-gu | 2021-01-01 8:00 | −9.9 | 52 |
116 | Gwanak-gu | 2021-01-01 9:00 | −9.4 | 62 |
116 | Gwanak-gu | 2021-01-01 10:00 | −7.9 | 67 |
Date of Fire Outbreak | City | District | Ignition Factor |
---|---|---|---|
2020-01-01 0:00 | Seoul | Guro-gu | Careless |
2020-01-01 0:05 | Gwangju | Gwangsan-gu | Careless |
2020-01-01 0:06 | Gwangju | Gwangsan-gu | Unknown |
2020-01-01 0:07 | Gyeonggi | Yeoju-si | Electrical factor |
2020-01-01 0:12 | Gyeonggi | Yangpyeong-gun | Electrical factor |
2020-01-01 0:21 | Incheon | Michuol-gu | Unknown |
2020-01-01 0:43 | Gwangju | Buk-gu | Careless |
2020-01-01 0:57 | Incheon | Ganghwa-gun | Careless |
2020-01-01 1:12 | Gyeongsangdo | Changnyeong-gun | Electrical factor |
2020-01-01 1:15 | Seoul | Gannam-gu | Unknown |
Date of Fire Outbreak | City | District | Ignition Factor | Location | Temperature (°C) | Humidity (%) |
---|---|---|---|---|---|---|
2021-01-02 9:00 | Daegu | Sinam | Electrical factor | 860 | −0.9 | 65 |
2021-01-02 11:00 | Daegu | Sinam | Mechanical factor | 860 | 0.3 | 42 |
2021-01-02 14:00 | Daegu | Dalseon | Unknown | 828 | 3.5 | 29 |
2021-01-02 14:00 | Daegu | Sinam | Electrical factor | 860 | 1.6 | 30 |
2021-01-02 18:00 | Daegu | Sinam | arson | 860 | −0.7 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.; Jung, I.Y. Multi-Sensor Photoelectric Fire Alarm Device Implementation for Early Fire Detection in Campsites. Appl. Sci. 2024, 14, 9965. https://doi.org/10.3390/app14219965
Choi W, Jung IY. Multi-Sensor Photoelectric Fire Alarm Device Implementation for Early Fire Detection in Campsites. Applied Sciences. 2024; 14(21):9965. https://doi.org/10.3390/app14219965
Chicago/Turabian StyleChoi, Wonjun, and Im Y. Jung. 2024. "Multi-Sensor Photoelectric Fire Alarm Device Implementation for Early Fire Detection in Campsites" Applied Sciences 14, no. 21: 9965. https://doi.org/10.3390/app14219965
APA StyleChoi, W., & Jung, I. Y. (2024). Multi-Sensor Photoelectric Fire Alarm Device Implementation for Early Fire Detection in Campsites. Applied Sciences, 14(21), 9965. https://doi.org/10.3390/app14219965