Mitigating Pass Gate Effect in Buried Channel Array Transistors Through Buried Oxide Integration: Addressing Interference Phenomenon Between Word Lines
Abstract
:1. Introduction
2. Simulation Methods
2.1. PGE Measurement
2.2. Optimizing Buried Oxide
2.3. Effect of Interface Traps in Buried Oxide
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.-S.; Lim, C.-Y.; Kwon, M.-W. Reduction of the Pass Gate Effect with a Spherical Shallow Trench Isolation in the BCAT Structure. J. Semicond. Technol. Sci. 2023, 23, 236–242. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lim, C.Y.; Kwon, M.W. Mitigating WL-to-WL Disturbance in Dynamic Random-Access Memory (DRAM) through Adopted Spherical Shallow Trench Isolation with Silicon Nitride Layer in the Buried Channel Array Transistor (BCAT). Electronics 2024, 13, 681. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, X.; Wang, N.; Jeon, J.; Wu, B.; Cao, K. Trap-Assisted Passing Word Line Leakage and Variable Retention Time in DRAM. In Proceedings of the 4th International Conference on Electronics Technology (ICET), Chengdu, China, 7–10 May 2021. [Google Scholar] [CrossRef]
- Yuan, X.; Park, J.-E.; Wang, J.; Zhao, E.; Ahlgren, D.C.; Hook, T. Gate-Induced Drain-Leakage Current in 45-nm CMOS Technology. IEEE Trans. Device Mater. Reliab. 2008, 8, 501–508. [Google Scholar] [CrossRef]
- Lim, K.Y.; Yu, X.; Yeo, D. A study on gate-induced junction breakdown. In Proceedings of the 6th International Conference on Solid-State and Interated Circuit Technologly, Shanghai, China, 22–25 October 2001. [Google Scholar] [CrossRef]
- Lo, G.Q.; Joshi, A.B. Hot-carrier-stress effects on gate-induced drain leakage current in n-channel MOSFETs. IEEE Electron Device Lett. 1991, 12, 5–7. [Google Scholar] [CrossRef]
- Chang, C.; Haddad, S.; Swaminathan, B.; Lien, J. Drain-avalanche and hole-trapping induced gate leakage in thin-oxide MOS device. IEEE Electron Device Lett. 1988, 9, 588–590. [Google Scholar] [CrossRef]
- Yang, T.; Lin, X.-W. Trap-Assisted DRAM Row Hammer Effect. IEEE Electron Device Lett. 2019, 40, 391–394. [Google Scholar] [CrossRef]
- Son, M.; Park, H. Making DRAM strong against row hammering. In Proceedings of the 54th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 18–22 June 2017. [Google Scholar] [CrossRef]
- Kim, Y.; Daly, R.; Kim, J.; Fallin, C.; Lee, J.H.; Lee, D.; Wilkerson, C.; Lai, K.; Mutlu, O. Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors. ACM SIGARCH Comput. Archit. News 2014, 42, 361–372. [Google Scholar] [CrossRef]
- Bhati, I.; Chang, M.-T.; Chishti, Z.; Lu, S.-L.; Jacob, B. DRAM Refresh Mechanisms, Penalties, and Trade-Offs. IEEE Trans. Comput. 2016, 65, 108–121. [Google Scholar] [CrossRef]
- Im, J.; Kim, H.; Kim, J.; Woo, S.; Kwon, T.; Yoon, Y.J. Analysis of Row Hammer and Passing Gate Effect in DRAM Cells by BCAT Structural Design. In Proceedings of the 2024 IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, USA, 15–16 June 2024; pp. 91–92. [Google Scholar] [CrossRef]
- Kim, H.; Im, J.; Kim, J.; Woo, S.; Kwon, T.; Yoon, Y.J. Investigation of Row Hammer and Passing Gate Effects Based on the Work Functions of Dual Gates in DRAM Cells. In Proceedings of the 2024 IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, USA, 15–16 June 2024; pp. 89–90. [Google Scholar] [CrossRef]
- Park, S.-W.; Hong, S.-J.; Kim, J.-W.; Jeong, J.-G.; Yoo, K.-D.; Moon, S.-C. Highly scalable saddle-Fin (S-Fin) transistor for sub-50 nm DRAM technology. In Proceedings of the 2006 Symposium on VLSI Technology, Honolulu, HI, USA, 13–15 June 2006. Digest of Technical Papers. [Google Scholar]
- Han, J.-W.; Suh, M.; Lee, G.; Kim, J. Overhang saddle fin sidewall structure for highly reliable DRAM operation. IEEE Access 2023, 11, 82738–82743. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Y.; Wang, N.; Jeon, J.; Wu, B.; Cao, K. Saddle Fin Structure Effects on the DRAM Access Transistor Performance. In Proceedings of the IEEE 4th International Conference on Electronics Technology (ICET), Chengdu, China, 7–10 May 2021. [Google Scholar]
- Kim, Y.K.; Lee, J.S.; Kim, G.; Park, T.; Kim, H.J.; Cho, Y.P.; Park, Y.J.; Lee, M.J. Partial isolation type saddle-FinFET (Pi-FinFET) for sub-30 nm DRAM cell transistors. Electronics 2018, 8, 8. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Y.; Li, D.; Jeon, J.; Wu, B. TCAD Simulation on Saddle-Fin Device Performance Boosting with Word Line Engineering. In Proceedings of the 6th International Conference on Electronics Technology (ICET), Chengdu, China, 12–15 May 2023. [Google Scholar]
- Gautam, S.K.; Manhas, S.K.; Kumar, A.; Pakala, M. Mitigating the Passing Word Line Induced Soft Errors in Saddle Fin DRAM. IEEE Trans. Electron Devices 2020, 67, 1902–1905. [Google Scholar] [CrossRef]
- Han, J.-W.; Kim, J.; Moon, D.-I.; Lee, J.-S.; Meyyappan, M. Soft Error in Saddle Fin Based DRAM. IEEE Electron Device Lett. 2019, 40, 494–497. [Google Scholar] [CrossRef]
- Yang, C.-M.; Wei, C.-K.; Chang, Y.J.; Wu, T.-C.; Chen, H.-P.; Lai, C.-S. Suppression of Row Hammer Effect by Doping Profile Modification in Saddle-Fin Array Devices for Sub-30-nm DRAM Technology. IEEE Trans. Device Mater. Reliab. 2016, 16, 685–687. [Google Scholar] [CrossRef]
- Jeon, S.; Choi, J.; Jung, H.-C.; Kim, S.; Lee, T. Investigation on the local variation in BCAT process for DRAM technology. In Proceedings of the IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2–6 April 2017; pp. FA-4.1–FA-4.2. [Google Scholar] [CrossRef]
- Suh, M.; Ryu, M.; Ha, J.; Bang, M.; Lee, D.; Kim, J. Design Guideline of Saddle-Fin-Based DRAM for Mitigating Rowhammer Effect. IEEE Trans. Electron Devices 2024, 71, 2417–2422. [Google Scholar] [CrossRef]
- Kim, S.; Kim, D.Y.; Park, J.W.; Kim, S.; Lee, S.; Jang, H.S.; Park, J.; Yoo, S.; Lee, M.J. Passing Word Line-Induced Subthreshold Leakage Reduction Using a Partial Insulator in a Buried Channel Array Transistor. IEEE Trans. Electron Devices 2024, 71, 2976–2982. [Google Scholar] [CrossRef]
Structure Condition | Simulation Condition | |||
---|---|---|---|---|
Symbol | Region | Size [nm] | Region | Voltage [V] |
Gate oxide thickness (side, bottom) | 8/6 | Substrate | −0.6 | |
WL width (AWL, FPWL) | 12 | Bit Line | 1 | |
Active WL depth | 80 | Active Word Line (Von, Voff) | 3/−0.2 | |
Field Pass WL depth | 100 | Field Pass Word Line (Von, Voff) | 3/−0.2 | |
Silicon active width | 23 |
Parameter | Initial Value | Step |
---|---|---|
Material | SiO2 | N/A |
Distance from oxide to AWL (Dbo) | 18 nm | −4 nm |
Thickness of oxide (Tbo) | 30 nm | +4 nm |
Width of oxide (Wbo) | 28 nm | +4 nm |
Structure | |||
---|---|---|---|
Without buried oxide | 1.269 | 0.837 | 0.433 |
With buried oxide (initial value) | 1.173 | 0.762 | 0.411 |
Dbo [nm] | [V] | [V] | PGE ∆[V] |
22 | 1.184 | 0.767 | 0.417 |
18 (initial value) | 1.173 | 0.762 | 0.411 |
14 | 1.160 | 0.755 | 0.405 |
10 | 1.146 | 0.749 | 0.397 |
6 | 1.131 | 0.741 | 0.390 |
Tbo [nm] | [V] | [V] | PGE ∆[V] |
30 (initial value) | 1.173 | 0.762 | 0.411 |
34 | 1.161 | 0.755 | 0.406 |
38 | 1.148 | 0.745 | 0.402 |
42 | 1.135 | 0.737 | 0.398 |
46 | 1.123 | 0.729 | 0.394 |
Wbo [nm] | [V] | [V] | PGE ∆[V] |
28 (initial value) | 1.173 | 0.762 | 0.411 |
32 | 1.156 | 0.751 | 0.405 |
36 | 1.141 | 0.739 | 0.402 |
40 | 1.127 | 0.728 | 0.399 |
44 | 1.113 | 0.717 | 0.396 |
Interface Trap Density [cm−2] | |||
---|---|---|---|
No trap (initial value) | 1.1730 | 0.7620 | 0.4110 |
1 × 1010 | 1.1689 | 0.7577 | 0.4112 |
3 × 1010 | 1.1605 | 0.7492 | 0.4113 |
5 × 1010 | 1.1520 | 0.7407 | 0.4113 |
7 × 1010 | 1.1435 | 0.7320 | 0.4115 |
9 × 1010 | 1.1351 | 0.7234 | 0.4117 |
1 × 1011 | 1.1311 | 0.7193 | 0.4118 |
3 × 1011 | 1.0492 | 0.6339 | 0.4153 |
5 × 1011 | 0.9710 | 0.5494 | 0.4216 |
7 × 1011 | 0.8973 | 0.4653 | 0.4320 |
9 × 1011 | 0.8292 | 0.3908 | 0.4385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.; Kim, Y.-S.; Kwon, M.-W. Mitigating Pass Gate Effect in Buried Channel Array Transistors Through Buried Oxide Integration: Addressing Interference Phenomenon Between Word Lines. Appl. Sci. 2024, 14, 10348. https://doi.org/10.3390/app142210348
Cho Y, Kim Y-S, Kwon M-W. Mitigating Pass Gate Effect in Buried Channel Array Transistors Through Buried Oxide Integration: Addressing Interference Phenomenon Between Word Lines. Applied Sciences. 2024; 14(22):10348. https://doi.org/10.3390/app142210348
Chicago/Turabian StyleCho, Yeongmyeong, Yeon-Seok Kim, and Min-Woo Kwon. 2024. "Mitigating Pass Gate Effect in Buried Channel Array Transistors Through Buried Oxide Integration: Addressing Interference Phenomenon Between Word Lines" Applied Sciences 14, no. 22: 10348. https://doi.org/10.3390/app142210348
APA StyleCho, Y., Kim, Y. -S., & Kwon, M. -W. (2024). Mitigating Pass Gate Effect in Buried Channel Array Transistors Through Buried Oxide Integration: Addressing Interference Phenomenon Between Word Lines. Applied Sciences, 14(22), 10348. https://doi.org/10.3390/app142210348