Physicochemical and Antimicrobial Properties of Lactic Acid-Based Natural Deep Eutectic Solvents as a Function of Water Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. NADES Preparation
2.3. Physicochemical Properties Tests
2.3.1. Fourier-Transform Infrared Spectrometry (FTIR)
2.3.2. Density
2.3.3. pH Analysis
2.3.4. Refractive Index (RI)
2.3.5. Viscosity
2.3.6. Surface Tension
2.3.7. Water Activity
2.4. Antimicrobial Activity Test
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.1.1. FTIR Analysis
3.1.2. Density
3.1.3. pH Analysis
3.1.4. Refractive Index
3.1.5. Viscosity
3.1.6. Surface Tension
3.2. Water Activity
3.3. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clarke, C.J.; Tu, W.C.; Levers, O.; Brohl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef] [PubMed]
- Quadrelli, E.A. 25 years of energy and green chemistry: Saving, storing, distributing and using energy responsibly. Green Chem. 2016, 18, 328–330. [Google Scholar] [CrossRef]
- Benvenutti, L.; Zielinski, A.A.F.; Ferreira, S.R.S. Which is the best food emerging solvent: IL, DES or NADES? Trends Food Sci. Tech. 2019, 90, 133–146. [Google Scholar] [CrossRef]
- Kaoui, S.; Chebli, B.; Basaid, K.; Mir, Y. Deep eutectic solvents as sustainable extraction media for plants and food samples: A review. Sustain. Chem. Pharm. 2013, 31, 100937. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef]
- Passos, H.; Tavares, D.J.; Ferreira, A.M.; Freire, M.G.; Coutinho, J.A. Are aqueous biphasic systems composed of deep eutectic solvents ternary or quaternary systems? ACS Sustain. Chem. Eng. 2016, 4, 2881–2886. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.T.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.J.; Verpoorte, R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 2020, 121, 1232–1285. [Google Scholar] [CrossRef]
- Sitthisak, C.; Nisoa, M.; Chunglok, W.; Prasopthum, A.; Phaisan, S.; Putalun, W.; Kanchanapoom, T.; Juengwatanatrakul, T.; Yusakul, G. Efficient extraction of quassinoids and alkaloids from Eurycoma longifolia Jack roots using natural deep eutectic solvents and microwave-assisted extraction. Microchem. J. 2024, 196, 109676. [Google Scholar] [CrossRef]
- Prakash, S.; Goswami, A.; Patil, R.; Mitra, A.; Kutty, N.N. An eco-friendly approach to extract anthocyanins from rose flowers using natural deep eutectic solvents. Ind. Crops Prod. 2024, 210, 118059. [Google Scholar] [CrossRef]
- Viñas-Ospino, A.; López-Malo, D.; Esteve, M.J.; Frígola, A.; Blesa, J. Improving carotenoid extraction, stability, and antioxidant activity from Citrus sinensis peels using green solvents. Eur. Food Res. Technol. 2023, 249, 2349–2361. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, N.; Li, Q. Ultrasonic assisted extraction of coumarins from Angelicae Pubescentis Radix by betaine-based natural deep eutectic solvents. Arab. J. Chem. 2024, 17, 105542. [Google Scholar] [CrossRef]
- Duru, K.C.; Slesarev, G.P.; Aboushanab, S.A.; Kovalev, I.S.; Zeidler, D.M.; Kovaleva, E.G.; Bhat, R. An eco-friendly approach to enhance the extraction and recovery efficiency of isoflavones from kudzu roots and soy molasses wastes using ultrasound-assisted extraction with natural deep eutectic solvents (NADES). Ind. Crop. Prod. 2022, 182, 114886. [Google Scholar] [CrossRef]
- Petit, E.; Rouger, C.; Griffault, E.; Ferrer, A.; Renouf, E.; Cluzet, S. Optimization of polyphenols extraction from grapevine canes using natural deep eutectic solvents. Biomass Conv. Bioref. 2023. [Google Scholar] [CrossRef]
- Yang, G.Y.; Song, J.N.; Chang, Y.Q.; Wang, L.; Zheng, Y.G.; Zhang, D.; Guo, L. Natural deep eutectic solvents for the extraction of bioactive steroidal saponins from Dioscoreae nipponicae rhizome. Molecules 2021, 26, 2079. [Google Scholar] [CrossRef]
- Kaleta, A.; Frolova, N.; Orlova, A.; Soboleva, A.; Osmolovskaya, N.; Flisyuk, E.; Pozharitskaya, O.; Frolov, A.; Shikov, A. The Effects of selected extraction methods and natural deep eutectic solvents on the recovery of active principles from Aralia elata var. mandshurica (Rupr. & Maxim.) J. Wen: A non-targeted metabolomics approach. Pharmaceuticals 2024, 17, 355. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Zeng, J.; Tang, H.; Cheng, Y.; Tan, J.; Li, T.; Li, X.; He, J.; Zhang, Y. Effect of deep eutectic solvent extraction on Auricularia auricula polysaccharide solubilization and antioxidant potential. Sustain. Chem. Pharm. 2023, 34, 101166. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Savi, L.K.; Carpiné, D.; Waszczynskyj, N.; Ribani, R.H.; Haminiuk, C.W.I. Influence of temperature, water content and type of organic acid on the formation, stability and properties of functional natural deep eutectic solvents. Fluid Phase Equilib. 2019, 488, 40–47. [Google Scholar] [CrossRef]
- Shikov, A.N.; Kosman, V.M.; Flissyuk, E.V.; Smekhova, I.E.; Elameen, A.; Pozharitskaya, O.N. Natural deep eutectic solvents for the extraction of phenyletanes and phenylpropanoids of Rhodiola rosea L. Molecules 2020, 25, 1826. [Google Scholar] [CrossRef] [PubMed]
- Shikov, A.N.; Shikova, V.A.; Whaley, A.O.; Burakova, M.A.; Flisyuk, E.V.; Whaley, A.K.; Terninko, I.I.; Generalova, Y.E.; Gravel, I.V.; Pozharitskaya, O.N. The ability of acid-based natural deep eutectic solvents to co-extract elements from the roots of Glycyrrhiza glabra L. and associated health risks. Molecules 2022, 27, 7690. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharova, L.V.; Daurtseva, A.V.; Flisyuk, E.V.; Shikov, A.N. Efficacy of natural deep eutectic solvents for extraction of hydrophilic and lipophilic compounds from Fucus vesiculosus. Molecules 2021, 26, 4198. [Google Scholar] [CrossRef]
- Viana, M.; Jouannin, P.; Pontier, C.; Chulia, D. About pycnometric density measurements. Talanta 2002, 57, 583–593. [Google Scholar] [CrossRef]
- Semenov, K.N.; Charykov, N.A.; Murin, I.V.; Pukharenko, Y.V. Physico-chemical properties of the C60-tris-malonic derivative water solutions. J. Mol. Liq. 2015, 201, 50–58. [Google Scholar] [CrossRef]
- Ghaedi, H.; Ayoub, M.; Sufian, S.; Shariff, A.M.; Lal, B.; Wilfred, C.D. Density and refractive index measurements of transition-temperature mixture (deep eutectic analogues) based on potassium carbonate with dual hydrogen bond donors for CO2 capture. J. Chem. Thermodyn. 2018, 118, 147–158. [Google Scholar] [CrossRef]
- Fontán, C.F.; Chirife, J.; Boquet, R. Water activity in multicomponent non-electrolyte solutions. Int. J. Food Sci. Technol. 2007, 16, 553–559. [Google Scholar] [CrossRef]
- European Committee for Standardization (CEN); Technical Committee CEN/TC 140; Technical Committee ISO/TC 212. ISO 20776-1-2019. Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices-Part 1. In Broth Micro-Dilution Reference Method for Testing the In Vitro Activity of Antimicrobial Agents Against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases, 2nd ed.; European Committee for Standardization (CEN): Brussels, Belgium, 2019; p. 19. [Google Scholar]
- Determination of the Sensitivity of Microorganisms to Antibacterial Drugs: Guidelines MUK 4.2.1890-04; Federal Center for State Sanitary and Epidemiological Surveillance of the Ministry of Health of Russia: Moscow, Russia, 2004; p. 91. Available online: https://fcgie.ru/download/elektronnaya_baza_metod_dokum/muk_1890-04.pdf (accessed on 1 November 2024).
- Mironov, A.N.; Bunyatyan, N.D.; Vasiljev, A.N.; Verstakova, O.L.; Zhuravleva, M.V.; Lepakhin, V.K.; Korobov, N.V.; Merkulov, V.A.; Orekhov, S.N.; Sakaeva, I.V.; et al. Guideline for Preclinical Studies of Drugs; Grif and K: Moscow, Russia, 2012. [Google Scholar]
- Wikene, K.O.; Rukke, H.V.; Bruzell, E.; Tønnesen, H.H. Investigation of the antimicrobial effect of natural deep eutectic solvents (NADES) as solvents in antimicrobial photodynamic therapy. J. Photoch. Photobio. B 2017, 171, 27–33. [Google Scholar] [CrossRef]
- Gutiérrez, M.C.; Ferrer, M.L.; Mateo, C.R.; del Monte, F. Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir 2009, 25, 5509–5515. [Google Scholar] [CrossRef] [PubMed]
- AlOmar, M.K.; Hayyan, M.; Alsaadi, M.A.; Akib, S.; Hayyan, A.; Hashim, M.A. Glycerol-based deep eutectic solvents: Physical properties. J. Mol. Liq. 2016, 215, 98–103. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, K.; Zhu, Y.; Zhu, R.; Ye, F.; Song, N.; Xu, Y. Physicochemical properties of deep eutectic solvents formed by choline chloride and phenolic compounds at T=(293.15 to 333.15) K: The influence of electronic effect of substitution group. J. Mol. Liq. 2017, 232, 182–187. [Google Scholar] [CrossRef]
- Fumino, K.; Reichert, E.; Wittler, K.; Hempelmann, R.; Ludwig, R. Low-Frequency vibrational modes of protic molten salts and ionic liquids: Detecting and quantifying hydrogen bonds. Angew. Chem. Int. Ed. Engl. 2012, 51, 6236–6240. [Google Scholar] [CrossRef] [PubMed]
- Freitas, D.S.; Rocha, D.; Castro, T.G.; Noro, J.; Castro, V.I.; Teixeira, M.A.; Reis, R.L.; Cavaco-Paulo, A.; Silva, C. Green extraction of cork bioactive compounds using natural deep eutectic mixtures. ACS Sustainable Chem. Eng. 2022, 10, 7974–7989. [Google Scholar] [CrossRef]
- Shafie, M.H.; Yusof, R.; Gan, C.Y. Synthesis of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and characterization of their physicochemical properties. J. Mol. Liq. 2019, 288, 111081. [Google Scholar] [CrossRef]
- Max, J.-J.; Chapados, C. Glucose and fructose hydrates in aqueous solution by IR Spectroscopy. J. Phys. Chem. A 2007, 111, 2679–2689. [Google Scholar] [CrossRef] [PubMed]
- Jurić, T.; Uka, D.; Holló, B.B.; Jović, B.; Kordić, B.; Popovi, B.M. Comprehensive physicochemical evaluation of choline chloride-based natural deep eutectic solvents. J. Mol. Liq. 2021, 343, 116968. [Google Scholar] [CrossRef]
- Mjalli, F.S.; Mousa, H. Viscosity of aqueous ionic liquids analogues as a function of water content and temperature. Chin. J. Chem. Eng. 2017, 25, 1877–1883. [Google Scholar] [CrossRef]
- Alcalde, R.; Gutiérrez, A.; Atilhan, M.; Aparicio, S. An experimental and theoretical investigation of the physicochemical properties on choline chloride–Lactic acid based natural deep eutectic solvent (NADES). J. Mol. Liq. 2019, 290, 110916. [Google Scholar] [CrossRef]
- Ninayan, R.; Levshakova, A.S.; Khairullina, E.M.; Vezo, O.S.; Tumkin, I.I.; Ostendorf, A.; Loginov, L.S.; Manshina, A.A.; Shishov, A.Y. Water-induced changes in choline chloride-carboxylic acid deep eutectic solvents properties. Colloids Surf. A Physicochem. Eng. Asp. 2023, 679, 132543. [Google Scholar] [CrossRef]
- Basaiahgari, A.; Panda, S.; Gardas, R.L. Effect of ethylene, diethylene, and triethylene glycols and glycerol on the physicochemical properties and phase behavior of benzyltrimethyl and benzyltributylammonium chloride based deep eutectic solvents at 283.15–343.15 K. J. Chem. Eng. Data. 2018, 63, 2613–2627. [Google Scholar] [CrossRef]
- Shah, D.; Mjalli, F.S. Effect of water on the thermo-physical properties of Reline: An experimental and molecular simulation based approach. Phys. Chem. Chem. Phys. 2014, 16, 23900–23907. [Google Scholar] [CrossRef] [PubMed]
- Protsenko, V.S.; Kityk, A.A.; Shaiderov, D.A.; Danilov, F.I. Effect of water content on physicochemical properties and electrochemical behavior of ionic liquids containing choline chloride, ethylene glycol and hydrated nickel chloride. J. Mol. Liq. 2015, 212, 716–722. [Google Scholar] [CrossRef]
- Uslu, H.; Bamufleh, H.S. Effect of solvent and pH on the extraction of carbolic acid from aqueous solution by TOMAC. J. Chem. Eng. Data 2016, 61, 1676–1680. [Google Scholar] [CrossRef]
- Farias, F.O.; Passos, H.; Coutinho, J.A.; Mafra, M.R. pH effect on the formation of deep-eutectic-solvent-based aqueous two-phase systems. Ind. Eng. Chem. Res. 2018, 57, 16917–16924. [Google Scholar] [CrossRef]
- Abbott, A.P.; Alabdullah, S.S.; Al-Murshedi, A.Y.; Ryde, K.S. Brønsted acidity in deep eutectic solvents and ionic liquids. Farad. Disc. 2018, 206, 365–377. [Google Scholar] [CrossRef]
- Lemaoui, T.; Abu Hatab, F.; Darwish, A.S.; Attoui, A.; Hammoudi, N.E.H.; Almustafa, G.; Benaicha, M.; Benguerba, Y.; Alnashe, I.M. Molecular-based guide to predict the pH of eutectic solvents: Promoting an efficient design approach for new green solvents. ACS Sustain. Chem. Eng. 2021, 9, 5783–5808. [Google Scholar] [CrossRef]
- Hayyan, A.; Mjalli, F.S.; AlNashef, I.M.; Al-Wahaibi, T.; Al-Wahaibi, Y.M.; Hashim, M.A. Fruit sugar-based deep eutectic solvents and their physical properties. Thermochim. Acta 2012, 541, 70–75. [Google Scholar] [CrossRef]
- Kareem, M.A.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. Phosphonium-based ionic liquids analogues and their physical properties. J. Chem. Eng. Data 2010, 55, 4632–4637. [Google Scholar] [CrossRef]
- Jablonsky, M.; Majova, V.; Strizincova, P.; Sima, J.; Jablonsky, J. Investigation of total phenolic content and antioxidant activities of Spruce bark extracts isolated by deep eutectic solvents. Crystals 2020, 10, 402. [Google Scholar] [CrossRef]
- Tariq, M.; Forte, P.A.; Gomes, M.C.; Lopes, J.C.; Rebelo, L.P.N. Densities and refractive indices of imidazolium-and phosphonium-based ionic liquids: Effect of temperature, alkyl chain length, and anion. J. Chem. Thermodyn. 2009, 41, 790–798. [Google Scholar] [CrossRef]
- Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry, 4th ed.; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Ahmadi, R.; Hemmateenejad, B.; Safavi, A.; Shojaeifard, Z.; Shahsavar, A.; Mohajeri, A.; Heydari Dokoohaki, M.; Zolghadr, A.R. Deep eutectic–water binary solvent associations investigated by vibrational spectroscopy and chemometrics. Phys. Chem. Chem. Phys. 2018, 20, 18463–18473. [Google Scholar] [CrossRef]
- Boumediene, M.; Haddad, B.; Paolone, A.; Assenine, M.A.; Villemin, D.; Rahmouni, M.; Bresson, S. Synthesis, conformational studies, vibrational spectra and thermal properties, of new 1,4-(phenylenebis(methylene) bis(methylimidazolium) ionic liquids. J. Mol. Struct. 2020, 1220, 128731. [Google Scholar] [CrossRef]
- Parsana, N.; Kumar, S.; Aswal, V.K.; Seoud, O.E.; Malek, N.I. Self-healable, injectable, and conductive supramolecular eutectogel for the encapsulation and sustained release of the anticancer drug curcumin. ACS Appl. Eng. Mater. 2022, 1, 380–393. [Google Scholar] [CrossRef]
- Aroso, I.M.; Paiva, A.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents from choline chloride and betaine—Physicochemical properties. J. Mol. Liq. 2017, 241, 654–661. [Google Scholar] [CrossRef]
- Gabriele, F.; Chiarini, M.; Germani, R.; Tiecco, M.; Spreti, N. Effect of water addition on choline chloride/glycol deep eutectic solvents: Characterization of their structural and physicochemical properties. J. Mol. Liq. 2019, 291, 111301. [Google Scholar] [CrossRef]
- Pires, I.V.; Sakurai, Y.C.N.; Ferreira, N.R.; Moreira, S.G.C.; da Cruz Rodrigues, A.M.; da Silva, L.H.M. Elaboration and characterization of natural deep eutectic solvents (NADESs): Application in the extraction of phenolic compounds from pitaya. Molecules 2022, 27, 8310. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, K.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. Prediction of the surface tension of deep eutectic solvents. Fluid Phase Equilib. 2012, 319, 48–54. [Google Scholar] [CrossRef]
- Ponomarev, V.D. Extraction of Medicinal Raw Materials; Meditsina: Moscow, Russia, 1976. [Google Scholar]
- Gómez, A.V.; Tadini, C.C.; Biswas, A.; Buttrum, M.; Kim, S.; Boddu, V.M.; Cheng, H.N. Microwave-assisted extraction of soluble sugars from banana puree with natural deep eutectic solvents (NADES). LWT 2019, 107, 79–88. [Google Scholar] [CrossRef]
- Zhao, B.Y.; Xu, P.; Yang, F.X.; Wu, H.; Zong, M.H.; Lou, W.Y. Biocompatible deep eutectic solvents based on choline chloride: Characterization and application to the extraction of rutin from Sophora japonica. ACS Sustain. Chem. Eng. 2015, 3, 2746–2755. [Google Scholar] [CrossRef]
- Nazir, F.; Nazir, A.; Javed, S.; Abid, H.A. Synthesis and characterization of natural deep eutectic solvents as green extractants for isolation of bioactive flavonoids from Amaranthus viridis. Sustain. Chem. Pharm. 2023, 33, 101058. [Google Scholar] [CrossRef]
- Radošević, K.; Čanak, I.; Panić, M.; Markov, K.; Bubalo, M.C.; Frece, J.; Srček, V.G.; Redovniković, I.R. Antimicrobial, cytotoxic and antioxidative evaluation of natural deep eutectic solvents. Environ. Sci. Pollut. Res. 2018, 25, 14188–14196. [Google Scholar] [CrossRef] [PubMed]
- Stratford, M.; Plumridge, A.; Nebe-von-Caron, G.; Archer, D.B. Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory. Int. J. Food Microbiol. 2009, 136, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Juneidi, I.; Hayyan, M.; Mohd Ali, O. Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish. Environ. Sci. Pollut. Res. Int. 2016, 23, 7648–7659. [Google Scholar] [CrossRef] [PubMed]
- Gurr, M.I. The nutrition of microbes and man. Br. J. Nutr. 1990, 63, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Godswill, A.C. Sugar alcohols: Chemistry, production, health concerns and nutritional importance of mannitol, sorbitol, xylitol, and erythritol. Int. J. Adv. Sci. Res. 2017, 3, 31–66. [Google Scholar]
- Stanojević-Nikolić, S.; Dimić, G.; Mojović, L.; Pejin, J.; Djukić-Vuković, A.; Kocić-Tanackov, S. Antimicrobial activity of lactic acid against pathogen and spoilage microorganisms. J. Food Process. Preserv. 2016, 40, 990–998. [Google Scholar] [CrossRef]
- Ivanović, M.; Grujić, D.; Cerar, J.; Islamčević Razboršek, M.; Topalić-Trivunović, L.; Savić, A.; Kočar, D.; Kolar, M. Extraction of bioactive metabolites from Achillea millefolium L. with choline chloride based natural deep eutectic solvents: A Study of the antioxidant and antimicrobial activity. Antioxidants 2022, 11, 724. [Google Scholar] [CrossRef]
- Mbous, Y.P.; Hayyan, M.; Wong, W.F.; Looi, C.Y.; Hashim, M.A. Unraveling the cytotoxicity and metabolic pathways of binary natural deep eutectic solvent systems. Sci. Rep. 2017, 7, 41257. [Google Scholar] [CrossRef]
- Hayyan, M.; Looi, C.Y.; Hayyan, A.; Wong, W.F.; Hashim, M.A. In vitro and in vivo toxicity profiling of ammonium-based deep eutectic solvents. PLoS ONE 2015, 10, e0117934. [Google Scholar] [CrossRef]
- Rahman, M.S. Food stability determination by macro–micro region concept in the state diagram and by defining a critical temperature. J. Food Eng. 2010, 99, 402–416. [Google Scholar] [CrossRef]
- Santoveña-Estévez, A.; Suárez-González, J.; Vera, M.; González-Martín, C.; Soriano, M.; Fariña, J.B. Effectiveness of antimicrobial preservation of extemporaneous diluted simple syrup vehicles for pediatrics. J. Pediatr. Pharmacol. Therapeut. 2018, 23, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Jin, R.; Verpoorte, R.; Lam, W.; Cheng, Y.C.; Xiao, Y.; Xu, J.; Zhang, L.; Qin, X.-M.; Chen, S. Natural deep eutectic characteristics of honey improve the bioactivity and safety of traditional medicines. J. Ethnopharmacol. 2020, 250, 112460. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, D.; Zaman, S.; Naqvi, S.B.; Sheikh, M.R.; Ali, G. Studies on the antimicrobial activity of honey. Pak. J. Pharm. Sci. 1995, 8, 51–62. [Google Scholar] [PubMed]
NADES Sample | Molar Refraction, Rm (cm3/mol) | Specific Refraction, RD (cm3/g) | Electronic Polarization, E | Polarizability Constant, δ·10−23 (cm3/mol) |
---|---|---|---|---|
NADES1 | 19.4 ± 0.1 | 0.220 ± 0.005 | 2.11 ± 0.05 | 0.770 ± 0.004 |
NADES1 + 10% H2O | 17.5 ± 0.1 | 0.220 ± 0.005 | 2.07 ± 0.03 | 0.693 ± 0.003 |
NADES1 + 20% H2O | 15.5 ± 0.2 | 0.219 ± 0.004 | 2.04 ± 0.04 | 0.614 ± 0.004 |
NADES1 + 30% H2O | 13.4 ± 0.2 | 0.218 ± 0.002 | 2.01 ± 0.03 | 0.533 ± 0.003 |
NADES1 + 40% H2O | 11.3 ± 0.1 | 0.214 ± 0.004 | 1.97 ± 0.04 | 0.450 ± 0.002 |
NADES2 | 28.8 ± 0.4 | 0.187 ± 0.011 | 2.22 ± 0.09 | 1.144 ± 0.013 |
NADES2 + 10% H2O | 27.3 ± 0.2 | 0.196 ± 0.012 | 2.19 ± 0.04 | 1.081 ± 0.012 |
NADES2 + 20% H2O | 24.6 ± 0.1 | 0.199 ± 0.008 | 2.16 ± 0.03 | 0.977 ± 0.008 |
NADES2 + 30% H2O | 21.3 ± 0.3 | 0.197 ± 0.005 | 2.10 ± 0.05 | 0.846 ± 0.004 |
NADES2 + 40% H2O | 18.3 ± 0.3 | 0.198 ± 0.006 | 2.04 ± 0.04 | 0.728 ± 0.007 |
NADES3 | 24.2 ± 0.2 | 0.198 ± 0.006 | 2.14 ± 0.05 | 0.962 ± 0.004 |
NADES3 + 10% H2O | 22.0 ± 0.1 | 0.199 ± 0.007 | 2.10 ± 0.03 | 0.874 ± 0.005 |
NADES3 + 20% H2O | 19.8 ± 0.2 | 0.202 ± 0.003 | 2.06 ± 0.03 | 0.785 ± 0.004 |
NADES3 + 30% H2O | 17.4 ± 0.3 | 0.203 ± 0.004 | 2.04 ± 0.04 | 0.692 ± 0.004 |
NADES3 + 40% H2O | 14.9 ± 0.2 | 0.202 ± 0.003 | 2.00 ± 0.02 | 0.590 ± 0.005 |
Sample | Water Content, % | E. coli | P. aeruginosa | S. aureus | |||
---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | ||
NADES1 | 0 | 7.8 | 15.6 | 3.9 | 7.8 | 0.98 | 1.95 |
10 | 15.6 | 31.3 | 7.8 | 15.6 | 1.95 | 3.9 | |
20 | 15.6 | 31.3 | 15.6 | 31.3 | 1.95 | 3.9 | |
30 | 31.3 | 62.5 | 15.6 | 31.3 | 3.9 | 7.8 | |
40 | 31.3 | 62.5 | 31.3 | 62.5 | 3.9 | 7.8 | |
NADES2 | 0 | 15.6 | 31.3 | 7.8 | 15.6 | 7.8 | 15.6 |
10 | 15.6 | 31.3 | 7.8 | 15.6 | 7.8 | 15.6 | |
20 | 31.3 | 62.5 | 7.8 | 15.6 | 15.6 | 31.3 | |
30 | 31.3 | 62.5 | 15.6 | 31.3 | 15.6 | 31.3 | |
40 | 31.3 | 62.5 | 15.6 | 31.3 | 31.3 | 62.6 | |
NADES3 | 0 | 15.6 | 31.3 | 1.95 | 3.9 | 1.95 | 3.9 |
10 | 15.6 | 31.3 | 3.9 | 7.8 | 1.95 | 3.9 | |
20 | 31.3 | 62.5 | 7.8 | 15.6 | 3.9 | 7.8 | |
30 | 31.3 | 62.5 | 15.6 | 31.3 | 3.9 | 7.8 | |
40 | 31.3 | 62.5 | 31.3 | 62.5 | 7.8 | 15.6 | |
Gentamicin | - | 1 × 10−3 | 2 × 10−3 | 2 × 10−3 | 4 × 10−3 | 0.25 × 10−3 | 0.5 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozharitskaya, O.N.; Obluchinskaya, E.D.; Shikova, V.A.; Flisyuk, E.V.; Vishnyakov, E.V.; Makarevich, E.V.; Shikov, A.N. Physicochemical and Antimicrobial Properties of Lactic Acid-Based Natural Deep Eutectic Solvents as a Function of Water Content. Appl. Sci. 2024, 14, 10409. https://doi.org/10.3390/app142210409
Pozharitskaya ON, Obluchinskaya ED, Shikova VA, Flisyuk EV, Vishnyakov EV, Makarevich EV, Shikov AN. Physicochemical and Antimicrobial Properties of Lactic Acid-Based Natural Deep Eutectic Solvents as a Function of Water Content. Applied Sciences. 2024; 14(22):10409. https://doi.org/10.3390/app142210409
Chicago/Turabian StylePozharitskaya, Olga N., Ekaterina D. Obluchinskaya, Veronika A. Shikova, Elena V. Flisyuk, Evgeny V. Vishnyakov, Elena V. Makarevich, and Alexander N. Shikov. 2024. "Physicochemical and Antimicrobial Properties of Lactic Acid-Based Natural Deep Eutectic Solvents as a Function of Water Content" Applied Sciences 14, no. 22: 10409. https://doi.org/10.3390/app142210409
APA StylePozharitskaya, O. N., Obluchinskaya, E. D., Shikova, V. A., Flisyuk, E. V., Vishnyakov, E. V., Makarevich, E. V., & Shikov, A. N. (2024). Physicochemical and Antimicrobial Properties of Lactic Acid-Based Natural Deep Eutectic Solvents as a Function of Water Content. Applied Sciences, 14(22), 10409. https://doi.org/10.3390/app142210409