Pre-Impact Fall Detection for E-Scooter Riding Using an IMU: Threshold-Based, Supervised, and Unsupervised Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment
2.2. Pre-Impact Fall Detection During E-Scooter Riding
2.2.1. Threshold-Based Model
2.2.2. Supervised Model
2.2.3. Unsupervised Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moreau, H.; Hélie, S.; Moreau, H.; Arsenault, A. Dockless e-Scooter: A Green Solution for Mobility? Comparative Case Study between Dockless e-Scooters, Displaced Transport, and Personal e-Scooters. Sustainability 2020, 12, 1803. [Google Scholar] [CrossRef]
- Ishaq, M.; Ishaq, H.; Nawaz, A. Life Cycle Assessment of Electric Scooters for Mobility Services: A Green Mobility Solution. Int. J. Energy Res. 2022, 46, 20339–20356. [Google Scholar] [CrossRef]
- Møller, T.; Simlett, J.; Mugnier, E. Micromobility: Moving Cities into a Sustainable Future; EY: London, UK, 2020. [Google Scholar]
- Nimble App Genie. E-Scooter Statistics: Key Facts and Figures for 2024. Nimble App Genie. 2024. Available online: https://www.nimbleappgenie.com/blogs/escooter-statistics/ (accessed on 2 August 2024).
- Grand View Research. Scooter Market Size, Share & Trends Analysis Report by Product Type (Normal Scooter, Electric Scooter), by Electric Scooter Type (Conventional Electric Scooter, Swappable Electric Scooter), by Region, and Segment Forecasts, 2023–2030. Grand View Research. 2023. Available online: https://www.grandviewresearch.com/industry-analysis/scooters-market (accessed on 2 August 2024).
- Grand View Research. Electric Scooters Market Size, Share & Trends Analysis Report by Battery (Lithium-Ion, Lead-Acid), by Drive Type (Belt Drive, Hub Motor), by End-Use (Personal, Commercial), by Region, and Segment Forecasts, 2024–2030. Grand View Research. 2023. Available online: https://www.grandviewresearch.com/industry-analysis/electric-scooters-market (accessed on 2 August 2024).
- Korea Road Traffic Authority. Traffic Accident Analysis Report 2023. Korea Road Traffic Authority. 2023. Available online: https://www.koroad.or.kr/main/board/6/87946/board_view.do?&cp=1&listType=list&bdOpenYn=Y&bdNoticeYn=N (accessed on 2 August 2024).
- Namiri, N.K.; Lui, H.; Tangney, T.; Allen, I.E.; Cohen, A.J.; Breyer, B.N. Electric Scooter Injuries and Hospital Admissions in the United States, 2014–2018. JAMA Surg. 2020, 155, 357. [Google Scholar] [CrossRef] [PubMed]
- Posirisuk, P.; Baker, C.; Ghajari, M. Computational prediction of head-ground impact kinematics in e-scooter falls. Accid. Anal. Prev. 2022, 167, 106567. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.; Kim, J.; Koo, B.; Kim, Y. Evaluation of inertial sensor-based pre-impact fall detection algorithms using public dataset. Sensors 2019, 19, 774. [Google Scholar] [CrossRef] [PubMed]
- Sucerquia, A.; López, J.D.; Vargas-Bonilla, J.F. SisFall: A Fall and Movement Dataset. Sensors 2017, 17, 198. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, S.; Koo, B.; Yang, S.; Kim, Y. Threshold-Based Pre-Impact Fall Detection and Its Validation Using the Real-World Elderly Dataset. J. Biomed. Eng. Res. 2023, 44, 384–391. [Google Scholar] [CrossRef]
- Yu, X.; Jang, J.; Xiong, S.; Yu, X. A Large-Scale Open Motion Dataset (KFall) and Benchmark Algorithms for Detecting Pre-Impact Fall of the Elderly Using Wearable Inertial Sensors. Front. Aging Neurosci. 2021, 13, 692865. [Google Scholar] [CrossRef] [PubMed]
- Klenk, J.; Schwickert, L.; Palmerini, L.; Mellone, S.; Bourke, A.; Ihlen, E.A.; Kerse, N.; Hauer, K.; Pijnappels, M.; Synofzik, M.; et al. The FARSEEING real-world fall repository: A large-scale collaborative database to collect and share sensor signals from real-world falls. Eur. Rev. Aging Phys. Act. 2016, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Jung, H.; Koo, B.; Kim, J.; Kim, T.; Nam, Y. Detection of pre-impact falls from heights using an inertial measurement unit sensor. Sensors 2020, 20, 5388. [Google Scholar] [CrossRef] [PubMed]
- Boubezoul, A.; Espié, S.; Larnaudie, B.; Bouaziz, S. A simple fall detection algorithm for powered two wheelers. Control Eng. Pract. 2013, 21, 286–297. [Google Scholar] [CrossRef]
- Yu, X.; Koo, B.; Jang, J.; Kim, Y.; Xiong, S. A Comprehensive Comparison of Accuracy and Practicality of Different Types of Algorithms for Pre-Impact Fall Detection Using Both Young and Old Adults. Meas. J. Int. Meas. Confed. 2022, 201, 111785. [Google Scholar] [CrossRef]
- Koo, B.; Yu, X.; Lee, S.; Yang, S.; Kim, D.; Xiong, S.; Kim, Y. TinyFallNet: A Lightweight Pre-Impact Fall Detection Model. Sensors 2023, 23, 8459. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Iborra, R.; Bernal-Escobedo, L.; Santa, J.; Skarmeta, A. TinyML-Based Fall Detection for Connected Personal Mobility Vehicles. Comput. Mater. Contin. 2022, 71, 3869. [Google Scholar] [CrossRef]
- Yu, X.; Wan, J.; An, G.; Yin, X.; Xiong, S. A Novel Semi-Supervised Model for Pre-Impact Fall Detection with Limited Fall Data. Eng. Appl. Artif. Intell. 2024, 132, 108469. [Google Scholar] [CrossRef]
- Iguchi, Y.; Lee, J.H.; Okamoto, S. Enhancement of Fall Detection Algorithm Using Convolutional Autoencoder and Personalized Threshold. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 10–12 January 2021. [Google Scholar] [CrossRef]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar] [CrossRef]
- An, J.; Cho, S. Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2015, 2, 1–18. [Google Scholar]
- Tamura, T.; Yoshimura, T.; Sekine, M.; Uchida, M.; Tanaka, O. A wearable airbag to prevent fall injuries. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 910–914. [Google Scholar] [CrossRef] [PubMed]
- Attal, F.; Boubezoul, A.; Oukhellou, L.; Cheifetz, N.; Espie, S. The Powered Two Wheelers fall detection using Multivariate CUmulative SUM (MCUSUM) control charts. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014. [Google Scholar]
Code | Description | Speed (km/h) | |
---|---|---|---|
Normal driving | D1 | Straight Driving | 15 |
D2 | Speed-Bump Driving | 15 | |
D3 | Counterclockwise Roundabout Driving (CCW) | 12 | |
D4 | Clockwise Roundabout Driving (CW) | 12 | |
Fall | F1 | Fall | 15 |
Threshold-Based | Supervised | Unsupervised | |||
---|---|---|---|---|---|
Teacher | Student | KD | |||
Accuracy (%) | 98.86 | 86.29 | 99.43 | 92.22 | 98.86 |
Sensitivity (%) | 97.89 | 88.89 | 100 | 88.10 | 100 |
Precision (%) | 100 | 82.76 | 98.95 | 96.10 | 97.93 |
F1 score | 0.99 | 0.56 | 0.99 | 0.92 | 0.99 |
Lead time (ms) | 212.5 | 172.87 | 208.50 | 297.91 | 251.76 |
Memory size (kB) | - | 3785 | 1437 | 85 | 46 |
Threshold-Based | Supervised | Unsupervised | |||
---|---|---|---|---|---|
Teacher | Student | KD | |||
TN | 50 | 50 | 50 | 50 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Koo, B.; Kim, Y. Pre-Impact Fall Detection for E-Scooter Riding Using an IMU: Threshold-Based, Supervised, and Unsupervised Approaches. Appl. Sci. 2024, 14, 10443. https://doi.org/10.3390/app142210443
Lee S, Koo B, Kim Y. Pre-Impact Fall Detection for E-Scooter Riding Using an IMU: Threshold-Based, Supervised, and Unsupervised Approaches. Applied Sciences. 2024; 14(22):10443. https://doi.org/10.3390/app142210443
Chicago/Turabian StyleLee, Seunghee, Bummo Koo, and Youngho Kim. 2024. "Pre-Impact Fall Detection for E-Scooter Riding Using an IMU: Threshold-Based, Supervised, and Unsupervised Approaches" Applied Sciences 14, no. 22: 10443. https://doi.org/10.3390/app142210443
APA StyleLee, S., Koo, B., & Kim, Y. (2024). Pre-Impact Fall Detection for E-Scooter Riding Using an IMU: Threshold-Based, Supervised, and Unsupervised Approaches. Applied Sciences, 14(22), 10443. https://doi.org/10.3390/app142210443