Application of Machine Learning Algorithms in Real-Time Monitoring of Conveyor Belt Damage
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Monitoring System
2.2. The Test Model of the Belt Conveyor
2.3. Damages Identification
- First, three cuts were made, namely, two longitudinal cuts through UW I and UW II, which were 50 mm and 70 mm long, respectively, and one partial longitudinal cut UW III, which was 45 mm long and 1 mm deep.
- Then, two more cuts were added, namely, a longitudinal partial cut through UW IV which was 50 mm long and 1.5 mm deep, and a transverse cut through UP I, which was 10 mm long in the middle of the belt.
3. Results and Discussion
3.1. Registered Monitoring Signal
3.2. The Application of the Machine Learning Algorithms
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moran, S. Process Plant Layout, 2nd ed.; Butterworth-Heinemann: Amsterdam, The Netherlands, 2017; pp. 471–481. [Google Scholar] [CrossRef]
- Borucka, A.; Kozłowski, E.; Parczewski, R.; Antosz, K.; Gil, L.; Pieniak, D. Supply Sequence Modelling Using Hidden Markov Models. Appl. Sci. 2023, 13, 231. [Google Scholar] [CrossRef]
- Subba Rao, D.V. The Belt Conveyor: A Concise Basic Course; CRC Press: London, UK, 2021. [Google Scholar]
- Hou, C.; Qiao, T.; Dong, H.; Wu, H. Coal flow volume detection method for conveyor belt based on TOF vision. Measurement 2024, 229, 114468. [Google Scholar] [CrossRef]
- Ilanković, N.; Živanić, D.; Zuber, N. The Influence of Fatigue Loading on the Durability of the Conveyor Belt. Appl. Sci. 2023, 13, 3277. [Google Scholar] [CrossRef]
- Bortnowski, P.; Kawalec, W.; Król, R.; Ozdoba, M. Types and causes of damage to the conveyor belt—Review, classification and mutual relations. Eng. Fail. Anal. 2022, 140, 106520. [Google Scholar] [CrossRef]
- Rudawska, A.; Madleňák, R.; Madleňáková, L.; Droździel, P. Investigation of the Effect of Operational Factors on Conveyor Belt Mechanical Properties. Appl. Sci. 2020, 10, 4201. [Google Scholar] [CrossRef]
- Zheng, H.; Wu, H.; Yin, H.; Wang, Y.; Shen, X.; Fang, Z.; Ma, D.; Miao, Y.; Zhou, L.; Yan, M.; et al. Novel mining conveyor monitoring system based on quasi-distributed optical fiber accelerometer array and self-supervised learning. Mech. Syst. Signal Process. 2024, 221, 111697. [Google Scholar] [CrossRef]
- Chamorro, J.; Vallejo, L.; Maynard, C.; Guevara, S.; Solorio, J.A.; Soto, N.; Singh, K.V.; Bhate, U.; Ravi Kumar, G.V.V.; Garcia, J.; et al. Health monitoring of a conveyor belt system using machine vision and real-time sensor data. CIRP J. Manuf. Sci. Technol. 2022, 38, 38–50. [Google Scholar] [CrossRef]
- Kozłowski, T.; Wodecki, J.; Zimroz, R.; Błażej, R.; Hardygóra, M. A Diagnostics of Conveyor Belt Splices. Appl. Sci. 2020, 10, 6259. [Google Scholar] [CrossRef]
- Zeng, F.; Zhang, S.; Wang, T.; Wu, Q. Mini-Crack Detection of Conveyor Belt Based on Laser Excited Thermography. Appl. Sci. 2021, 11, 10766. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, C.; Liu, Y.; Meng, D. Research on a sound-based method for belt conveyor longitudinal tear detection. Measurement 2022, 190, 110787. [Google Scholar] [CrossRef]
- Fedorko, G. Application possibilities of virtual reality in failure analysis of conveyor belts. Eng. Fail. Anal. 2021, 128, 105615. [Google Scholar] [CrossRef]
- Kirjanów-Błażej, A.; Jurdziak, L.; Błażej, R.; Rzeszowska, A. Calibration procedure for ultrasonic sensors for precise thickness measurement. Measurement 2023, 214, 112744. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, K.; Cao, Y.; Li, M.; Wang, Q.; Li, D.; Zhang, Y. A new paradigm for intelligent status detection of belt conveyors based on deep learning. Measurement 2023, 213, 112735. [Google Scholar] [CrossRef]
- Andrejiova, M.; Grincova, A.; Marasova, D. Identification with machine learning techniques of a classification model for the degree of damage to rubber-textile conveyor belts with the aim to achieve sustainability. Eng. Fail. Anal. 2021, 127, 105564. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, Y.; Hu, F.; Lai, W.; Gao, L. A deep learning approach for accurate assessment of conveyor belt wear state based on multispectral imaging. Opt. Laser Technol. 2025, 181, 111782. [Google Scholar] [CrossRef]
- Rumin, P.; Kotowicz, J.; Hogg, D.; Zastawna-Rumin, A. Utilization of measurements, machine learning, and analytical calculation for preventing belt flip over on conveyor belts. Measurement 2023, 218, 113157. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, H.; Zhang, Y.; Yu, Y.; Zhou, M. Deep learning-based damage detection of mining conveyor belt. Measurement 2021, 175, 109130. [Google Scholar] [CrossRef]
- Guo, X.; Liu, X.; Gardoni, P.; Glowacz, A.; Królczyk, G.; Incecik, A.; Li, Z. Machine vision based damage detection for conveyor belt safety using Fusion knowledge distillation. Alex. Eng. J. 2023, 71, 161–172. [Google Scholar] [CrossRef]
- Gao, Y.; Qiao, Y.; Zhang, H.; Yang, Y.; Pang, Y.; Wei, H. A contactless measuring speed system of belt conveyor based on machine vision and machine learning. Measurement 2019, 139, 127–133. [Google Scholar] [CrossRef]
- Liu, X.; Pei, D.; Lodewijks, G.; Zhao, Z.; Mei, J. Acoustic signal based fault detection on belt conveyor idlers using machine learning. Adv. Powder Technol. 2020, 31, 2689–2698. [Google Scholar] [CrossRef]
- Pulcini, V.; Modoni, G. Machine learning-based digital twin of a conveyor belt for predictive maintenance. Int. J. Adv. Manuf. Technol. 2024, 133, 6095–6110. [Google Scholar] [CrossRef]
- Soares, J.L.L.; Costa, T.B.; Moura, L.S.; Sousa, W.S.; Mesquita, A.L.A.; Mesquita, A.L.A.; de Figueiredo, J.M.S.; Braga, D.S. Fault diagnosis of belt conveyor idlers based on gradient boosting decision tree. Int. J. Adv. Manuf. Technol. 2024, 132, 3479–3488. [Google Scholar] [CrossRef]
- Bzinkowski, D.; Ryba, T.; Siemiatkowski, Z.; Rucki, M. Real-time monitoring of the rubber belt tension in an industrial conveyor. Rep. Mech. Eng. 2022, 3, 1–10. [Google Scholar] [CrossRef]
- Ryba, T.; Bzinkowski, D.; Rucki, M. Method and Device for Supervision of the Tension and Wear of the Conveyor Rubber Belts. Polish Patent No. P.447569, 22 January 2024. (In Polish). [Google Scholar]
- RP-L-170 Thin Film Pressure Sensor. Available online: https://www.dfrobot.com/product-1843.html (accessed on 22 October 2024).
- Ryba, T.; Rucki, M.; Siemiatkowski, Z.; Bzinkowski, D.; Solecki, M. Design and calibration of the system supervising belt tension and wear in an industrial feeder. Facta Univ. Ser. Mech. Eng. 2022, 20, 167–176. [Google Scholar] [CrossRef]
- Mallioris, P.; Aivazidou, E.; Bechtsis, D. Predictive maintenance in Industry 4.0: A systematic multi-sector mapping. CIRP J. Manuf. Sci. Technol. 2024, 50, 80–103. [Google Scholar] [CrossRef]
- Ryba, T.; Bzinkowski, D.; Siemiatkowski, Z.; Rucki, M.; Stawarz, S.; Caban, J.; Samociuk, W. Monitoring of Rubber Belt Material Performance and Damage. Materials 2024, 17, 765. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Sun, H.; Yue, Q.; Zhou, Q. Study on Visual Detection Method of Multi-scale Damage to Conveyor Belt Under Complex Background. J. Fail. Anal. Prev. 2024, 24, 896–908. [Google Scholar] [CrossRef]
- Le-Nguyen, M.H.; Turgis, F.; Fayemi, P.E.; Bifet, A. Real-time learning for real-time data: Online machine learning for predictive maintenance of railway systems. Transp. Res. Procedia 2023, 72, 171–178. [Google Scholar] [CrossRef]
- Beyerer, J.; Richter, M.; Nagel, M. Pattern Recognition: Introduction, Features, Classifiers and Principles; De Gruyter: Berlin, Germany, 2017. [Google Scholar]
- Fox, W.P.; Sturdivant, R.X. Probability and Statistics for Engineering and the Sciences with Modeling Using R; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Myles, A.J.; Feudale, R.N.; Liu, Y.; Woodyand, N.A.; Brown, S.D. An introduction to decision tree modeling. J. Chemom. 2004, 18, 275–285. [Google Scholar] [CrossRef]
- Nowakowski, M. The ANOVA method as a popular research tool. Stud. Pr. WNEiZ 2019, 55, 67–77. [Google Scholar] [CrossRef]
- Sandurska, E.; Szulc, A. A method of statistical analysis in the field of sports science when assumptions of parametric tests are not violated. J. Educ. Health Sport 2016, 6, 275–287. [Google Scholar] [CrossRef]
- Politi, M.T.; Ferreira, J.C.; Patino, C.M. Nonparametric statistical tests: Friend or foe? J. Bras. Pneumol. 2021, 47, e20210292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chandra, B. Gene Selection Methods for Microarray Data. In Applied Computing in Medicine and Health; Al-Jumeily, D., Hussain, A., Mallucci, C., Oliver, C., Eds.; Morgan Kaufmann: Waltham, MA, USA, 2016; pp. 45–78. [Google Scholar]
- Ręklewski, M. Descriptive Statistics: Theory and Examples; Państwowa Uczelnia Zawodowa we Włocławku: Włocławek, Poland, 2020. (In Polish) [Google Scholar]
- Stumpfegger, J.; Höhlein, K.; Craig, G.; Westermann, R. GPU accelerated scalable parallel coordinates plots. Comput. Graph. 2022, 109, 111–120. [Google Scholar] [CrossRef]
- Chen, Z.; Xiao, Z.; Sun, Y.; Dong, Y.; Zhong, R.Y. Production efficiency analysis based on the RFID-collected manufacturing big data. Manuf. Lett. 2024, 41, 81–90. [Google Scholar] [CrossRef]
- Bujna, M.; Prístavka, M.; Lee, C.K.; Borusiewicz, A.; Samociuk, W.; Beloev, I.; Malaga-Toboła, U. Reducing the Probability of Failure in Manufacturing Equipment by Quantitative FTA Analysis. Agric. Eng. 2023, 27, 255–272. [Google Scholar] [CrossRef]
- Wang, L.; Li, B.; Zhao, X. Multi-objective predictive maintenance scheduling models integrating remaining useful life prediction and maintenance decisions. Comput. Ind. Eng. 2024, 197, 110581. [Google Scholar] [CrossRef]
Repetition | 1 | … | 19 | 20 | 1 | … | 19 | 20 | 1 | … | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
State | Undamaged Belt | 3 Defects on the Belt | 5 Defects on the Belt | ||||||||||
Mean | T1 | 862.6 | … | 831.3 | 765.2 | 1044.6 | … | 959.3 | 1021.4 | 1440.3 | … | 1331.3 | 1419.4 |
T2 | 406.3 | … | 317.5 | 316.2 | 442.1 | … | 385.3 | 430.0 | 668.1 | … | 580.9 | 668.3 | |
T3 | 735.9 | … | 750.3 | 761.4 | 787.6 | … | 751.5 | 773.8 | 856.0 | … | 843.7 | 863.4 | |
Min | T1 | 569 | … | 520 | 487 | 619 | … | 637 | 642 | 828 | … | 799 | 848 |
T2 | 223 | … | 213 | 222 | 221 | … | 193 | 144 | 247 | … | 239 | 209 | |
T3 | 580 | … | 602 | 615 | 660 | … | 625 | 642 | 670 | … | 592 | 671 | |
Max | T1 | 1330 | … | 1298 | 1376 | 2209 | … | 1553 | 1907 | 2987 | … | 2306 | 2505 |
T2 | 845 | … | 519 | 538 | 1301 | … | 1119 | 1087 | 3429 | … | 3052 | 3073 | |
T3 | 1136 | … | 1066 | 1140 | 1030 | … | 1069 | 1081 | 1322 | … | 1337 | 1371 | |
Mean square Xms | T1 | 876.4 | … | 772.9 | 555.9 | 923.7 | … | 932.2 | 835.4 | 1460.1 | … | 1294.9 | 1423.5 |
T2 | 414.7 | … | 293.6 | 226.0 | 411.7 | … | 391.8 | 368.7 | 784.7 | … | 629.3 | 755.8 | |
T3 | 744.8 | … | 690.8 | 543.6 | 679.5 | … | 725.3 | 626.1 | 850.0 | … | 815.0 | 860.8 | |
Std. dev. σ | T1 | 155.0 | … | 160.4 | 182.3 | 253.7 | … | 154.2 | 192.6 | 361.1 | … | 253.5 | 275.3 |
T2 | 82.9 | … | 51.1 | 47.5 | 184.8 | … | 135.5 | 159.8 | 436.5 | … | 310.5 | 377.9 | |
T3 | 114.6 | … | 98.6 | 109.0 | 70.7 | … | 82.3 | 89.8 | 120.5 | … | 125.2 | 137.7 | |
Kurtosis Xk | T1 | −0.5 | … | −0.7 | −0.1 | 4.3 | … | 1.0 | 2.5 | 2.2 | … | 1.9 | 0.3 |
T2 | 3.6 | … | 0.6 | 2.3 | 3.3 | … | 5.4 | 1.5 | 13.2 | … | 18.3 | 10.2 | |
T3 | 0.1 | … | 0.1 | 0.5 | 0.4 | … | 1.0 | 0.8 | 1.2 | … | 0.4 | 0.1 |
Algorithm | Classification Accuracy | Number of Wrongly Classified Cases |
---|---|---|
Fine Tree | 100.00% | 0 |
Medium Tree | 100.00% | 0 |
Coarse Tree | 100.00% | 0 |
Ensemble Bagged Trees | 100.00% | 0 |
Ensemble Subspace KNN | 98.33% | 1 |
Linear Discriminant | 96.67% | 2 |
Coarse Gaussian SVM | 96.67% | 2 |
Coarse KNN | 33.33% | 40 |
Ensemble Boosted Trees | 33.33% | 40 |
Ensemble RUSBoosted trees | 33.33% | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bzinkowski, D.; Rucki, M.; Chalko, L.; Kilikevicius, A.; Matijosius, J.; Cepova, L.; Ryba, T. Application of Machine Learning Algorithms in Real-Time Monitoring of Conveyor Belt Damage. Appl. Sci. 2024, 14, 10464. https://doi.org/10.3390/app142210464
Bzinkowski D, Rucki M, Chalko L, Kilikevicius A, Matijosius J, Cepova L, Ryba T. Application of Machine Learning Algorithms in Real-Time Monitoring of Conveyor Belt Damage. Applied Sciences. 2024; 14(22):10464. https://doi.org/10.3390/app142210464
Chicago/Turabian StyleBzinkowski, Damian, Miroslaw Rucki, Leszek Chalko, Arturas Kilikevicius, Jonas Matijosius, Lenka Cepova, and Tomasz Ryba. 2024. "Application of Machine Learning Algorithms in Real-Time Monitoring of Conveyor Belt Damage" Applied Sciences 14, no. 22: 10464. https://doi.org/10.3390/app142210464
APA StyleBzinkowski, D., Rucki, M., Chalko, L., Kilikevicius, A., Matijosius, J., Cepova, L., & Ryba, T. (2024). Application of Machine Learning Algorithms in Real-Time Monitoring of Conveyor Belt Damage. Applied Sciences, 14(22), 10464. https://doi.org/10.3390/app142210464