A Novel Method for Technology Roadmapping: Nanorobots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.1.1. Significance of Nanorobots
2.1.2. Current Technology Roadmapping Method
2.1.3. Representation of Multi-Dimensional Information
2.1.4. A Multi-Layered ThemeRiver Model
2.2. Methodology
2.2.1. Data Acquisition and Preprocessing
2.2.2. Enhanced Theme Modeling Method by Employing ALBERT and Text Mining Techniques
- Technical feature vector mining based on the ALBERT algorithm: ALBERT builds upon BERT, with improvements aimed at enhancing the model efficiency and scalability. ALBERT achieves this by optimizing the parameter sharing in BERT, reducing the model’s spatial complexity from 108 million to 12 million parameters. This results in an improved training efficiency and improved generalization capabilities. In this paper, ALBERT was employed for mining technical features, aiming to achieve a unified representation of multi-source text data in the same semantic vector space.
- Clustering feature vectors using the K-medoids algorithm: K-medoids is a clustering algorithm based on actual data points, representing an enhancement over the K-means algorithm. It employs actual data points as cluster centroids instead of the mean points, enhancing the robustness and making it capable of handling noisy data and outliers. K-medoids can better adapt to various data distributions.
- YAKE algorithm (Yet Another Keyword Extractor): YAKE is an unsupervised, machine learning, and statistical-method-based algorithm for extracting key phrases. It starts by preprocessing the text, including operations like part-of-speech tagging and stemming. Next, it calculates importance scores for each word using a series of statistical features such as the TF-IDF, text frequency, text length, etc. Finally, unsupervised machine learning techniques are used to rank these scores, with higher-ranking phrases being considered more important. Unlike other phrase-mining algorithms, YAKE does not require specific prior knowledge and can be applied to various types of texts. Moreover, the extracted key phrases exhibit diversity, covering different themes and contexts within the text.
2.2.3. Identifying Evolutionary Trajectories Through a Temporal Theme Association Analysis
2.2.4. Inter-Layer Associations and Visualization of the Technology Roadmap
3. Results and Discussion
3.1. Multi-Source Theme Identification and Association
3.2. Visualization and Comprehensive Analysis of Inter-Layer Association in Multidimensional Technology Roadmapping
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Dong, F.; Kong, D.; Liu, Y. Unfolding the Convergence Process of Scientific Knowledge for the Early Identification of Emerging Technologies. Technol. Forecast. Soc. Chang. 2019, 144, 205–220. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, K.; Di, L.; Wang, P.; Liu, Z.; Zhang, J.; Yue, P.; Song, W.; Zhang, J.; Chen, T.; et al. Traditional Herbal Medicine and Nanomedicine: Converging Disciplines to Improve Therapeutic Efficacy and Human Health. Adv. Drug Deliv. Rev. 2021, 178, 113964. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Tsurumi, J.; Ohno, M.; Fujimoto, R.; Kumagai, S.; Kurosawa, T.; Okamoto, T.; Takeya, J.; Watanabe, S. Efficient Molecular Doping of Polymeric Semiconductors Driven by Anion Exchange. Nature 2019, 572, 634–638. [Google Scholar] [CrossRef]
- Hu, X.; Hu, R.; Wu, X.; Songsun, F.; Zhu, H.; Chen, J.; Chen, H. Self-Assembled Fabrication of Water-Soluble Porphyrin Mediated Supramolecule-Gold Nanoparticle Networks and Their Application in Selective Sensing. Bull. Chem. Soc. Jpn. 2021, 94, 2662–2669. [Google Scholar] [CrossRef]
- Okamoto, T.; Yu, C.P.; Mitsui, C.; Yamagishi, M.; Ishii, H.; Takeya, J. Bent-Shaped p-Type Small Molecule Organic Semiconductors: A Molecular Design Strategy for Next-Generation Practical Applications. Semantic Scholar. Available online: https://www.semanticscholar.org/paper/Bent-Shaped-p-Type-Small-Molecule-Organic-A-Design-Okamoto-Yu/abc0fa8970170d944ab489b598eb0465e3e7943a (accessed on 28 April 2024).
- Chaovalitwongse, W.A.; Yuan, Y.; Zhang, Q.; Liu, J. Special Issue: Innovative Applications of Big Data and Artificial Intelligence. Front. Eng. Manag. 2022, 9, 517–519. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, F.; Liu, Y.; Ran, L. A Deep Learning Framework to Early Identify Emerging Technologies in Large-Scale Outlier Patents: An Empirical Study of CNC Machine Tool. Scientometrics 2021, 126, 969–994. [Google Scholar] [CrossRef]
- Zhou, Y.; Miao, Z.; Urban, F. China’s Leadership in the Hydropower Sector: Identifying Green Windows of Opportunity for Technological Catch-Up. Ind. Corp. Chang. 2021, 29, 1319–1343. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Lema, R.; Urban, F. Comparing the Knowledge Bases of Wind Turbine Firms in Asia and Europe: Patent Trajectories, Networks, and Globalisation. Sci. Public Policy 2016, 43, 476–491. [Google Scholar] [CrossRef]
- Lenaghan, S.C.; Wang, Y.; Xi, N.; Fukuda, T.; Tarn, T.; Hamel, W.R.; Zhang, M. Grand Challenges in Bioengineered Nanorobotics for Cancer Therapy. IEEE Trans. Biomed. Eng. 2013, 60, 667–673. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, F.; Liu, Y.; Li, Z.; Du, J.; Zhang, L. Forecasting Emerging Technologies Using Data Augmentation and Deep Learning. Scientometrics 2020, 123, 1–29. [Google Scholar] [CrossRef]
- Cavalcanti, A.; Shirinzadeh, B.; Freitas, R.A.; Hogg, T. Nanorobot Architecture for Medical Target Identification. Nanotechnology 2007, 19, 015103. [Google Scholar] [CrossRef]
- Phaal, R.; Farrukh, C.J.P.; Probert, D.R. Characterisation of Technology Roadmaps: Purpose and Format. In Proceedings of the PICMET ’01. Portland International Conference on Management of Engineering and Technology, Portland, OR, USA, 29 July–2 August 2001; Volume 1, p. 192. [Google Scholar]
- Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. Albert: A Lite Bert for Self-Supervised Learning of Language Representations. arXiv 2020, arXiv:1909.11942. [Google Scholar]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Xu, G.; Zhou, Y.; Ji, H. How Can Government Promote Technology Diffusion in Manufacturing Paradigm Shift? Evidence From China. IEEE Trans. Eng. Manag. 2023, 70, 1547–1559. [Google Scholar] [CrossRef]
- Feynman, R.P. There’s Plenty of Room at the Bottom. Eng. Sci. 1959, 23, 63–76. [Google Scholar]
- Qiu, F.; Nelson, B.J. Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications. Engineering 2015, 1, 021–026. [Google Scholar] [CrossRef]
- Sugimoto, Y.; Pou, P.; Abe, M.; Jelinek, P.; Pérez, R.; Morita, S.; Custance, Ó. Chemical Identification of Individual Surface Atoms by Atomic Force Microscopy. Nature 2007, 446, 64–67. [Google Scholar] [CrossRef]
- Bacilla, A.C.C.; Okada, Y.; Yoshimoto, S.; Islyaikin, M.K.; Koifman, O.I.; Kobayashi, N. Triangular Expanded Hemiporphyrazines: Electronic Structures and Nanoscale Characterization of Their Adlayers on Au(111). Bull. Chem. Soc. Jpn. 2021, 94, 34–43. [Google Scholar] [CrossRef]
- Kratish, Y.; Nakamuro, T.; Liu, Y.; Li, J.; Tomotsuka, I.; Harano, K.; Nakamura, E.; Marks, T.J. Synthesis and Characterization of a Well-Defined Carbon Nanohorn- Supported Molybdenum Dioxo Catalyst by SMART-EM Imaging. Surface Structure at the Atomic Level. Bull. Chem. Soc. Jpn. 2021, 94, 427–432. [Google Scholar] [CrossRef]
- Kimura, K.; Miwa, K.; Imada, H.; Imai-Imada, M.; Kawahara, S.; Takeya, J.; Kawai, M.; Galperin, M.; Kim, Y. Selective Triplet Exciton Formation in a Single Molecule. Nature 2019, 570, 210–213. [Google Scholar] [CrossRef]
- Miyamoto, M.; Hada, M. IR Intensities of CO Molecules Adsorbed on Atop and Low-Coordinate Sites of Pd Nanoparticles: Analysis Using Natural Perturbation Orbitals. Bull. Chem. Soc. Jpn. 2021, 94, 1789–1793. [Google Scholar] [CrossRef]
- Imada, H.; Imai-Imada, M.; Miwa, K.; Yamane, H.; Iwasa, T.; Tanaka, Y.; Toriumi, N.; Kimura, K.; Yokoshi, N.; Muranaka, A.; et al. Single-Molecule Laser Nanospectroscopy with Micro–Electron Volt Energy Resolution. Science 2021, 373, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, Y.; Pou, P.; Custance, O.; Jelinek, P.; Abe, M.; Perez, R.; Morita, S. Complex Patterning by Vertical Interchange Atom Manipulation Using Atomic Force Microscopy. Science 2008, 322, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y. Manipulation of Precise Molecular Arrangements and Their Photochemical Properties on Inorganic Surfaces via Multiple Electrostatic Interactions. Bull. Chem. Soc. Jpn. 2021, 94, 2886–2897. [Google Scholar] [CrossRef]
- Ishihara, H. Optical Manipulation of Nanoscale Materials by Linear and Nonlinear Resonant Optical Responses. Adv. Phys. X 2021, 6, 1885991. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Klausen, L.H.; Skaanvik, S.A.; Wang, D.; Chen, J.; Dong, M. The Rational Design and Development of Microalgae-Based Biohybrid Materials for Biomedical Applications. Engineering 2023, 24, 102–113. [Google Scholar] [CrossRef]
- Miao, J.; Zhang, T.; Li, G.; Guo, D.; Sun, S.; Tan, R.; Shi, J.; Shen, Y. Flagellar/Ciliary Intrinsic Driven Mechanism Inspired All-in-One Tubular Robotic Actuator. Engineering 2023, 23, 170–180. [Google Scholar] [CrossRef]
- Lin, H.; Zeng, S.; Liu, H.; Li, C. Bridging the Gaps or Fecklessness? A Moderated Mediating Examination of Intermediaries’ Effects on Corporate Innovation. Technovation 2020, 94, 102018. [Google Scholar] [CrossRef]
- Xu, L.; Gong, D.; Chen, K.; Cai, J.; Zhang, W. Acoustic Levitation Applied for Reducing Undesired Lateral Drift of Magnetic Helical Microrobots. J. Appl. Phys. 2020, 128, 184703. [Google Scholar] [CrossRef]
- Qin, N.; Qian, Z.-G.; Zhou, C.; Xia, X.-X.; Tao, T.H. 3D Electron-Beam Writing at Sub-15 Nm Resolution Using Spider Silk as a Resist. Nat. Commun. 2021, 12, 5133. [Google Scholar] [CrossRef]
- Terzopoulou, A.; Wang, X.; Chen, X.; Palacios-Corella, M.; Pujante, C.; Herrero-Martín, J.; Qin, X.; Sort, J.; deMello, A.J.; Nelson, B.J.; et al. Biodegradable Metal–Organic Framework-Based Microrobots (MOFBOTs). Adv. Healthc. Mater. 2020, 9, 2001031. [Google Scholar] [CrossRef] [PubMed]
- Kishore, C.; Bhadra, P. Targeting Brain Cancer Cells by Nanorobot, a Promising Nanovehicle: New Challenges and Future Perspectives. CNS Neurol. Disord. Drug Targets 2021, 20, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Gao, C.; Wang, D.; He, Q. Bubble-Propelled Janus Gallium/Zinc Micromotors for the Active Treatment of Bacterial Infections. Angew. Chem. Int. Ed. Engl. 2021, 60, 8750–8754. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Toebes, B.J.; Plachokova, A.S.; Liu, Q.; Deng, D.; Jansen, J.A.; Yang, F.; Wilson, D.A. Self-Propelled PLGA Micromotor with Chemotactic Response to Inflammation. Adv. Healthc. Mater. 2020, 9, e1901710. [Google Scholar] [CrossRef]
- Schwarz, L.; Karnaushenko, D.D.; Hebenstreit, F.; Naumann, R.; Schmidt, O.G.; Medina-Sánchez, M. A Rotating Spiral Micromotor for Noninvasive Zygote Transfer. Adv. Sci. 2020, 7, 2000843. [Google Scholar] [CrossRef]
- Ahmed, S.; Wang, W.; Bai, L.; Gentekos, D.T.; Hoyos, M.; Mallouk, T.E. Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors. ACS Nano 2016, 10, 4763–4769. [Google Scholar] [CrossRef]
- Magdanz, V.; Khalil, I.S.M.; Simmchen, J.; Furtado, G.P.; Mohanty, S.; Gebauer, J.; Xu, H.; Klingner, A.; Aziz, A.; Medina-Sánchez, M.; et al. IRONSperm: Sperm-Templated Soft Magnetic Microrobots. Sci. Adv. 2020, 6, eaba5855. [Google Scholar] [CrossRef]
- Jeong, Y.; Yoon, B. Development of Patent Roadmap Based on Technology Roadmap by Analyzing Patterns of Patent Development. Technovation 2015, 39, 37–52. [Google Scholar] [CrossRef]
- Zhou, Y.; Phaal, R.; Farrukh, C.; Probert, D. Innovation and Strategy Roadmap: Theory, Methods, and Applications. Available online: https://book.sciencereading.cn/shop/book/Booksimple/show.do?id=BBFD70F1D4764BAB6E053020B0A0A1375000 (accessed on 11 March 2024).
- Phaal, R.; Farrukh, C.J.P.; Probert, D.R. Technology Roadmapping—A Planning Framework for Evolution and Revolution. Technol. Forecast. Soc. Chang. 2004, 71, 5–26. [Google Scholar] [CrossRef]
- An, Y.; Lee, S.; Park, Y. Development of an Integrated Product-service Roadmap with QFD: A Case Study on Mobile Communications. Int. J. Serv. Ind. Manag. 2008, 19, 621–638. [Google Scholar] [CrossRef]
- Lee, J.H.; Phaal, R.; Lee, C. An Empirical Analysis of the Determinants of Technology Roadmap Utilization. RD Manag. 2011, 41, 485–508. [Google Scholar] [CrossRef]
- Yuan, B.J.C.; Yi Liu, C.; Chuan Ho, S.; Kao, H.K.M.; Chang Shen, P. An Application of a Foresight-based New Product Planning Model: A Case Study of a Large Household Appliance Manufacturer in China. Chin. Manag. Stud. 2012, 6, 444–461. [Google Scholar] [CrossRef]
- Lee, S.; Yoon, B.; Lee, C.; Park, J. Business Planning Based on Technological Capabilities: Patent Analysis for Technology-Driven Roadmapping. Technol. Forecast. Soc. Chang. 2009, 76, 769–786. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Zhou, Y.; Wen, Z. Emerging Nanogenerator Technology in China: A Review and Forecast Using Integrating Bibliometrics, Patent Analysis and Technology Roadmapping Methods. Nano Energy 2018, 46, 322–330. [Google Scholar] [CrossRef]
- Chen, X.; Tang, X.; Xu, X. Digital Technology-Driven Smart Society Governance Mechanism and Practice Exploration. Front. Eng. Manag. 2023, 10, 319–338. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, R.; Liu, Y.; He, C. Unveiling Evolutionary Path of Nanogenerator Technology: A Novel Method Based on Sentence-BERT. Nanomaterials 2022, 12, 2018. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Zhou, Y.; Liu, Y. Advanced Technology Evolution Pathways of Nanogenerators: A Novel Framework Based on Multi-Source Data and Knowledge Graph. Nanomaterials 2022, 12, 838. [Google Scholar] [CrossRef]
- Kerr, C.; Phaal, R.; Thams, K. Customising and Deploying Roadmapping in an Organisational Setting: The LEGO Group Experience. J. Eng. Technol. Manag. 2019, 52, 48–60. [Google Scholar] [CrossRef]
- Geum, Y.; Lee, H.; Lee, Y.; Park, Y. Development of Data-Driven Technology Roadmap Considering Dependency: An ARM-Based Technology Roadmapping. Technol. Forecast. Soc. Chang. 2015, 91, 264–279. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Xue, L. An Approach to Identify Emerging Technologies Using Machine Learning: A Case Study of Robotics. J. China Soc. Sci. Tech. Inf. 2018, 37, 939–955. [Google Scholar] [CrossRef]
- Kim, J.; Park, Y.; Lee, Y. A Visual Scanning of Potential Disruptive Signals for Technology Roadmapping: Investigating Keyword Cluster, Intensity, and Relationship in Futuristic Data. Technol. Anal. Strateg. Manag. 2016, 28, 1225–1246. [Google Scholar] [CrossRef]
- Lahoti, G.; Porter, A.L.; Zhang, C.; Youtie, J.; Wang, B. Tech Mining to Validate and Refine a Technology Roadmap. World Pat. Inf. 2018, 55, 1–18. [Google Scholar] [CrossRef]
- Shibata, N.; Kajikawa, Y.; Sakata, I. Extracting the Commercialization Gap between Science and Technology—Case Study of a Solar Cell. Technol. Forecast. Soc. Chang. 2010, 77, 1147–1155. [Google Scholar] [CrossRef]
- Mejia, C.; Kajikawa, Y. Emerging Topics in Energy Storage Based on a Large-Scale Analysis of Academic Articles and Patents. Appl. Energy 2020, 263, 114625. [Google Scholar] [CrossRef]
- Kong, D.; Zhou, Y.; Liu, Y.; Xue, L. Using the Data Mining Method to Assess the Innovation Gap: A Case of Industrial Robotics in a Catching-up Country. Technol. Forecast. Soc. Chang. 2017, 119, 80–97. [Google Scholar] [CrossRef]
- Havre, S.; Hetzler, E.; Whitney, P.; Nowell, L. ThemeRiver: Visualizing Thematic Changes in Large Document Collections. IEEE Trans. Visual. Comput. Graph. 2002, 8, 9–20. [Google Scholar] [CrossRef]
- Mazza, R. Introduction to Information Visualization. SpringerLink. Available online: https://link.springer.com/book/10.1007/978-1-84800-219-7 (accessed on 11 March 2024).
- Cui, W.; Liu, S.; Tan, L.; Shi, C.; Song, Y.; Gao, Z.; Qu, H.; Tong, X. TextFlow: Towards Better Understanding of Evolving Topics in Text. IEEE Trans. Visual. Comput. Graph. 2011, 17, 2412–2421. [Google Scholar] [CrossRef]
- Malik, S.; Smith, A.; Hawes, T.; Papadatos, P.; Li, J.; Dunne, C.; Shneiderman, B. TopicFlow: Visualizing Topic Alignment of Twitter Data over Time. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013), Niagara, ON, Canada, 25–28 August 2013; pp. 720–726. [Google Scholar]
- Wu, Y.; Liu, S.; Yan, K.; Liu, M.; Wu, F. OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media. IEEE Trans. Visual. Comput. Graph. 2014, 20, 1763–1772. [Google Scholar] [CrossRef]
- Wongsuphasawat, K.; Guerra Gómez, J.A.; Plaisant, C.; Wang, T.D.; Taieb-Maimon, M.; Shneiderman, B. LifeFlow: Visualizing an Overview of Event Sequences. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; pp. 1747–1756. [Google Scholar] [CrossRef]
- Dou, W.; Yu, L.; Wang, X.; Ma, Z.; Ribarsky, W. HierarchicalTopics: Visually Exploring Large Text Collections Using Topic Hierarchies. IEEE Trans. Visual. Comput. Graph. 2013, 19, 2002–2011. [Google Scholar] [CrossRef]
- Liu, D.; Xu, P.; Ren, L. TPFlow: Progressive Partition and Multidimensional Pattern Extraction for Large-Scale Spatio-Temporal Data Analysis. IEEE Trans. Visual. Comput. Graph. 2019, 25, 1–11. [Google Scholar] [CrossRef]
- Imrich, P.; Mueller, K.; Imre, D.; Zelenyuk, A.; Zhu, W. Interactive Poster: 3D ThemeRiver. In Proceedings of the IEEE Symposium on Information Visualization, Seattle, WA, USA, 19–24 October 2003. [Google Scholar]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval. Available online: https://www.cambridge.org/highereducation/books/introduction-to-information-retrieval/669D108D20F556C5C30957D63B5AB65C (accessed on 11 March 2024).
- Xiang, Q.; Zhang, Y.; Zhong, J.; Wang, G.; Long, L. Construction of Digital 3D Magic-Cube Organization Structure for Innovation-Driven Manufacturing. Front. Eng. Manag. 2023, 10, 373–390. [Google Scholar] [CrossRef]
- Bi, S.; Jin, W.; Han, X.; Metts, J.; Ostrosky, A.D.; Lehotsky, J.; He, Z.; Jiang, C.; Asare-Yeboah, K. Flexible Pressure Visualization Equipment for Human-Computer Interaction. Mater. Today Sustain. 2023, 21, 100318. [Google Scholar] [CrossRef]
- Han, S.; Li, S.; Fu, X.; Han, S.; Chen, H.; Zhang, L.; Wang, J.; Sun, G. Research Progress of Flexible Piezoresistive Sensors Based on Polymer Porous Materials. ACS Sens. 2024, 9, 3848–3863. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, L.; Peng, H.; Guo, L.; Wang, L. DNA-Programmed Biomolecular Spatial Pattern Recognition. Chemosensors 2023, 11, 362. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, J.; Lu, B.; Seeman, N.C.; Sha, R.; Noinaj, N.; Mao, C. Engineering DNA Crystals toward Studying DNA–Guest Molecule Interactions. J. Am. Chem. Soc. 2023, 145, 4853–4859. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, A.K.; Damasevicius, R. Guest Editorial Artificial Intelligence-Driven Biomedical Imaging Systems for Precision Diagnostic Applications. IEEE J. Biomed. Health Inform. 2024, 28, 1158–1160. [Google Scholar] [CrossRef]
- Puspaduhita, A.; Surawijaya, A.; Anshori, I. Optical Characteristic Measurement of Micro/Nanodroplet on Embedded Grating Nanostructure for Digital Microfluidic’s Electrode. IEEE Access 2023, 11, 137115–137124. [Google Scholar] [CrossRef]
- Huang, J.; Wang, L.; Wang, B.; Liu, G.; Wang, W.; Ge, C. Research Progress on Modulation of Electromagnetic Performance through Micro-Nanostructure Design. J. Inorg. Mater. 2024, 39, 853. [Google Scholar] [CrossRef]
- Zheng, H.; Li, H.; Li, M.; Zhai, T.; Xie, X.; Li, C.; Jing, X.; Liang, C.; Li, Q.; Zuo, X.; et al. A Membrane Tension-Responsive Mechanosensitive DNA Nanomachine. Angew. Chem. Int. Ed. 2023, 62, e202305896. [Google Scholar] [CrossRef]
- Yang, H.; Kang, S.; Du, Z.; Dong, Y.; Fang, B.; Zhan, J.; Xu, W.; Zhu, L. Magnetic DNAzyme Nanomachine Fluorescent Biosensor for Pb(II) Detection. Sens. Actuators B Chem. 2024, 405, 135332. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, K.; Yuan, X.; Zhou, Y.; Yang, L.; Geng, H. Evolution and Control of Air Pollution in China over the Past 75 Years: An Analytical Framework Based on the Multi-Dimensional Urbanization. Atmosphere 2024, 15, 1093. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, Z.; Zhou, Z.; Zhai, X.; Gong, S.; Shen, C.; Zhang, T.; Zhao, D.; Cao, D. The Impact of Air Pollution Controls on Health and Health Inequity Among Middle-Aged and Older Chinese: Evidence from Panel Data. Int. J. Public Health 2024, 69, 1606956. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, N.; Xie, C.; Xiao, X. Self-trigger and On-demand Drug Delivery System Based on TiO 2 Nanotube Arrays and Its Drug Release Behaviour. Micro Nano Lett. 2023, 18, e12173. [Google Scholar] [CrossRef]
- Tian, M.; Zhu, Y.; Guan, W.; Lu, C. Quantitative Measurement of Drug Release Dynamics within Targeted Organelles Using Förster Resonance Energy Transfer. Small 2023, 19, 2206866. [Google Scholar] [CrossRef]
- Tarhini, A.; Tehrani-Bagha, A.R. Advances in Preparation Methods and Conductivity Properties of Graphene-Based Polymer Composites. Appl. Compos. Mater. 2023, 30, 1737–1762. [Google Scholar] [CrossRef]
- Li, C.; Li, W.; Wu, G.; Chen, G.; Wu, J.; Zhang, N.; Gan, Y.; Zhang, D.; Chen, C. Design and Study of Composite Film Preparation Platform. Crystals 2024, 14, 389. [Google Scholar] [CrossRef]
- Su, T.; Zhao, F.; Ying, Y.; Li, W.; Li, J.; Zheng, J.; Qiao, L.; Che, S.; Yu, J. Self-Monitoring Theranostic Nanomaterials: Emerging Visual Agents for Real-Time Monitoring of Tumor Treatment Processes. Small Methods 2024, 8, 2301470. [Google Scholar] [CrossRef]
- Kojder, K.; Jarosz, K.; Andrzejewska, A.; Kubiak, K.; Poncyljusz, W.; Sołek-Pastuszka, J. Noninvasive Monitoring in a Patient with SAH Diagnosis Treated with Cerebrolysin—Case Report and Review of the Literature. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 6843–6849. [Google Scholar] [CrossRef]
Time Slice Serial Number | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Time segment | 2003–2006 | 2007–2010 | 2011–2013 | 2014–2016 | 2017–2019 | 2020–2022 |
Number | Theme | Phrases |
---|---|---|
1 | Flexible pressure sensor technology | Flexible tactile sensor; CNT-based nanodevice; flexible strain; mechanical properties; nano-CW NR matrix |
2 | DNA molecule recognition | Molecular machine; DNA polymers; DNA computing device; DNA nanotechnology development; DNA surface |
3 | Precision imaging | Scanning electron microscopy; transmission microscopy; scanning electron; universal testing machine; electron system |
4 | Nanostructure design | Nanostructure; nanotechnology; performance DT RF model; nanoscale engineering; nanomaterial assembly |
5 | Nanomachine processing | Nano-surface treatment; nanoprocessing technology; molecular self-assembly; nano-sensors; nanodevices |
6 | Pollution control | Pollution monitoring; risk assessment; bioaccumulation of nanomaterials; ecological impact; nanoparticle regulation |
7 | Drug release | Gradual release; drug release pattern; nanomaterial release properties; microenvironment responsiveness; enhanced permeability and retention (EPR) effect |
8 | Composite preparation | Dispersion performance; synthesis process; nano-coating materials; interface shear; interface modification |
9 | Treatment monitoring | Nanodrug monitoring; nanoparticle tracking; dynamic observation; nanodrug distribution investigation; real-time monitoring |
Number | Theme | Paper Number (2023–2024) |
---|---|---|
1 | Flexible pressure sensor technology | 1823 [71,72] |
2 | DNA molecule recognition | 1726 [73,74] |
3 | Precision imaging | 20,953 [75] |
4 | Nanostructure design | 2437 [76,77] |
5 | Nanomachine processing | 2433 [78,79] |
6 | Pollution control | 13,715 [80,81] |
7 | Drug release | 27,363 [82,83] |
8 | Composite preparation | 13,784 [84,85] |
9 | Treatment monitoring | 35,885 [86,87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Li, Z.; Zhang, R.; Liu, Y.; He, Y. A Novel Method for Technology Roadmapping: Nanorobots. Appl. Sci. 2024, 14, 10606. https://doi.org/10.3390/app142210606
Liu H, Li Z, Zhang R, Liu Y, He Y. A Novel Method for Technology Roadmapping: Nanorobots. Applied Sciences. 2024; 14(22):10606. https://doi.org/10.3390/app142210606
Chicago/Turabian StyleLiu, Huailan, Zhen Li, Rui Zhang, Yufei Liu, and Yixin He. 2024. "A Novel Method for Technology Roadmapping: Nanorobots" Applied Sciences 14, no. 22: 10606. https://doi.org/10.3390/app142210606
APA StyleLiu, H., Li, Z., Zhang, R., Liu, Y., & He, Y. (2024). A Novel Method for Technology Roadmapping: Nanorobots. Applied Sciences, 14(22), 10606. https://doi.org/10.3390/app142210606