Recent Advances for the Development of Sustainable Transport and Their Importance in Case of Global Crises: A Literature Review
Abstract
:1. Introduction
- What solutions related to sustainable transport development are described in the latest scientific research?
- What is the significance of recent advances in transport solutions in the context of potential global crises?
2. Theoretical Framework: Definitions and Classifications
2.1. Classification of Modern Solutions in Transport
2.2. Characteristics of Global Crises
2.3. Assumptions of Sustainable Transport Development
- Allows the basic access and development needs of individuals and societies to be met safely, and with equity within and across generations (social dimension).
- Is affordable, operates fairly and efficiently, and fosters sustainable regional development (economic dimension).
- Limits emissions and waste and minimizes the use of land and production of noise.
3. Materials and Methods
4. Results from the Literature Review
4.1. Recent Advances for the Development of Sustainable Transport
4.2. Importance of Recent Solutions in Transport in Case of Global Crises
4.2.1. Technologies in Vehicle Drives
- BEV, FCEV, and PHEV
- Biofuel-Powered Vehicles
- Solar-Powered Vehicles
- Compressed Air Vehicles
4.2.2. Intelligent Transport Systems (ITS)
- Autonomous Vehicles (AV)
- Traffic Management Systems (TMS)
- Emissions’ Monitoring and Control Systems
- Real-Time Mobility Management Systems
- Smart Lighting Systems
4.2.3. Innovations in Logistics and Supplies
- Drone-Based Logistics
- Autonomous Trucks
- The Use of Blockchain
- Last-Mile Logistics Solutions
4.2.4. Integration and Management of Transport Systems
- Mobility as a Service (MaaS)
- Intelligent Fleet Management Systems
- Real-Time Public Transport Management
- Smart Parking Systems (SPS)
4.2.5. Development of Transport Infrastructure
- Infrastructure for Electric Vehicles
- Smart Roads
- Green Infrastructure in Transport
4.2.6. Modern Solutions in Vehicles
- Connected Car
- Vehicle-to-Everything (V2X)
- Advanced Driver Assistance Systems (ADAS)
- Modular Vehicles
4.2.7. Advances in Public Transport
- Autonomous Buses
- On-Demand Public Transport
- In-Vehicle Air Quality Monitoring Systems
- Contactless Payment Systems
- Smart Stops and Stations
5. Conclusions
5.1. General Summary
5.2. Practical and Theoretical Contributions
5.3. Limitations and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zinovieva, E. Megatrends in world politics and technological development. In Megatrends of World Politics, 1st ed.; Lebedeva, K.M., Kuznetsov, A.D., Eds.; Routledge: New York, NY, USA, 2023; pp. 38–46. [Google Scholar]
- Imamov, M.; Semenikhina, N. The impact of the digital revolution on the global economy. Linguist. Cult. Rev. 2021, 5, 968–987. [Google Scholar] [CrossRef]
- Briggs, A. Climate Change, Conflict, and Contagion: Emerging Threats to Global Public Health. In Healthcare Access—New Threats, New Approaches, 1st ed.; Önal, E.A., Ed.; IntechOpen: Istanbul, Türkiye, 2023; pp. 1–31. [Google Scholar]
- Bouncken, R.B.; Kraus, S.; de Lucas Ancillo, A. Management in times of crises: Reflections on characteristics, avoiding pitfalls, and pathways out. Rev. Manag. Sci. 2022, 16, 2035–2046. [Google Scholar] [CrossRef]
- Lass-Hennemann, J.; Sopp, M.R.; Ruf, N.; Equit, M.; Schäfer, S.K.; Wirth, B.E.; Michael, T. Generation climate crisis, COVID-19, and Russia–Ukraine-War: Global crises and mental health in adolescents. Eur. Child Adolesc. Psychiatry 2024, 33, 2203–2216. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, D.; Hassan, M.K.; Kumar, S.; Paul, J. Trade credit research before and after the global financial crisis of 2008—A bibliometric overview. Res. Int. Bus. Financ. 2020, 54, 101287. [Google Scholar] [CrossRef]
- Schilling, T.; Rauscher, S.; Menzel, C.; Reichenauer, S.; Müller-Schilling, M.; Schmid, S.; Selgrad, M. Migrants and Refugees in Europe: Challenges, Experiences and Contributions. Visc. Med. 2017, 33, 295–300. [Google Scholar] [CrossRef]
- Ikram, M.; Sayagh, Y. The Consequences of COVID-19 Disruption on Sustainable Economy in the Top 30 High-Tech Innovative Countries. Glob. J. Flex. Syst. Manag. 2023, 24, 247–269. [Google Scholar] [CrossRef]
- Das, B.C.; Hasan, F.; Sutradhar, S.R.; Shafique, S. Ukraine–Russia Conflict and Stock Markets Reactions in Europe. Glob. J. Flex. Syst. Manag. 2023, 24, 395–407. [Google Scholar] [CrossRef]
- Fukutomi, M. Oil or geopolitical issues?: Quantitative rethinking of political instability in the Middle East and North Africa. GeoJournal 2024, 89, 55. [Google Scholar] [CrossRef]
- Singh, V. Addressing the Global Environmental Crisis: A Call for Collective Action. Int. J. Adv. Res. Interdiscip. Sci. Endeav. 2024, 1, 108–109. [Google Scholar]
- Gabric, A.J. The Climate Change Crisis: A Review of Its Causes and Possible Responses. Atmosphere 2023, 14, 1081. [Google Scholar] [CrossRef]
- Sobczuk, S. Transport in the tourist services sector in Poland during the crisis caused by the COVID-19 pandemic. WUT J. Transp. Eng. 2024, 138, 5–18. [Google Scholar] [CrossRef]
- Kukulski, J.; Lewczuk, K.; Góra, I.; Wasiak, M. Methodological aspects of risk mapping in multimode transport systems. Eksploat. Niezawodn.—Maint. Reliab. 2023, 25, 19. [Google Scholar] [CrossRef]
- Świderski, A.; Sobczuk, S.; Borucka, A. Analysis of changes in transport processes in Warsaw public transport in the face of disruptions in 2019-2022. Sci. J. Silesian Univ. Technology. Ser. Transp. 2024, 124, 229–241. [Google Scholar] [CrossRef]
- Mouratidis, K.; Peters, S.; van Wee, B. Transportation technologies, sharing economy, and teleactivities: Implications for built environment and travel. Transp. Res. Trans. Environ. 2021, 92, 102716. [Google Scholar] [CrossRef]
- Aderibigbe, O.O.; Gumbo, T.; Fadare, S.O. Transportation Technologies and Transportation Management. In Emerging Technologies for Smart Cities, 1st ed.; Aderibigbe, O.O., Gumbo, T., Fadare, S.O., Eds.; Springer: Cham, Switzerland, 2024; pp. 131–169. [Google Scholar]
- Kazi, S.; Bagasrawala, M.; Shaikh, F.; Sayyed, A. Smart E-Ticketing System for Public Transport Bus. In Proceedings of the 2018 International Conference on Smart City and Emerging Technology (ICSCET), Mumbai, India, 5 May 2018; pp. 1–7. [Google Scholar]
- Hilmani, A.; Maizate, A.; Hassouni, L. Designing and Managing a Smart Parking System Using Wireless Sensor Networks. J. Sens. Actuator Netw. 2018, 7, 24. [Google Scholar] [CrossRef]
- Roblek, V.; Meško, M.; Podbregar, I. Impact of Car Sharing on Urban Sustainability. Sustainability 2021, 13, 905. [Google Scholar] [CrossRef]
- Al-Turjman, F.; Salama, R.; Altrjman, C. Overview of IoT Solutions for Sustainable Transportation Systems. J. Artif. Intell. Internet Things 2023, 2, 1–18. [Google Scholar]
- Oladimeji, D.; Gupta, K.; Kose, N.A.; Gundogan, K.; Ge, L.; Liang, F. Smart Transportation: An Overview of Technologies and Applications. Sensors 2023, 23, 3880. [Google Scholar] [CrossRef]
- Wei, K.; Zhang, T.; Zhang, C. Research on resilience model of UAV swarm based on complex network dynamics. Eksploat. I Niezawodn.—Maint. Reliab. 2023, 25, 173125. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, R.; Akram, S.V.; Gehlot, A.; Buddhi, D.; Malik, P.K.; Arya, R. Highway 4.0: Digitalization of highways for vulnerable road safety development with intelligent IoT sensors and machine learning. Saf. Sci. 2021, 143, 105407. [Google Scholar] [CrossRef]
- Lv, Z.; Shang, W. Impacts of intelligent transportation systems on energy conservation and emission reduction of transport systems: A comprehensive review. Green Technol. Sustain. 2023, 1, 100002. [Google Scholar] [CrossRef]
- Sang, T.; Zhu, K.; Shen, J.; Yang, L. An uncertain programming model for fixed charge transportation problem with item sampling rates. Eksploat. Niezawodn.—Maint. Reliab. 2024, 2022, 192165. [Google Scholar] [CrossRef]
- Russo, F.; Rindone, C. Methods for Risk Reduction: Training and Exercises to Pursue the Planned Evacuation. Sustainability 2024, 16, 1474. [Google Scholar] [CrossRef]
- Belingardi, G.; Scattina, A. Battery Pack and Underbody: Integration in the Structure Design for Battery Electric Vehicles—Challenges and Solutions. Vehicles 2023, 5, 498–514. [Google Scholar] [CrossRef]
- Szumska, E.; Jurecki, R.; Pawełczyk, M. Evaluation of the use of hybrid electric powertrain system in urban traffic conditions. Eksploat. Niezawodn.—Maint. Reliab. 2020, 22, 154–160. [Google Scholar] [CrossRef]
- Rana, M.M.; Hossain, K. Connected and Autonomous Vehicles and Infrastructures: A Literature Review. Int. J. Pavement Res. Technol. 2023, 16, 264–284. [Google Scholar] [CrossRef]
- Mohamed, S.a.E.; AlShalfan, K.A. Intelligent Traffic Management System Based on the Internet of Vehicles (IoV). J. Adv. Transp. 2021, 2021, 4037533. [Google Scholar]
- Izdebski, M.; Michalska, A.; Jacyna-Gołda, I.; Gherman, L. Prediction of cyber-attacks in air transport using neural networks. Eksploat. Niezawodn.—Maint. Reliab. 2024, 26, 191476. [Google Scholar] [CrossRef]
- Jwo, D.-J.; Biswal, A.; Mir, I.A. Artificial Neural Networks for Navigation Systems: A Review of Recent Research. Appl. Sci. 2023, 13, 4475. [Google Scholar] [CrossRef]
- Tonec Vrančić, M.; Škorput, P.; Vidović, K. An Advanced Driver Information System at Critical Points in the Multimodal Traffic Network. Sustainability 2024, 16, 372. [Google Scholar] [CrossRef]
- Li, F.; Kunze, O. A Comparative Review of Air Drones (UAVs) and Delivery Bots (SUGVs) for Automated Last Mile Home Delivery. Logistics 2023, 7, 21. [Google Scholar] [CrossRef]
- Kassai, E.T.; Azmat, M.; Kummer, S. Scope of Using Autonomous Trucks and Lorries for Parcel Deliveries in Urban Settings. Logistics 2020, 4, 17. [Google Scholar] [CrossRef]
- Hensher, D.A. What might COVID-19 mean for mobility as a service (MaaS)? Transp. Rev. 2020, 40, 551–556. [Google Scholar] [CrossRef]
- Salih, T.A.; Younis, N.K. Designing an Intelligent Real-Time Public Transportation Monitoring System Based on IoT. Open Access Libr. J. 2021, 8, 1–14. [Google Scholar] [CrossRef]
- Niewczas, A.; Mórawski, Ł.; Rymarz, J.; Dębicka, E.; Hołyszko, P. Operational risk assessment model for city buses. Eksploat. Niezawodn.—Maint. Reliab. 2023, 25, 14. [Google Scholar] [CrossRef]
- Channamallu, S.S.; Kermanshachi, S.; Rosenberger, J.M.; Pamidimukkala, A. A review of smart parking systems. Transp. Res. Procedia 2023, 73, 289–296. [Google Scholar] [CrossRef]
- Verma, S.; Zeadally, S.; Kaur, S.; Sharma, A.K. Intelligent and Secure Clustering in Wireless Sensor Network (WSN)-Based Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2022, 23, 13473–13481. [Google Scholar] [CrossRef]
- Huang, J. Integrated layout and transfer of urban rail transit hubs. J. Archit. Res. Dev. 2022, 6, 48–54. [Google Scholar] [CrossRef]
- Jeong, B.-G.; Youn, T.-Y.; Jho, N.-S.; Shin, S.U. Blockchain-Based Data Sharing and Trading Model for the Connected Car. Sensors 2020, 20, 3141. [Google Scholar] [CrossRef]
- Nidamanuri, J.; Nibhanupudi, C.; Assfalg, R.; Venkataraman, H. A Progressive Review: Emerging Technologies for ADAS Driven solutions. IEEE Trans. Intell. Veh. 2021, 7, 326–341. [Google Scholar] [CrossRef]
- Iclodean, C.; Cordos, N.; Varga, B.O. Autonomous Shuttle Bus for Public Transportation: A Review. Energies 2020, 13, 2917. [Google Scholar] [CrossRef]
- Vij, A.; Ryan, S.; Sampson, S.; Harris, S. Consumer preferences for on-demand transport in Australia. Transp. Res. Part A Policy Pract. 2020, 132, 823–839. [Google Scholar] [CrossRef]
- Liyanage, S.; Dia, H.; Duncan, G.; Abduljabbar, R. Evaluation of the Impacts of On-Demand Bus Services Using Traffic Simulation. Sustainability 2024, 16, 8477. [Google Scholar] [CrossRef]
- Murawski, J.; Szczepański, E.; Jacyna-Gołda, I.; Izdebski, M.; Jankowska-Karpa, D. Intelligent mobility: A model for assessing the safety of children traveling to school on a school bus with the use of intelligent bus stops. Eksploat. Niezawodn.—Maint. Reliab. 2022, 24, 695–706. [Google Scholar] [CrossRef]
- Bubelíny, O.; Kubina, M.; Varmus, M. Railway Stations as Part of Mobility in the Smart City Concept. Transp. Res. Procedia 2021, 53, 274–281. [Google Scholar] [CrossRef]
- Farazmand, A. Global Encyclopedia of Public Administration, Public Policy, and Governance; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Rodríguez, H.; Quarantelli, E.L.; Dynes, R.R. Handbook of Disaster Research; Springer Science and Business Media LLC.: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- UNSCEB. Global Crisies. Available online: https://unsceb.org/topics/global-crises (accessed on 1 September 2024).
- Quarantelli, E.L. Emergencies, Disaster and Catastrophes are Different Phenomena; Disaster Research Center, University of Delaware: Newark, DE, USA, 2000. [Google Scholar]
- Borca, B.; Putz, L.-M.; Hofbauer, F. Crises and Their Effects on Freight Transport Modes: A Literature Review and Research Framework. Sustainability 2021, 13, 5740. [Google Scholar] [CrossRef]
- Gundel, S. Towards a New Typology of Crises. J. Contingencies Crisis Manag. 2005, 13, 106–115. [Google Scholar] [CrossRef]
- Sawada, Y.; Bhattacharyay, R.; Kotera, T. Aggregate Impacts of Natural and Man-made Disasters: A quantitative comparison. Int. J. Dev. Confl. 2019, 9, 43–73. [Google Scholar]
- International Crisis Group. 10 Conflicts to Watch in 2024. Available online: https://www.crisisgroup.org/global/10-conflicts-watch-2024 (accessed on 1 September 2024).
- Börzel, T.A. European Integration and the War in Ukraine: Just Another Crisis? JCMS J. Common Mark. Stud. 2023, 61, 14–30. [Google Scholar] [CrossRef]
- Aliber, R.Z.; Zoega, G. The 2008 Global Financial Crisis in Retrospect Causes of the Crisis and National Regulatory Responses, 1st ed.; Palgrave Macmillan: London, UK, 2019. [Google Scholar]
- Climate. Climate Change: Global Temperature. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on 6 September 2024).
- Clarke, B.; Otto, F.; Stuart-Smith, R.; Harrington, L. Extreme weather impacts of climate change: An attribution perspective. Environ. Res. Clim. 2022, 1, 12001. [Google Scholar] [CrossRef]
- Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar] [PubMed]
- Ciotti, M.; Ciccozzi, M.; Terrinoni, A.; Jiang, W.C.; Wang, C.B.; Bernardini, S. The COVID-19 pandemic. Crit. Rev. Clin. Lab. Sci. 2020, 57, 365–388. [Google Scholar] [CrossRef] [PubMed]
- Almustafa, M. Reframing refugee crisis: A “European crisis of migration” or a “crisis of protection”? Environ. Plann. C Politics Space 2022, 40, 1064–1082. [Google Scholar] [CrossRef]
- Emerald Expert Briefings. Israel–Iran–US War Risk Is Being Over-Hyped But Exists. Available online: https://www.emerald.com/insight/content/doi/10.1108/oxan-es286376/full/html (accessed on 7 September 2024).
- Chita, E.; Drimili, E.; Gareiou, Z.; Milioti, C.; Vranna, A.; Poulopoulos, S.; Zervas, E. Impact of Economic Crisis on Passenger Transportation–Case of Travelling to the Greek Mainland from Crete. Promet-Traffic Transp. 2020, 32, 347–360. [Google Scholar] [CrossRef]
- Moschovou, T.; Tyrinopoulos, Y. Exploring the Effects of Economic Crisis in Road Transport: The Case of Greece. Int. J. Transp. Sci. Technol. 2018, 7, 264–273. [Google Scholar] [CrossRef]
- Efthymiou, D.; Antoniou, C. Understanding the Effects of Economic Crisis on Public Transport Users’ Satisfaction and Demand. Transp. Policy 2017, 53, 89–97. [Google Scholar] [CrossRef]
- Cascajo, R.; Diaz Olvera, L.; Monzon, A.; Plat, D.; Ray, J.-B. Impacts of the Economic Crisis on Household Transport Expenditure and Public Transport Policy: Evidence from the Spanish Case. Transp. Policy 2018, 65, 40–50. [Google Scholar] [CrossRef]
- Jones, B.; Elliott, R.J.R.; Nguyen-Tien, V. The EV Revolution: The Road Ahead for Critical Raw Materials Demand. Appl. Energy 2020, 280, 115072. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, S. What Drives Customers Crazy for Green Vehicles? A Fuzzy AHP Approach. Environ. Dev. Sustain. 2023, 26, 23283–23302. [Google Scholar] [CrossRef]
- Kreps, B.H. The Rising Costs of Fossil-Fuel Extraction: An Energy Crisis That Will Not Go Away. Am. J. Econ. Sociol. 2020, 79, 695–717. [Google Scholar] [CrossRef]
- Monterde-i-Bort, H.; Sucha, M.; Risser, R.; Kochetova, T. Mobility Patterns and Mode Choice Preferences during the COVID-19 Situation. Sustainability 2022, 14, 768. [Google Scholar] [CrossRef]
- Pujawan, I.N.; Bah, A.U. Supply Chains under COVID-19 Disruptions: Literature Review and Research Agenda. Supply Chain Forum Int. J. 2021, 23, 81–95. [Google Scholar] [CrossRef]
- Krajňák, T. The Effects of Terrorism on Tourism Demand: A Systematic Review. Tour. Econ. 2020, 27, 135481662093890. [Google Scholar] [CrossRef]
- Zemlin, A.; Kholikov, F.; Mamedova, I.; Zemlina, O. Problems of Ensuring Security of Transport Infrastructure Facilities. IOP Conf. Ser. Earth Environ. Sci. 2021, 666, 042002. [Google Scholar] [CrossRef]
- Ozkazanc, S. Transportation Experiences of Syrian Refugees under the Clampdown of Poverty, Social Exclusion and Spatial Segregation. Cities 2021, 112, 103117. [Google Scholar] [CrossRef]
- Krykavskyy, Y.; Chornopyska, N.; Dovhun, O.; Hayvanovych, N.; Leonova, S. Defining Supply Chain Resilience during Wartime. East.-Eur. J. Enterp. Technol. 2023, 13, 32–46. [Google Scholar]
- Sopamena, C.A. The Global Impact of Russian Aerospace. Din. Glob. J. Ilmu Hub. Int. 2022, 7, 161–177. [Google Scholar]
- Goldstein, M.A.; Lynch, A.H.; Li, X.; Norchi, C.H. Sanctions or Sea Ice: Costs of Closing the Northern Sea Route. Financ. Res. Lett. 2022, 50, 103257. [Google Scholar] [CrossRef]
- Akbarli, A.; Öndes, E.B.; Gezer, D.; Acikel, B. The Impact of the Ukraine-Russia Conflict on the Aviation Sector: February–May 2022. J. Aviat. 2022, 6, 346–354. [Google Scholar] [CrossRef]
- Minakova, S.; Volobuyeva, T.; Minakov, V.; Minakova, O.; Tselikova, A. Peculiarities of truck transportation in wartime conditions. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2023, 6, 184–191. [Google Scholar] [CrossRef]
- Ehnts, D.; Paetz, M. COVID-19 and its economic consequences for the Euro Area. Eurasian Econ Rev. 2021, 11, 227–249. [Google Scholar] [CrossRef]
- Otker-Robe, I.; Podpiera, A.M. The Social Impact of Financial Crises: Evidence from the Global Financial Crisis; World Bank Policy Research Working Paper No. 6703; The World Bank Development Economics Office of the Senior Vice President and Chief Economist: Washington, DC, USA, 2013. [Google Scholar]
- OECD. Guidelinestowards Environmentally Sustainable Transport, 1st ed.; OECD Publications: Paris, France, 2002. [Google Scholar]
- Gilbert, R. Centre for Sustainable Transportation (CST). Sustain. Transp. Monit. 2005, 11, 1–9. [Google Scholar]
- Huizenga, C.; Litman, T.; Bongardt, D.; Schmid, D. Sustainable Transport Evaluation: Developing Practical Tools for Evaluation in the Context of the CSD Process. In Proceedings of the United Nations: Department of Economic and Social Affairs. Commission on Sustainable Development Nineteenth Session, Eschborn, Germany, 2–13 May 2011; pp. 4–6. [Google Scholar]
- Dalkmann, H.; Huizenga, C. Advancing Sustainable Low-Carbon Transport Through the GEF. Global Environment Facility—The Scientific and Technical Advisory Panel, 1 November 2010, 5–15. Available online: https://www.thegef.org/publications/advancing-sustainable-low-carbon-transport-through-gef (accessed on 30 October 2024).
- De la Torre, R.; Corlu, C.G.; Faulin, J.; Onggo, B.S.; Juan, A.A. Simulation, Optimization, and Machine Learning in Sustainable Transportation Systems: Models and Applications. Sustainability 2021, 13, 1551. [Google Scholar] [CrossRef]
- Mikušová, N.; Fedorko, G.; Molnár, V.; Hlatká, M.; Kampf, R.; Sirková, V. Possibility of a Solution of the Sustainability of Transport and Mobility with the Application of Discrete Computer Simulation—A Case Study. Sustainability 2021, 13, 9816. [Google Scholar] [CrossRef]
- Abdulrazzaq, L.R.; Abdulkareem, M.N.; Yazid, M.R.M.; Borhan, M.N.; Mahdi, M.S. Traffic congestion: Shift from private car to public transportation. Civ. Eng. J. 2020, 6, 1547–1554. [Google Scholar] [CrossRef]
- Konečný, V.; Gnap, J.; Settey, T.; Petro, F.; Skrúcaný, T.; Figlus, T. Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe. Energies 2020, 13, 3869. [Google Scholar] [CrossRef]
- Martins, L.S.; Guimarães, L.F.; Botelho Junior, A.B.; Tenório, J.A.S.; Espinosa, D.C.R. Electric car battery: An overview on global demand, recycling and future approaches towards sustainability. J. Environ. Manag. 2021, 295, 113091. [Google Scholar] [CrossRef]
- Du, H.; Kommalapati, R.R. Environmental sustainability of public transportation fleet replacement with electric buses in Houston, a megacity in the USA. Int. J. Sustain. Eng. 2021, 14, 1858–1870. [Google Scholar] [CrossRef]
- Stančin, H.; Mikulčić, H.; Wang, X.; Duić, N. A review on alternative fuels in future energy system. Renew. Sustain. Energy Rev. 2020, 128, 109927. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, B2700. [Google Scholar] [CrossRef]
- Prisma Statement. PRISMA 2020 Statement. Available online: https://www.prisma-statement.org/ (accessed on 9 September 2024).
- Hartner, A.M.; Li, X.; Gaythorpe, K. COVID-19 related disruption and resilience in immunisation activities in LMICs: A rapid review. BMJ Open 2024, 14, E076607. [Google Scholar] [CrossRef] [PubMed]
- Ulloque-Badaracco, J.R.; Copaja-Corzo, C.; Hernandez-Bustamante, E.A.; Cabrera-Guzmán, J.C.; Huayta-Cortez, M.A.; Carballo-Tello, X.L.; Seminario-Amez, R.A.; Hueda-Zavaleta, M.; Benites-Zapata, V.A. Fungal infections in patients after recovering from COVID-19: A systematic review. Ther. Adv. Infect. Dis. 2024, 11, 20499361241242963. [Google Scholar] [CrossRef] [PubMed]
- Lupariello, F.; Sussetto, L.; Di Trani, S.; Di Vella, G. Artificial Intelligence and Child Abuse and Neglect: A Systematic Review. Children 2023, 10, 1659. [Google Scholar] [CrossRef] [PubMed]
- Lyu, W.; Hu, Y.; Liu, J.; Chen, K.; Liu, P.; Deng, J.; Zhang, S. Impact of battery electric vehicle usage on air quality in three Chinese first-tier cities. Sci. Rep. 2024, 14, 21. [Google Scholar] [CrossRef] [PubMed]
- Pramuanjaroenkij, A.; Kakaç, S. The fuel cell electric vehicles: The highlight review. Int. J. Hydrogen Energy 2023, 48, 9401–9425. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y. Energy Management Strategy for Plug-In Hybrid Electric Vehicles Based on Driving Condition Recognition: A Review. Electronics 2022, 11, 342. [Google Scholar] [CrossRef]
- Mamala, J.; Graba, M.; Bieniek, A.; Prażnowski, K.; Augustynowicz, A.; Śmieja, M. Study of energy consumption of a hybrid vehicle in real-world conditions. Eksploat. Niezawodn.—Maint. Reliab. 2021, 23, 636–645. [Google Scholar] [CrossRef]
- Wassiliadis, N.; Schneider, J.; Frank, A.; Wildfeuer, L.; Lin, X.; Jossen, A.; Lienkamp, M. Review of fast charging strategies for lithium-ion battery systems and their applicability for battery electric vehicles. J. Energy Storage 2021, 44, 103306. [Google Scholar] [CrossRef]
- Hemsen, J.; Nowak, N.; Eckstein, L. Production cost modeling for permanent magnet synchronous machines for electric vehicles. Automot. Engine Technol. 2023, 8, 109–126. [Google Scholar] [CrossRef]
- Alanazi, F. Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation. Appl. Sci. 2023, 13, 6016. [Google Scholar] [CrossRef]
- Al-Ghaili, A.M.; Kasim, H.; Aris, H.; Al-Hada, N.M. Can electric vehicles be an alternative for traditional fossil-fuel cars with the help of renewable energy sources towards energy sustainability achievement? Energy Inform. 2022, 5, 60. [Google Scholar] [CrossRef]
- Carfora, A.; Pansini, R.V.; Scandurra, G. Energy dependence, renewable energy generation and import demand: Are EU countries resilient? Renew. Energy 2022, 195, 1262–1274. [Google Scholar] [CrossRef]
- Caulfield, B.; Furszyfer, D.; Stefaniec, A.; Foley, A. Measuring the equity impacts of government subsidies for electric vehicles. Energy 2022, 248, 123588. [Google Scholar] [CrossRef]
- Piancastelli, L.; Toccaceli, M.; Sali, M.; Leon-Cardenas, C.; Pezzuti, E. Electric Hybrid Powertrain for Armored Vehicles. Energies 2023, 16, 2605. [Google Scholar] [CrossRef]
- Cavelius, P.; Engelhart-Straub, S.; Mehlmer, N.; Lercher, J.; Awad, D.; Brück, T. The potential of biofuels from first to fourth generation. PLoS Biol. 2023, 21, E3002063. [Google Scholar] [CrossRef]
- Nazari, M.T.; Mazutti, J.; Basso, L.G.; Colla, L.M.; Brandli, L. Biofuels and their connections with the sustainable development goals: A bibliometric and systematic review. Env. Dev Sustain 2021, 23, 11139–11156. [Google Scholar] [CrossRef]
- Ogunkunle, O.; Ahmed, N.A. Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario. Sustainability 2021, 13, 5465. [Google Scholar] [CrossRef]
- Kumbhar, V.; Pandey, A.K.; Varghese, A.; Wanjari, S. Application of biodiesel for 12-cylinder, supercharged military combat vehicle. Int. J. Ambient Energy 2020, 43, 1959–1965. [Google Scholar] [CrossRef]
- Gallagher, J.; Clarke, S. Energy efficient route prediction for solar powered vehicles. Green Energy Intell. Transp. 2023, 2, 100063. [Google Scholar] [CrossRef]
- Mobarak, M.H.; Kleiman, R.N.; Bauman, J. Solar-Charged Electric Vehicles: A Comprehensive Analysis of Grid, Driver, and Environmental Benefits. IEEE Trans. Transp. Electrif. 2021, 7, 579–603. [Google Scholar] [CrossRef]
- Wolniak, R.; Skotnicka-Zasadzień, B. Development of Photovoltaic Energy in EU Countries as an Alternative to Fossil Fuels. Energies 2022, 15, 662. [Google Scholar] [CrossRef]
- Booysen, M.J.; Abraham, C.J.; Rix, A.J.; Ndibatya, I. Walking on sunshine: Pairing electric vehicles with solar energy for sustainable informal public transport in Uganda. Energy Res. Soc. Sci. 2022, 85, 102403. [Google Scholar] [CrossRef]
- Ivanov, R.; Staneva, G.; Kadikyanov, G.; Minkovska, I.; Dimitrov, Y. A Comparation between Some Properties of Electric and Compressed Air Cars. In Proceedings of the 2024 9th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria, 27–29 June 2024; pp. 1–5. [Google Scholar]
- Korbut, M.; Szpica, D. A review of compressed air engine in the vehicle propulsion system. Acta Mech. Autom. 2021, 15, 215–226. [Google Scholar] [CrossRef]
- Dindorf, R.; Takosoglu, J.; Wos, P. Review of Compressed Air Receiver Tanks for Improved Energy Efficiency of Various Pneumatic Systems. Energies 2023, 16, 4153. [Google Scholar] [CrossRef]
- Tian, H.F.; Zhang, H.; Zhao, Y.; Yu, L.; Zhang, X.; Xu, Y.; Chen, H. Advancements in Compressed Air Engine Technology and Power System Integration: A Comprehensive Review. Energy Rev. 2023, 2, 100050. [Google Scholar] [CrossRef]
- Parekh, D.; Poddar, N.; Rajpurkar, A.; Chahal, M.; Kumar, N.; Joshi, G.P.; Cho, W. A Review on Autonomous Vehicles: Progress, Methods and Challenges. Electronics 2022, 11, 2162. [Google Scholar] [CrossRef]
- Ercan, T.; Onat, N.C.; Keya, N.; Tatari, O.; Eluru, N.; Kucukvar, M. Autonomous Electric Vehicles Can Reduce Carbon Emissions and Air Pollution in Cities. Transp. Res. D Transp. Environ. 2022, 112, 103472. [Google Scholar] [CrossRef]
- Rafael, S.; Correia, L.P.; Lopes, D.; Bandeira, J.; Coelho, M.C.; Andrade, M.; Borrego, C.; Miranda, A.I. Autonomous vehicles opportunities for cities air quality. Sci. Total Environ. 2020, 712, 136546. [Google Scholar] [CrossRef]
- Abosuliman, S.S.; Almagrabi, A.O. Routing and scheduling of intelligent autonomous vehicles in industrial logistics systems. Soft Comput. 2021, 25, 11975–11988. [Google Scholar] [CrossRef]
- Liu, T.; Liao, Q.; Gan, L.; Ma, F.; Cheng, J.; Xie, X.; Wang, Z.; Chen, Y.; Zhu, Y.; Zhang, S.; et al. The Role of the Hercules Autonomous Vehicle during the COVID-19 Pandemic: An Autonomous Logistic Vehicle for Contactless Goods Transportation. IEEE Robot. Autom. Mag. 2021, 28, 48–58. [Google Scholar] [CrossRef]
- Wiseman, Y. Intelligent Transportation Systems along with the COVID-19 Pandemic Will Significantly Change the Transportation Market. Open Transp. J. 2021, 15. [Google Scholar] [CrossRef]
- Biswas, S.; Turan, H.; Elsawah, S.; Richmond, M.; Cao, T. The future of military medical evacuation: Literature analysis focused on the potential adoption of emerging technologies and advanced decision-analysis techniques. J. Def. Model. Simul. 2023. [Google Scholar] [CrossRef]
- Rashid, A.B.; Kausik, A.K.; Hassan, A.; Bappy, M.H. Artificial Intelligence in the Military: An Overview of the Capabilities, Applications, and Challenges. Int. J. Intell. Syst. 2023, 2023, 1–31. [Google Scholar] [CrossRef]
- Humayun, M.; Afsar, S.; Almufareh, M.F.; Jhanjhi, N.Z.; Al Suwailem, M. Smart Traffic Management System for Metropolitan Cities of Kingdom Using Cutting Edge Technologies. J. Adv. Transp. 2022, 2022, 4687319. [Google Scholar] [CrossRef]
- Rocha Filho, G.P.; Meneguette, R.I.; Torres Neto, J.R.; Valejo, A.; Weigang, L.; Ueyama, J.; Pessin, G.; Villas, L.A. Enhancing Intelligence in Traffic Management Systems to Aid in Vehicle Traffic Congestion Problems in Smart Cities. Ad Hoc Networks 2020, 107, 102265. [Google Scholar] [CrossRef]
- Khan, N.A.; Jhanjhi, N.Z.; Brohi, S.N.; Usmani, R.S.A.; Nayyar, A. Smart Traffic Monitoring System Using Unmanned Aerial Vehicles (UAVs). Comput. Commun. 2020, 157, 434–443. [Google Scholar] [CrossRef]
- Trivedi, P.; Zulkernine, F. Intelligent Transportation System: Managing Pandemic Induced Threats to the People and Economy. In Proceedings of the 2020 IEEE 8th International Conference on Smart City and Informatization (iSCI), Guangzhou, China, 31 December 2020; pp. 60–67. [Google Scholar]
- Musa, A.A.; Malami, S.I.; Alanazi, F.; Ounaies, W.; Alshammari, M.; Haruna, S.I. Sustainable Traffic Management for Smart Cities Using Internet-of-Things-Oriented Intelligent Transportation Systems (ITS): Challenges and Recommendations. Sustainability 2023, 15, 9859. [Google Scholar] [CrossRef]
- Golpayegani, F.; Ghanadbashi, S.; Riad, M. Urban Emergency Management using Intelligent Traffic Systems: Challenges and Future Directions. In Proceedings of the 2021 IEEE International Smart Cities Conference (ISC2), Manchester, UK, 7–10 September 2021; pp. 1–4. [Google Scholar]
- Rauniyar, A.; Berge, T.; Kuijpers, A.; Litzinger, P.; Peeters, B.; Van Gils, E.; Kirchhoff, N.; Håkegård, J.E. NEMO: Real-Time Noise and Exhaust Emissions Monitoring for Sustainable and Intelligent Transportation Systems. IEEE Sens. J. 2023, 23, 25497–25517. [Google Scholar] [CrossRef]
- Anusha, N.; Jeslin, J.G.; Srividhya, V.; Gupta, N.S.; Meenakshi, R.; Srinivasan, C. Cloud-Enabled Neural Networks for Intelligent Vehicle Emissions Tracking and Analysis. In Proceedings of the 2024 International Conference on Automation and Computation (AUTOCOM), Dehradun, India, 4–6 March 2024; pp. 232–236. [Google Scholar]
- Andrych-Zalewska, M.; Chłopek, Z.; Merkisz, J.; Pielecha, J. Research on the results of the WLTP procedure for a passenger vehicle. Eksploat. Niezawodn.—Maint. Reliab. 2024, 2, 176112. [Google Scholar] [CrossRef]
- Connerton, P.; Vicente de Assunção, J.; Maura de Miranda, R.; Dorothée Slovic, A.; José Pérez-Martínez, P.; Ribeiro, H. Air Quality during COVID-19 in Four Megacities: Lessons and Challenges for Public Health. Int. J. Environ. Res. Public Health 2020, 17, 5067. [Google Scholar] [CrossRef]
- De Vito, S.; Esposito, E.; D’Elia, G.; Del Giudice, A.; Fattoruso, G.; Ferlito, S.; D’Auria, P.; Intini, F.; Di Francia, G.; Terzini, E. High Resolution Air Quality Monitoring with IoT Intelligent Multisensor devices during COVID-19 Pandemic Phase 2 in Italy. In Proceedings of the 2020 AEIT International Annual Conference (AEIT), Catania, Italy, 23–25 September 2020; pp. 1–6. [Google Scholar]
- Saha, R.; Hoque, S.N.M.A.; Manu, M.M.R.; Hoque, A. Monitoring Air Quality of Dhaka using IoT: Effects of COVID-19. In Proceedings of the 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 5–7 January 2021; pp. 715–721. [Google Scholar]
- Iyer, L.S. AI Enabled Applications towards Intelligent Transportation. Transp. Eng. 2021, 5, 100083. [Google Scholar] [CrossRef]
- Ajay, P.; Nagaraj, B.; Pillai, B.M.; Suthakorn, J.; Bradha, M. Intelligent ecofriendly transport management system based on IoT in urban areas. Environ. Dev. Sustain. 2022, 1–8. [Google Scholar] [CrossRef]
- Hörcher, D.; Singh, R.; Graham, D.J. Social Distancing in Public Transport: Mobilising New Technologies for Demand Management under the COVID-19 Crisis. Transportation 2021, 49, 735–764. [Google Scholar] [CrossRef] [PubMed]
- Dumka, A.; Sah, A. Smart Ambulance Traffic Management System (SATMS)—A Support for Wearable and Implantable Medical Devices. Wearable Implant. Med. Devices 2020, 7, 215–228. [Google Scholar]
- Mukta, M.Y.; Rahman, M.A.; Asyhari, A.T.; Alam Bhuiyan, M.Z. IoT for Energy Efficient Green Highway Lighting Systems: Challenges and Issues. J. Netw. Comput. Appl. 2020, 158, 102575. [Google Scholar] [CrossRef]
- Gagliardi, G.; Lupia, M.; Cario, G.; Tedesco, F.; Cicchello Gaccio, F.; Lo Scudo, F.; Casavola, A. Advanced Adaptive Street Lighting Systems for Smart Cities. Smart Cities 2020, 3, 1495–1512. [Google Scholar] [CrossRef]
- Chen, Z.; Sivaparthipan, C.B.; Muthu, B. IoT Based Smart and Intelligent Smart City Energy Optimization. Sustain. Energy Technol. Assess. 2022, 49, 101724. [Google Scholar] [CrossRef]
- Omar, A.; AlMaeeni, S.; Attia, H.; Takruri, M.; Altunaiji, A.; Sanduleanu, M.; Shubair, R.; Ashhab, M.S.; Al Ali, M.; Al Hebsi, G. Smart City: Recent Advances in Intelligent Street Lighting Systems Based on IoT. J. Sens. 2022, 2022, E5249187. [Google Scholar] [CrossRef]
- Gehlot, A.; Alshamrani, S.S.; Singh, R.; Rashid, M.; Akram, S.V.; AlGhamdi, A.S.; Albogamy, F.R. Internet of Things and Long-Range-Based Smart Lampposts for Illuminating Smart Cities. Sustainability 2021, 13, 6398. [Google Scholar] [CrossRef]
- Raghunatha, A.; Lindkvist, E.; Thollander, P.; Hansson, E.; Jonsson, G. Critical assessment of emissions, costs, and time for last-mile goods delivery by drones versus trucks. Sci. Rep. 2023, 13, 11814. [Google Scholar]
- Rejeb, A.; Rejeb, K.; Simske, S.J.; Treiblmaier, H. Drones for supply chain management and logistics: A review and research agenda. Int. J. Logist. Res. Appl. 2021, 26, 708–731. [Google Scholar] [CrossRef]
- Li, Y.; Yang, W.; Huang, B. Impact of UAV Delivery on Sustainability and Costs under Traffic Restrictions. Math. Probl. Eng. 2020, 2020, 9437605. [Google Scholar] [CrossRef]
- Restás, Á. Drone Applications Fighting COVID-19 Pandemic—Towards Good Practices. Drones 2022, 6, 15. [Google Scholar] [CrossRef]
- Benayad, A.; Malasse, O.; Belhadaoui, H.; Benayad, N. Unmanned Aerial Vehicle in the Logistics of Pandemic Vaccination: An Exact Analytical Approach for Any Number of Vaccination Centres. Healthcare 2022, 10, 2102. [Google Scholar] [CrossRef]
- Munawar, H.S.; Inam, H.; Ullah, F.; Qayyum, S.; Kouzani, A.Z.; Mahmud, M.A.P. Towards Smart Healthcare: UAV-Based Optimized Path Planning for Delivering COVID-19 Self-Testing Kits Using Cutting Edge Technologies. Sustainability 2021, 13, 10426. [Google Scholar] [CrossRef]
- Robakowska, M.; Ślęzak, D.; Żuratyński, P.; Tyrańska-Fobke, A.; Robakowski, P.; Prędkiewicz, P.; Zorena, K. Possibilities of Using UAVs in Pre-Hospital Security for Medical Emergencies. Int. J. Environ. Res. Public Health 2022, 19, 10754. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Simske, S.; Treiblmaier, H. Humanitarian Drones: A Review and Research Agenda. Internet Things 2021, 16, 100434. [Google Scholar] [CrossRef]
- Yeh, N.; Siriwat, C.; Weeraburus, N.; Rattanakijsuntorn, W. Assessing the UAVs’ Requirements and Capabilities for Humanitarian Logistics Operations in Thailand. In Proceedings of the 2023 8th International Conference on Business and Industrial Research (ICBIR), Bangkok, Thailand, 18–19 May 2023; pp. 779–783. [Google Scholar]
- Katreddi, S.; Kasani, S.; Thiruvengadam, A. A Review of Applications of Artificial Intelligence in Heavy Duty Trucks. Energies 2022, 15, 7457. [Google Scholar] [CrossRef]
- Sen, B.; Kucukvar, M.; Onat, N.C.; Tatari, O. Life cycle sustainability assessment of autonomous heavy-duty trucks. J. Ind. Ecol. 2020, 24, 149–164. [Google Scholar] [CrossRef]
- Kim, E.; Kim, Y.; Park, J. The Necessity of Introducing Autonomous Trucks in Logistics 4.0. Sustainability 2022, 14, 3978. [Google Scholar] [CrossRef]
- Nahavandi, S.; Mohamed, S.; Hossain, I.; Nahavandi, D.; Salaken, S.M.; Rokonuzzaman, M.; Ayoub, R.; Smith, R. Autonomous Convoying: A Survey on Current Research and Development. IEEE Access 2022, 10, 13663–13683. [Google Scholar] [CrossRef]
- Juling, D. Truck platooning: Great prospect or unrealistic concept for military logistics in Europe? RUSI J. 2023, 168, 108–115. [Google Scholar] [CrossRef]
- Zhang, T.; Jia, F.; Chen, L. Blockchain Adoption in Supply Chains: Implications for Sustainability. Prod. Plan. Control 2024, 1–24. [Google Scholar] [CrossRef]
- Carey, R.; Coleman, C.G.; White, T.M. The Impact of Blockchain on Logistics and Supply Chain Management: A Review. J. Procure. Supply Chain Manag. 2024, 3, 1–11. [Google Scholar]
- Liu, X.; Shah, R.; Shandilya, A.; Shah, M.; Pandya, A. A Systematic Study on Integrating Blockchain in Healthcare for Electronic Health Record Management and Tacking Medical Supplies. J. Clean. Prod. 2024, 447, 141371. [Google Scholar] [CrossRef]
- Park, A.; Li, H. The Effect of Blockchain Technology on Supply Chain Sustainability Performances. Sustainability 2021, 13, 1726. [Google Scholar] [CrossRef]
- Khan, M.; Imtiaz, S.; Parvaiz, G.S.; Hussain, A.; Bae, J. Integration of Internet-of-Things with Blockchain Technology to Enhance Humanitarian Logistics Performance. IEEE Access 2021, 9, 1. [Google Scholar] [CrossRef]
- Hunt, K.; Narayanan, A.; Zhuang, J. Blockchain in Humanitarian Operations Management: A Review of Research and Practice. Socio-Econ. Plan. Sci. 2022, 80, 101175. [Google Scholar] [CrossRef]
- Sharin, F.H.; Sparaggon Hernandez, M.; Sentosa, I. Future Trends of Blockchain Technology in the Technological Fields. In Proceedings of the 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 12–13 May 2023; pp. 1307–1313. [Google Scholar]
- Boysen, N.; Fedtke, S.; Schwerdfeger, S. Last-Mile Delivery Concepts: A Survey from an Operational Research Perspective. OR Spectr. 2020, 43, 1–58. [Google Scholar] [CrossRef]
- Bertolini, M.; De Matteis, G.; Nava, A. Sustainable Last-Mile Logistics in Economics Studies: A Systematic Literature Review. Sustainability 2024, 16, 1205. [Google Scholar] [CrossRef]
- Kotlars, A.; Skribans, V. Literature Review: Efficiency, Environment and Robotization in First and Last Mile Logistics. Transp. Res. Interdiscip. Perspect. 2024, 27, 101215. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, Y.; Ding, S.; Savaria, Y.; Li, M. Autonomous Last-Mile Delivery Based on the Cooperation of Multiple Heterogeneous Unmanned Ground Vehicles. Math. Probl. Eng. 2021, 2021, 5546581. [Google Scholar] [CrossRef]
- Campisi, T.; Russo, A.; Basbas, S.; Bouhouras, E.; Tesoriere, G. A Literature Review of the Main Factors Influencing the E-Commerce and Last-Mile Delivery Projects during COVID-19 Pandemic. Transp. Res. Procedia 2023, 69, 552–559. [Google Scholar] [CrossRef]
- Sułkowski, Ł.; Kolasińska-Morawska, K.; Brzozowska, M.; Morawski, P.; Schroeder, T. Last Mile Logistics Innovations in the Courier-Express-Parcel Sector Due to the COVID-19 Pandemic. Sustainability 2022, 14, 8207. [Google Scholar] [CrossRef]
- Maas, B. Literature Review of Mobility as a Service. Sustainability 2022, 14, 8962. [Google Scholar] [CrossRef]
- Comi, A.; Cirianni, F.M.M.; Cabras, L. Sustainable Mobility as a Service: A Scientometric Review in the Context of Agenda 2030. Information 2024, 15, 637. [Google Scholar] [CrossRef]
- Labee, P.; Rasouli, S.; Liao, F. The Implications of Mobility as a Service for Urban Emissions. Transp. Res. Part D Transp. Environ. 2022, 102, 103128. [Google Scholar] [CrossRef]
- Guyader, H.; Friman, M.; Olsson, L.E. Shared Mobility: Evolving Practices for Sustainability. Sustainability 2021, 13, 12148. [Google Scholar] [CrossRef]
- Becker, H.; Balac, M.; Ciari, F.; Axhausen, K.W. Assessing the Welfare Impacts of Shared Mobility and Mobility as a Service (MaaS). Transp. Res. Part A Policy Pract. 2020, 131, 228–243. [Google Scholar] [CrossRef]
- Arias-Molinares, D.; García-Palomares, J.C. The Ws of MaaS: Understanding Mobility as a Service Fromaliterature Review. IATSS Res. 2020, 44, 253–263. [Google Scholar] [CrossRef]
- Jittrapirom, P.; Marchau, V.; van der Heijden, R.; Meurs, H. Future Implementation of Mobility as a Service (MaaS): Results of an International Delphi Study. Travel Behav. Soc. 2018, 21, 281–294. [Google Scholar] [CrossRef]
- Alonso-Almeida, M.d.M. To Use or Not Use Car Sharing Mobility in the Ongoing COVID-19 Pandemic? Identifying Sharing Mobility Behaviour in Times of Crisis. Int. J. Environ. Res. Public Health 2022, 19, 3127. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Saini, V.; Choudhary, C.; Yadav, M. Improved intelligent fleet management system with data analytics and internet of things (IoT) for smart cities. In Proceedings of the 7th IET Smart Cities Symposium (SCS 2023), Manama, Bahrain, 3–5 December 2023; pp. 307–312. [Google Scholar]
- Brlek, P.; Cvitković, I.; Kolarević, N.; Stojanović, K.; Sovreski, Z. Application of fleet management in intelligent transport systems. In Proceedings of the 2022 57th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), Ohrid, North Macedonia, 16–18 June 2022; pp. 1–4. [Google Scholar]
- Rojas, B.; Bolaños, C.; Salazar-Cabrera, R.; Ramírez-González, G.; Pachón de la Cruz, Á.; Madrid Molina, J.M. Fleet Management and Control System for Medium-Sized Cities Based in Intelligent Transportation Systems: From Review to Proposal in a City. Electronics 2020, 9, 1383. [Google Scholar] [CrossRef]
- Graba, M.; Bieniek, A.; Prażnowski, K.; Hennek, K.; Mamala, J.; Burdzik, R.; Śmieja, M. Analysis of energy efficiency and dynamics during car acceleration. Eksploat. Niezawodn.—Maint. Reliab. 2023, 25, 17. [Google Scholar] [CrossRef]
- Bolaños, C.; Rojas, B.; Salazar-Cabrera, R.; Ramírez-González, G.; Pachón de la Cruz, Á.; Madrid Molina, J.M. Fleet Management and Control System for Developing Countries Implemented with Intelligent Transportation Systems (ITS) Services. Transp. Res. Interdiscip. Perspect. 2022, 16, 100694. [Google Scholar] [CrossRef]
- Zhou, C.; Zhu, S.; Bell, M.G.H.; Lee, L.H.; Chew, E.P. Emerging Technology and Management Research in the Container Terminals: Trends and the COVID-19 Pandemic Impacts. Ocean Coast. Manag. 2022, 230, 106318. [Google Scholar] [CrossRef]
- Abubakari and Mashoedah, M.S. The Internet of Things (IoT) as an Emerging Technological Solution for the COVID-19 Pandemic Mitigation: An Overview. J. Phys. Conf. Ser. 2021, 1737, 012003. [Google Scholar] [CrossRef]
- Peelam, M.S.; Naren; Gera, M.; Chamola, V.; Zeadally, S. A Review on Emergency Vehicle Management for Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2024, 25, 15229–15246. [Google Scholar] [CrossRef]
- Prencipe, L.P.; van Essen, T.J.; Caggiani, L.; Ottomanelli, M.; Correia, H.G.A. A Mathematical Programming Model for Optimal Fleet Management of Electric Car-Sharing Systems with Vehicle-To-Grid Operations. J. Clean. Prod. 2022, 368, 133147. [Google Scholar] [CrossRef]
- Kiasari, M.M.; Aly, H.H. A Proposed Controller for Real-Time Management of Electrical Vehicle Battery Fleet with MATLAB/SIMULINK. J. Energy Storage 2024, 99, 113235. [Google Scholar] [CrossRef]
- Zhang, T.; Jin, X.; Bai, S.; Peng, Y.; Li, Y.; Zhang, J. Smart Public Transportation Sensing: Enhancing Perception and Data Management for Efficient and Safety Operations. Sensors 2023, 23, 9228. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ma, C.; Xu, X. Multi-Objective Optimization of Real-Time Customized Bus Routes Based on Two-Stage Method. Phys. D Nonlinear Phenom. 2020, 537, 122774. [Google Scholar] [CrossRef]
- Romero, C.; Monzón, A.; Alonso, A.; Julio, R. Potential demand for bus commuting trips in metropolitan corridors through the use of real-time information tools. Int. J. Sustain. Transp. 2021, 16, 314–325. [Google Scholar] [CrossRef]
- Fumagalli, L.A.W.; Rezende, D.A.; Guimarães, T.A. Challenges for Public Transportation: Consequences and Possible Alternatives for the COVID-19 Pandemic through Strategic Digital City Application. J. Urban Manag. 2021, 10, 97–109. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.M.; Froiz-Míguez, I.; Fraga-Lamas, P. An IoT and Blockchain Based System for Monitoring and Tracking Real-Time Occupancy for COVID-19 Public Safety. Eng. Proc. 2020, 2, 67. [Google Scholar] [CrossRef]
- Ashok, D.; Tiwari, A.; Jirge, V. Smart Parking System using IoT Technology. In Proceedings of the 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 24–25 February 2020; pp. 1–7. [Google Scholar]
- Chaturvedi, R.; Kumar, S.; Kumar, U.; Sharma, T.; Chaudhary, Z.; Dagur, A. Low-Cost IoT-Enabled Smart Parking System in Crowded Cities. In Data Intelligence and Cognitive Informatics. Algorithms for Intelligent Systems; Jacob, I.J., Piramuthu, S., Falkowski-Gilski, P., Eds.; Springer: Singapore, 2021; pp. 333–339. [Google Scholar]
- Biyik, C.; Allam, Z.; Pieri, G.; Moroni, D.; O’Fraifer, M.; O’Connell, E.; Olariu, S.; Khalid, M. Smart Parking Systems: Reviewing the Literature, Architecture and Ways Forward. Smart Cities 2021, 4, 623–642. [Google Scholar] [CrossRef]
- Islam, M.R.; Azam, S.; Bharanidharan, S.; Karim, A.; El-Den, J.; DeBoer, F. Smart Parking Management System to Reduce Congestion in Urban Area. In Proceedings of the 2020 2nd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE), Kuala Lumpur, Malaysia, 28 November 2020; pp. 1–6. [Google Scholar]
- Said, A.M.; Kamal, A.E.; Afifi, H. An Intelligent Parking Sharing System for Green and Smart Cities Based IoT. Comput. Commun. 2021, 172, 10–18. [Google Scholar] [CrossRef]
- Sahu, H.; Arya, H.; Penta, A.; Kumar, R.; Saha, S. IoT Based Smart Parking Ecosystem with Connected Wireless Induction Chargers; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Medved, D.; Bena, L.; Oliinyk, M.; Dzmura, J.; Mazur, D.; Martinko, D. Assessing the Effects of Smart Parking Infrastructure on the Electrical Power System. Energies 2023, 16, 5343. [Google Scholar] [CrossRef]
- Khalid, M.; Wang, K.; Aslam, N.; Cao, Y.; Ahmad, N.; Khan, M.K. From Smart Parking towards Autonomous Valet Parking: A Survey, Challenges and Future Works. J. Netw. Comput. Appl. 2021, 175, 102935. [Google Scholar] [CrossRef]
- Jemmali, M. Intelligent Algorithms and Complex System for a Smart Parking for Vaccine Delivery Center of COVID-19. Complex Intell. Syst. 2021, 8, 597–609. [Google Scholar] [CrossRef]
- Rivera, S.; Kouro, S.; Vazquez, S.; Goetz, S.M.; Lizana, R.; Romero-Cadaval, E. Electric Vehicle Charging Infrastructure: From Grid to Battery. IEEE Ind. Electron. Mag. 2021, 15, 37–51. [Google Scholar] [CrossRef]
- Baumgarte, F.; Kaiser, M.; Keller, R. Policy Support Measures for Widespread Expansion of Fast Charging Infrastructure for Electric Vehicles. Energy Policy 2021, 156, 112372. [Google Scholar] [CrossRef]
- Bosch, F.P.; Pujadas, P.; Morton, C.; Cervera, C. Sustainable Deployment of an Electric Vehicle Public Charging Infrastructure Network from a City Business Model Perspective. Sustain. Cities Soc. 2021, 71, 102957. [Google Scholar] [CrossRef]
- Dižo, J.; Blatnický, M.; Semenov, S.; Mikhailov, E.; Kostrzewski, M.; Droździel, P.; Šťastniak, P. Electric and Plug-in Hybrid Vehicles and Their Infrastructure in a Particular European Region. Transp. Res. Procedia 2021, 55, 629–636. [Google Scholar] [CrossRef]
- Pan, S.; Yu, W.; Fulton, L.M.; Jung, J.; Choi, Y.; Gao, H.O. Impacts of the Large-Scale Use of Passenger Electric Vehicles on Public Health in 30 US. Metropolitan Areas. Renew. Sustain. Energy Rev. 2023, 173, 113100. [Google Scholar] [CrossRef]
- Gupta, R.S.; Tyagi, A.; Anand, S. Optimal Allocation of Electric Vehicles Charging Infrastructure, Policies and Future Trends. J. Energy Storage 2021, 43, 103291. [Google Scholar] [CrossRef]
- Alkawsi, G.; Baashar, Y.; Abbas, U.D.; Alkahtani, A.A.; Tiong, S.K. Review of Renewable Energy-Based Charging Infrastructure for Electric Vehicles. Appl. Sci. 2021, 11, 3847. [Google Scholar] [CrossRef]
- Camilleri, S.F.; Montgomery, A.; Visa, M.A.; Schnell, J.L.; Adelman, Z.E.; Janssen, M.; Grubert, E.A.; Anenberg, S.C.; Horton, D.E. Air Quality, Health and Equity Implications of Electrifying Heavy-Duty Vehicles. Nat. Sustain. 2023, 6, 1643–1653. [Google Scholar] [CrossRef]
- Toh, C.K.; Sanguesa, J.A.; Cano, J.C.; Martinez, F.J. Advances in Smart Roads for Future Smart Cities. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20190439. [Google Scholar] [CrossRef]
- Pompigna, A.; Mauro, R. Smart Roads: A State of the Art of Highways Innovations in the Smart Age. Eng. Sci. Technol. Int. J. 2021, 25, 100986. [Google Scholar] [CrossRef]
- Mao, G.; Hui, Y.; Ren, X.; Li, C.; Shao, Y. The Internet of Things for Smart Roads: A Road Map from Present to Future Road Infrastructure. IEEE Intell. Transp. Syst. Mag. 2021, 14, 66–76. [Google Scholar] [CrossRef]
- Ye, Z.; Wei, Y.; Yang, S.; Li, P.; Yang, F.; Yang, B.; Wang, L. IoT-Enhanced Smart Road Infrastructure Systems for Comprehensive Real-Time Monitoring. Internet Things Cyber-Phys. Syst. 2024, 4, 235–249. [Google Scholar] [CrossRef]
- Guerrieri, M.; Maini Lo Casto, B.; Peri, G.; Rizzo, G. Smart vs Conventional Motorways: Environmental Impact Assessment under Realistic Traffic Conditions. Sci. Total Environ. 2020, 727, 138521. [Google Scholar] [CrossRef]
- Wenander, D.; Alaküla, M. Reducing the Environmental Impact of Large Battery Systems with Conductive Electric Road Systems—A Technical Overview. World Electr. Veh. J. 2024, 15, 59. [Google Scholar] [CrossRef]
- Wolniak, R. Analysis of the Bicycle Roads System as an Element of a Smart Mobility on the Example of Poland Provinces. Smart Cities 2023, 6, 368–391. [Google Scholar] [CrossRef]
- Santilli, D.; D’Apuzzo, M.; Evangelisti, A.; Nicolosi, V. Towards Sustainability: New Tools for Planning Urban Pedestrian Mobility. Sustainability 2021, 13, 9371. [Google Scholar] [CrossRef]
- Eboli, L.; Forciniti, C.; Mazzulla, G.; Bellizzi, M.G. Establishing Performance Criteria for Evaluating Pedestrian Environments. Sustainability 2023, 15, 3523. [Google Scholar] [CrossRef]
- Soares, L.; Wang, H. Sustainability Impact of Photovoltaic Noise Barriers with Different Design Configurations. Transp. Res. D Transp. Environ. 2023, 116, 103624. [Google Scholar] [CrossRef]
- Koscikova, Z.; Krivtsov, V. Environmental and Social Benefits of Extensive Green Roofs Applied on Bus Shelters in Edinburgh. Land 2023, 12, 1831. [Google Scholar] [CrossRef]
- Zellmer, A.J.; Goto, B.S. Urban wildlife corridors: Building bridges for wildlife and people. Front. Sustain. Cities 2022, 4, 954089. [Google Scholar] [CrossRef]
- Adamu, Z.; Hardy, O.; Natapov, A. The Impact of Greenspace, Walking, and Cycling on the Health of Urban Residents during the COVID-19 Pandemic: A Study of London. Int. J. Environ. Res. Public Health 2023, 20, 6360. [Google Scholar] [CrossRef] [PubMed]
- Finn, D. Streets, Sidewalks and COVID-19: Reimaging New York City’s Public Realm as a Tool for Crisis Management. J. Extrem. Events 2020, 07, 2150006. [Google Scholar] [CrossRef]
- Teixeira, J.F.; Silva, C.; Moura e Sá, F. Factors Influencing Modal Shift to Bike Sharing: Evidence from a Travel Survey Conducted during COVID-19. J. Transp. Geogr. 2023, 111, 103651. [Google Scholar] [CrossRef]
- Cunha, I.; Silva, C. Equity impacts of cycling: Examining the spatial-social distribution of bicycle-related benefits. Int. J. Sustain. Transp. 2022, 17, 573–591. [Google Scholar] [CrossRef]
- Abdelkader, G.; Elgazzar, K.; Khamis, A. Connected Vehicles: Technology Review, State of the Art, Challenges and Opportunities. Sensors 2021, 21, 7712. [Google Scholar] [CrossRef]
- Lempert, R.J.; Preston, B.; Charan, S.M.; Fraade-Blanar, L.; Blumenthal, M.S. The Societal Benefits of Vehicle Connectivity. Transp. Res. Part D Transp. Environ. 2021, 93, 102750. [Google Scholar] [CrossRef]
- Balador, A.; Bazzi, A.; Hernandez-Jayo, U.; de la Iglesia, I.; Ahmadvand, H. A Survey on Vehicular Communication for Cooperative Truck Platooning Application. Veh. Commun. 2022, 35, 100460. [Google Scholar] [CrossRef]
- Sharma, A.; Zheng, Z. Connected and Automated Vehicles: Opportunities and Challenges for Transportation Systems, Smart Cities, and Societies. In Automating Cities. Advances in 21st Century Human Settlements; Wang, B.T., Wang, C.M., Eds.; Springer: Singapore, 2021; pp. 273–296. [Google Scholar]
- Yao, Z.; Wang, Y.; Liu, B.; Zhao, B.; Jiang, Y. Fuel Consumption and Transportation Emissions Evaluation of Mixed Traffic Flow with Connected Automated Vehicles and Human-Driven Vehicles on Expressway. Energy 2021, 230, 120766. [Google Scholar] [CrossRef]
- Yang, X.T.; Huang, K.; Zhang, Z.; Zhang, Z.A.; Lin, F. Eco-Driving System for Connected Automated Vehicles: Multi-Objective Trajectory Optimization. IEEE Trans. Intell. Transp. Syst. 2020, 22, 7837–7849. [Google Scholar] [CrossRef]
- Guo, L.; Sun, M.; Hu, Y.; Chen, H. Optimization of Fuel Economy and Emissions through Coordinated Energy Management for Connected Diesel Vehicles. IEEE Trans. Intell. Veh. 2023, 8, 3593–3604. [Google Scholar] [CrossRef]
- Žvirblis, T.; Hunicz, J.; Matijošius, J.; Rimkus, A.; Kilikevičius, A.; Gęca, M. Improving Diesel Engine Reliability Using an Optimal Prognostic Model to Predict Diesel Engine Emissions and Performance Using Pure Diesel and Hydrogenated Vegetable Oil. Eksploat. Niezawodn.—Maint. Reliab. 2023, 25, 174358. [Google Scholar] [CrossRef]
- Sahraoui, Y.; Korichi, A.; Kerrache, C.A.; Bilal, M.; Amadeo, M. Remote Sensing to Control Respiratory Viral Diseases Outbreaks Using Internet of Vehicles. Trans. Emerg. Telecommun. Technol. 2020, 33, e4118. [Google Scholar] [CrossRef]
- Cheung, C.; Mohammadi, A.; Rawashdeh, S.; Baek, S. Delivery of Healthcare Resources Using Autonomous Ground Vehicle Convoy Systems: An Overview. Front. Robot. AI 2021, 8, 611978. [Google Scholar] [CrossRef] [PubMed]
- Farsimadan, E.; Palmieri, F.; Moradi, L.; Conte, D.; Paternoster, B. Vehicle-to-Everything (V2X) Communication Scenarios for Vehicular Ad-hoc Networking (VANET): An Overview. In Computational Science and Its Applications—ICCSA 2021; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M., Tarantino, E., Torre, C.M., Eds.; Springer: Cham, Switzerland, 2021; pp. 15–30. [Google Scholar]
- Khezri, R.; Steen, D.; Tuan, L.A. A Review on Implementation of Vehicle to Everything (V2X): Benefits, Barriers and Measures. In Proceedings of the 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Novi Sad, Serbia, 10–12 October 2022; pp. 1–6. [Google Scholar]
- Dhinesh, K.R.; Rammohan, A. Revolutionizing Intelligent Transportation Systems with Cellular Vehicle-To-Everything (C-V2X) Technology: Current Trends, Use Cases, Emerging Technologies, Standardization Bodies, Industry Analytics and Future Directions. Veh. Commun. 2023, 43, 100638. [Google Scholar]
- Roger, S.; Botella-Mascarell, C.; Martín-Sacristán, D.; García-Roger, D.; Monserrat, J.F.; Svensson, T. Sustainable Mobility in B5G/6G: V2X Technology Trends and Use Cases. IEEE Open J. Veh. Technol. 2024, 5, 459–472. [Google Scholar] [CrossRef]
- Alsudani, M. The Wireless Communication between Vehicles: Exploring the Potential of V2V and V2X Communication for Improved Efficiency, Safety, and Sustainability: Wireless Communication between (V2V) and (V2I, V2X). J. Millimeterwave Commun. Optim. Model. 2023, 3, 9–13. [Google Scholar]
- Rehman, M.A.; Numan, M.; Tahir, H.; Rahman, U.; Khan, M.W.; Iftikhar, M.Z. A Comprehensive Overview of Vehicle to Everything (V2X) Technology for Sustainable EV Adoption. J. Energy Storage 2023, 74, 109304. [Google Scholar] [CrossRef]
- Dahmane, S.; Yagoubi, M.B.; Lorenz, P.; Barka, E.; Lakas, A.; Lagraa, N. V2X-based COVID-19 Pandemic Severity Reduction in Smart Cities. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar]
- Mukhopadhyay, B.; Samanta, T. A Model to Maintain Social Distance in Public Vehicles using 5G V2I and V2P Communication. In Proceedings of the 2021 IEEE Region 10 Symposium (TENSYMP), Jeju, Republic of Korea, 23–25 August 2021; pp. 1–6. [Google Scholar]
- Riviere, M.; Padrón, J.D.; Calafate, C.T.; Cano, J.-C.; Razafindralambo, T. Improving emergency vehicles flow in urban environments through SDN-based V2X communications. In Proceedings of the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 20–23 June 2023; pp. 1–6. [Google Scholar]
- Arikumar, K.S.; Prathiba, S.B.; Basheer, S.; Moorthy, R.S.; Dumka, A.; Rashid, M. V2X-Based Highly Reliable Warning System for Emergency Vehicles. Appl. Sci. 2023, 13, 1950. [Google Scholar] [CrossRef]
- Mishra, P.; Kar, S.; Lin, C.; Wang, K.; Guo, L. Enabling Robust Communication Among Military Ground Vehicles Using Multi-Connectivity. SAE Int. J. Adv. Curr. Prac. Mobil. 2024, 6, 111–120. [Google Scholar]
- Irie, Y.; Sano, M.; Matsunaga, H.; Akasaka, D.; Miura, M. Study of Dynamic Traffic Management Based on Automated Driving/ADAS with Connected System. Int. J. Automot. Eng. 2024, 15, 82–89. [Google Scholar] [CrossRef]
- Kerbel, L.; Yoon, D.; Loiselle, K.; Ayalew, B.; Ivanco, A. Evaluation of Fuel Economy Benefits of Radar-Based Driver Assistance in Randomized Traffic. SAE Int. J. Commer. Veh. 2023, 16, 313–325. [Google Scholar] [CrossRef]
- Nguyen, L. Road-Network Efficiency through Truck Platooning and Capacitated Vehicle Routing Problem. J. Eng. Technol. 2024, 6, 1–8. [Google Scholar]
- Aleksa, M.; Schaub, A.; Erdelean, I.; Wittmann, S.; Soteropoulos, A.; Fürdös, A. Impact Analysis of Advanced Driver Assistance Systems (ADAS) Regarding Road Safety—Computing Reduction Potentials. Eur. Transp. Res. Rev. 2024, 16, 39. [Google Scholar] [CrossRef]
- Chacha, M.; Nyaki, P.; Cuenen, A.; Yasar, A.; Wets, G. Truck Drivers’ Views on the Road Safety Benefits of Advanced Driver Assistance Systems and Intelligent Transport Systems in Tanzania. J. Multimodal User Interfaces 2024, 18, 229–237. [Google Scholar] [CrossRef]
- Basili, E.; Caschili, C.; Dalla Chiara, B.; Pellicelli, M. The Impact of Road Accidents on Hospital Admissions and the Potential of ADAS in Containing Health Expenditure: Evidence from Piedmont Data. Transp. Res. Interdiscip. Perspect. 2024, 25, 101125. [Google Scholar] [CrossRef]
- Marinelli, M.; Gallo, M. Assessing the Impact of Eco-ADAS Systems on Vehicle Fuel Consumption and Emissions at Signalised Intersections. In Proceedings of the 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 6–9 June 2023; pp. 1–6. [Google Scholar]
- Manjunath, T.K.; Ashok Kumar, P.S. Monitoring Fuel-Efficient Driving Patterns to Augment ADAS to Regulate the Fuel Dynamically Using Machine Learning. J. Electr. Syst. 2024, 20, 2625–2645. [Google Scholar] [CrossRef]
- Fish, F.; Bras, B. Sustainable Design of Advanced Driver Assistance Systems Based on Optimization and Empirical Studies on Full-Size Light-Duty Pickup Trucks. Procedia CIRP 2022, 105, 67–72. [Google Scholar] [CrossRef]
- Münster, M.; Osebek, M.; Scheibe, S.; Siefkes, T. Modular Vehicle Concept for the Mobility of Tomorrow. ATZ Worldw. 2022, 124, 16–21. [Google Scholar] [CrossRef]
- Gao, H.; Liu, K.; Wang, J.; Guo, F. Modular Bus Unit Scheduling for an Autonomous Transit System under Range and Charging Constraints. Appl. Sci. 2023, 13, 7661. [Google Scholar] [CrossRef]
- Hatzenbühler, J.; Jenelius, E.; Gidófalvi, G.; Cats, O. Modular Vehicle Routing for Combined Passenger and Freight Transport. Transp. Res. Part A Policy Pract. 2023, 173, 103688. [Google Scholar] [CrossRef]
- Liu, Z.; Homem de Almeida Correia, G.; Ma, Z.; Li, S.; Ma, X. Integrated Optimization of Timetable, Bus Formation, and Vehicle Scheduling in Autonomous Modular Public Transport Systems. Transp. Res. Part C Emerg. 2023, 155, 104306. [Google Scholar] [CrossRef]
- Cheng, X.; Nie, Y.; Lin, J. An Autonomous Modular Public Transit Service. Transp. Res. Part C Emerg. 2024, 168, 104746. [Google Scholar] [CrossRef]
- Khan, Z.S.; He, W.; Menéndez, M. Application of Modular Vehicle Technology to Mitigate Bus Bunching. Transp. Res. Part C Emerg. 2023, 146, 103953. [Google Scholar] [CrossRef]
- Guo, R.; Guan, W.; Vallati, M.; Zhang, W. Modular Autonomous Electric Vehicle Scheduling for Customized On-Demand Bus Services. IEEE Trans. Intell. Transp. Syst. 2023, 24, 10055–10066. [Google Scholar] [CrossRef]
- Ulrich, C.; Feinauer, M.; Bieber, K.; Schmid, S.A.; Friedrich, H.E. Life Cycle Analysis of an On-the-Road Modular Vehicle Concept. Sustainability 2023, 15, 10303. [Google Scholar] [CrossRef]
- Lin, J.; Nie, Y.; Kawamura, K. An Autonomous Modular Mobility Paradigm. IEEE Intell. Transp. Syst. Mag. 2023, 15, 378–386. [Google Scholar] [CrossRef]
- Hannoun, G.J.; Menéndez, M. Modular Vehicle Technology for Emergency Medical Services. Transp. Res. Part C Emerg. 2022, 140, 103694. [Google Scholar] [CrossRef]
- Egilmez, M.M.; Park, J.M.; Bayrak, A.E.; Epureanu, B.I.; Papalambros, P.Y. Adaptability of modular vehicle fleets to changing supply route characteristics. J. Def. Model. Simul. 2020, 17, 327–338. [Google Scholar] [CrossRef]
- Li, X.; Epureanu, B.I. An Agent-Based Approach to Optimizing Modular Vehicle Fleet Operation. Int. J. Prod. Econ. 2020, 228, 107733. [Google Scholar] [CrossRef]
- Mouratidis, K.; Cobeña Serrano, V. Autonomous Buses: Intentions to Use, Passenger Experiences, and Suggestions for Improvement. Transp. Res. Part F Traffic Psychol. Behav. 2021, 76, 321–335. [Google Scholar] [CrossRef]
- Quarles, N.; Kockelman, K.M.; Mohamed, M. Costs and Benefits of Electrifying and Automating Bus Transit Fleets. Sustainability 2020, 12, 3977. [Google Scholar] [CrossRef]
- Tirachini, A.; Antoniou, C. The Economics of Automated Public Transport: Effects on Operator Cost, Travel Time, Fare and Subsidy. Econ. Transp. 2020, 21, 100151. [Google Scholar] [CrossRef]
- Szumska, E.M.; Pawełczyk, M.; Jurecki, R. Total Cost of Ownership analysis and energy efficiency of electric, hybrid and conventional urban buses. Eksploat. Niezawodn.—Maint. Reliab. 2022, 24, 7–14. [Google Scholar] [CrossRef]
- Poinsignon, F.; Chen, L.; Jiang, S.; Gao, K.; Badia, H.; Jenelius, E. Autonomous Vehicle Fleets for Public Transport: Scenarios and Comparisons. Green Energy Intell. Transp. 2022, 1, 100019. [Google Scholar] [CrossRef]
- Hasan, U.; Whyte, A.; AlJassmi, H. A Microsimulation Modelling Approach to Quantify Environmental Footprint of Autonomous Buses. Sustainability 2022, 14, 15657. [Google Scholar] [CrossRef]
- Akter, S.; Abdul Aziz, H.M. Effectiveness of automated connected shuttles (ACS) during COVID-19 pandemic. In IWCTS’21, Proceedings of the 14th ACM SIGSPATIAL International Workshop on Computational Transportation Science, Beijing, China, 2 November 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–9. [Google Scholar] [CrossRef]
- Estrada, M.; Salanova, J.M.; Medina-Tapia, M.; Robusté, F. Operational cost and user performance analysis of on-demand bus and taxi systems. Transp. Lett. 2020, 13, 229–242. [Google Scholar] [CrossRef]
- Giuffrida, N.; Le Pira, M.; Inturri, G.; Ignaccolo, M.; Calabrò, G.; Cuius, B.; D’Angelo, R.; Pluchino, A. On-Demand Flexible Transit in Fast-Growing Cities: The Case of Dubai. Sustainability 2020, 12, 4455. [Google Scholar] [CrossRef]
- Tuydes-Yaman, H.; Kaya, B.; Karagumus, E.; Dalkic-Melek, G.; Cottrill, C.D. The Impact of COVID-19 Pandemic on Public Transit Use: Case Study of Konya City. Transp. Res. Procedia 2023, 69, 480–487. [Google Scholar] [CrossRef]
- Auad, R.; Dalmeijer, K.; Riley, C.; Santanam, T.; Trasatti, A.; Pardalos, P.M.; Zhang, H. Resiliency of On-Demand Multimodal Transit Systems during a Pandemic. Transp. Res. Part C Emerg. Technol. 2021, 133, 103418. [Google Scholar] [CrossRef]
- Ahmed, F.Y.; Yousif, J.H.; Alshar’e, M.; El Sheikh, M.; Al-Ajmi, E.; Al-Bahri, M. Smart In-Cabin Air Monitoring System Using IoT Technologies. Qubahan Acad. J. 2024, 4, 78–90. [Google Scholar] [CrossRef]
- Sukor, A.S.A.; Cheik, G.C.; Kamarudin, L.M.; Mao, X.; Nishizaki, H.; Zakaria, A.; Syed Zakaria, S.M.M. Predictive Analysis of In-Vehicle Air Quality Monitoring System Using Deep Learning Technique. Atmosphere 2022, 13, 1587. [Google Scholar] [CrossRef]
- Pirouz, B.; Mazzeo, D.; Palermo, S.A.; Naghib, S.N.; Turco, M.; Piro, P. CFD Investigation of Vehicle’s Ventilation Systems and Analysis of ACH in Typical Airplanes, Cars, and Buses. Sustainability 2021, 13, 6799. [Google Scholar] [CrossRef]
- Ramos-Sorroche, E.; Rubio-Aparicio, J.; Santa, J.; Guardiola, C.; Egea-Lopez, E. In-Cabin and Outdoor Environmental Monitoring in Vehicular Scenarios with Distributed Computing. Internet Things 2023, 25, 101009. [Google Scholar] [CrossRef]
- Luo, Q.; Liu, W.; Liao, J.; Gu, Z.; Fan, X.; Luo, Z.; Zhang, X.; Hang, J.; Ou, C. COVID-19 Transmission and Control in Land Public Transport: A Literature Review. Fundam. Res. 2023, 4, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Branco, T.B.S.; Pinto, A.J.S.; Sousa, S.I.V. Characterising Indoor Air Quality in Private Vehicle Cabins under Unprecedented Traffic Conditions during COVID-19 Lockdown. Build. Environ. 2024, 262, 111797. [Google Scholar] [CrossRef]
- Copat, C.; Cristaldi, A.; Fiore, M.; Grasso, A.; Zuccarello, P.; Signorelli, S.S.; Conti, G.O.; Ferrante, M. The Role of Air Pollution (PM and NO2) in COVID-19 Spread and Lethality: A Systematic Review. Environ. Res. 2020, 191, 110129. [Google Scholar] [CrossRef]
- Goh, C.C.; Kamarudin, L.M.; Zakaria, A.; Nishizaki, H.; Ramli, N.; Mao, X.; Syed Zakaria, S.M.M.; Kanagaraj, E.; Abdull Sukor, A.S.; Elham, M.F. Real-Time In-Vehicle Air Quality Monitoring System Using Machine Learning Prediction Algorithm. Sensors 2021, 21, 4956. [Google Scholar] [CrossRef]
- Manimuthu, A.; Dharshini, V.; Zografopoulos, I.; Priyan, M.K.; Konstantinou, C. Contactless Technologies for Smart Cities: Big Data, IoT, and Cloud Infrastructures. SN Comput. Sci. 2021, 2, 334. [Google Scholar] [CrossRef]
- Frączek, B.; Urbanek, A. Financial Inclusion as an Important Factor Influencing Digital Payments in Passenger Transport: A Case Study of EU Countries. Res. Transp. Bus. Manag. 2021, 41, 100691. [Google Scholar] [CrossRef]
- Sogbe, E.; Susilawati, S.; Pin, T.C. Scaling up Public Transport Usage: A Systematic Literature Review of Service Quality, Satisfaction and Attitude towards Bus Transport Systems in Developing Countries. Public Transp. 2024, 1–44. [Google Scholar] [CrossRef]
- Al-Qudah, A.A.; Al-Okaily, M.; Alqudah, G.; Ghazlat, A. Mobile Payment Adoption in the Time of the COVID-19 Pandemic. Electron. Commer. Res. 2024, 24, 427–451. [Google Scholar] [CrossRef]
- Korobeynikova, O.M.; Korobeynikov, D.A.; Lunyakov, O.V.; Shemet, E.S.; Popova, S.A. Retail Payments on Public Transportation under Conditions of COVID-19. AIP Conf. Proc. 2023, 2476, 040045. [Google Scholar]
- Subbarao, S.S.V.; Kadali, R. Impact of COVID-19 Pandemic Lockdown on the Public Transportation System and Strategic Plans to Improve PT Ridership: A Review. Innov. Infrastruct. Solut. 2021, 7, 97. [Google Scholar] [CrossRef]
- Cai, T.; Hong, X.; Lin, Z.; Zhao, W. Design and Implementation of Intelligent Bus-Stop Boards System. In Proceedings of the 2023 4th International Conference on Computer Engineering and Application (ICCEA), Hangzhou, China, 7–9 April 2023; pp. 396–399. [Google Scholar]
- Padrón Nápoles, V.M.; Gachet Páez, D.; Esteban Penelas, J.L.; García Pérez, O.; García Santacruz, M.J.; Martín de Pablos, F. Smart Bus Stops as Interconnected Public Spaces for Increasing Social Inclusiveness and Quality of Life of Elder Users. Smart Cities 2020, 3, 430–443. [Google Scholar] [CrossRef]
- Rosa, M.P.; Sousa, N.; Rodrigues, J.; Cavaleiro, R.; Lamarão, H. Sustainable Bus Stop for Inclusive and Smart Cities. In INCREaSE 2023: Advances in Sustainability Science and Technology; Semião, J.F.L.C., Sousa, N.M.S., da Cruz, R.M.S., Prates, G.N.D., Eds.; Springer: Cham, Switzerland, 2023; pp. 243–257. [Google Scholar]
Type of Crisis | Description | Example |
---|---|---|
Economic crisis | International economic problems that impact the stability of markets, nations, and societies. |
|
Environmental (ecological) crisis | Threats to ecosystems and human health caused by environmental pollution, climate change, and overexploitation of natural resources. | |
Health crisis | Public health threats from widespread diseases, limited access to healthcare, or events, such as pandemics, epidemics, and natural disasters. | |
Social crisis | Disruptions in societal functions, such as mass protests, social tensions, growing inequality, or challenges to social integration, leading to destabilization and conflict. | |
Military crisis | Armed conflicts or the threat of military force destabilizing regions and having global consequences. |
Type of Crisis | Distinguishing Symptoms | Impact on the Transport Sector |
---|---|---|
Economic crisis |
| |
Environmental (ecological) crisis |
| |
Health crisis |
| |
Social crisis |
| |
Military crisis |
|
Database | Searched Metadata | Entered Search Records |
---|---|---|
Scopus | Title, abstract, keywords | TITLE-ABS-KEY: (global OR economic OR environmental OR climate OR health OR social OR migration OR military OR pandemic) AND (crisis OR threats) AND (sustainable) AND (transport OR transportation) AND (development OR solution OR advances OR innovation) |
Google Scholar | Title, keywords | ((intitle: global OR keyword: global) OR (intitle: economic OR keyword: economic) OR (intitle: environmental OR keyword: environmental) OR (intitle: climate OR keyword: climate) OR (intitle: health OR keyword: health) OR (intitle: social OR keyword: social) OR (intitle: migration OR keyword: migration) OR (intitle: military OR keyword:military) OR (intitle: pandemic OR keyword: pandemic)) AND ((intitle: crisis OR keyword: crisis) OR (intitle: threats OR keyword: threats)) AND (intitle: sustainable OR keyword: sustainable) AND ((intitle: transport OR keyword: transport) OR (intitle: transportation OR keyword: transportation)) AND ((intitle: development OR keyword: development) OR (intitle: solution OR keyword: solution) OR (intitle: advances OR keyword: advances) OR (intitle: innovation OR keyword: innvation)) |
DOAJ | Title, abstract, keywords | ((TI: global OR ABS: global OR KEY: global) OR (TI: economic OR ABS: economic OR KEY: economic) OR (TI: environmental OR ABS: environmental OR KEY: environmental) OR (TI: climate OR ABS: climate OR KEY: climate) OR (TI: health OR ABS: health OR KEY: health) OR (TI: social OR ABS: social OR KEY: social) OR (TI: migration OR ABS: migration OR KEY: migration) OR (TI: military OR ABS: military OR KEY: military) OR (TI: pandemic OR ABS: pandemic OR KEY: pandemic)) AND ((TI: crisis OR ABS: crisis OR KEY: crisis) OR (TI: threats OR ABS: threats OR KEY: threats)) AND (TI: sustainable OR ABS: sustainable OR KEY: sustainable) AND ((TI: transport OR ABS: transport OR KEY: transport) OR (TI: transportation OR ABS: transportation OR KEY: transportation)) AND ((TI: development OR ABS: development OR KEY: development) OR (TI: solution OR ABS: solution OR KEY: solution) OR (TI: advances OR ABS: advances OR KEY: advances) OR (TI: innovation OR ABS: innvation OR KEY: innovation)) |
IEEE | Title, abstract, keywords | (“All Metadata”: global OR economic OR environmental OR climate OR health OR social OR migration OR military OR pandemic) AND (“All Metadata”: crisis OR threats) AND (“All Metadata”: sustainable) AND (“All Metadata”: transport OR transportation) AND (“All Metadata”: development OR solution OR advances OR innovation) |
Database | Scopus | Google Scholar | DOAJ | IEEE | Other Sources | Sum |
---|---|---|---|---|---|---|
Number of studies | 161 | 143 | 57 | 123 | 8 | 492 |
Inclusion Criteria | Justification |
---|---|
Publication in a peer-reviewed journal | Articles from peer-reviewed journals reflect the current state of knowledge of the scientific community in a given research area |
The article describes the latest solutions for the development of sustainable transport | The aim of the study is to identify the latest solutions in the development of sustainable transport and indicate their importance in the event of global crises |
Paper presents the possibilities of using modern technologies in transport in the event of crises | |
Exclusion Criteria | Justification |
No full text available | An article is only relevant to the review if the full text is available |
The article is not written in English | English is a commonly used language in the scientific community and is, therefore, understandable to the authors |
Studies were published before 2020 | The study presents recent solutions in transport |
Category Group | Category | Information Obtained |
---|---|---|
Descriptive (description and differentiation of studies) | Publication date | Year of publication |
Journal | Name of the journal | |
Author | Names and surnames of authors | |
Title | Full title of the paper | |
Thematic (classification of solutions) | Technologies in vehicle drives | Information on solutions in the area of sustainable transport development that can increase the stability of the economy and the resilience of the transport sector to potential global crises |
Intelligent transport systems (ITS) | ||
Innovations in logistics and supplies | ||
Integration and management of transport systems | ||
Development of transport infrastructure | ||
Modern solutions in vehicles | ||
Advances in public transport |
Category | Solution | References |
---|---|---|
Technologies in vehicle drives | Battery electric vehicles (BEV) | [29,101,102,103,104,105,106,107,108,109,110,111] |
Fuel cell electric vehicles (FCEV) | ||
Plug-in hybrid electric vehicles (PHEV) | ||
Biofuel-powered vehicles | [112,113,114,115] | |
Solar-powered vehicles | [116,117,118,119] | |
Compressed air vehicles | [120,121,122,123] | |
Intelligent transport systems (ITS) | Autonomous vehicles (AV) | [124,125,126,127,128,129,130,131] |
Traffic management systems (TMS) | [31,132,133,134,135,136,137] | |
Emissions’ monitoring and control systems | [138,139,140,141,142,143] | |
Real-time mobility management systems | [144,145,146,147] | |
Smart lighting systems | [148,149,150,151,152] | |
Innovations in logistics and supplies | Drone-based logistics | [23,153,154,155,156,157,158,159,160,161] |
Autonomous trucks | [36,162,163,164,165,166] | |
The use of blockchain | [167,168,169,170,171,172,173] | |
Last-mile logistics solutions | [35,174,175,176,177,178,179] | |
Integration and management of transport systems | MaaS (Mobility as a Service) | [37,180,181,182,183,184,185,186,187] |
Intelligent fleet management systems | [188,189,190,191,192,193,194,195,196,197] | |
Real-time public transport management | [38,39,198,199,200,201,202] | |
Smart parking systems (SPS) | [40,203,204,205,206,207,208,209,210,211] | |
Development of transport infrastructure | Infrastructure for electric vehicles | [212,213,214,215,216,217,218,219] |
Smart roads | [24,41,220,221,222,223,224,225] | |
Green infrastructure in transport | [226,227,228,229,230,231,232,233,234,235] | |
Modern solutions in vehicles | Connected car | [43,236,237,238,239,240,241,242,243,244,245] |
Vehicle-to-Everything (V2X) | [188,246,247,248,249,250,251,252,253,254,255,256] | |
Advanced driver assistance systems (ADAS) | [44,257,258,259,260,261,262,263,264,265] | |
Modular vehicles | [266,267,268,269,270,271,272,273,274,275,276,277] | |
Advances in public transport | Autonomous buses | [45,278,279,280,281,282,283,284] |
On-demand public transport | [46,47,146,285,286,287,288] | |
In-vehicle air quality monitoring systems | [289,290,291,292,293,294,295,296] | |
Contactless payment systems | [293,297,298,299,300,301,302] | |
Smart stops and stations | [48,49,303,304,305] |
Solution | Role in Case of Potential Crises |
---|---|
Battery electric vehicles (BEV) |
|
Fuel cell electric vehicles (FCEV) | |
Plug-in hybrid electric vehicles (PHEV) | |
Biofuel-powered vehicles |
|
Solar-powered vehicles |
|
Compressed air vehicles |
|
Solution | Role in Case of Potential Crises |
---|---|
Autonomous vehicles |
|
Traffic management systems |
|
Emission monitoring and control systems |
|
Real-time mobility management systems |
|
Smart lighting systems |
|
Solution | Role in Case of Potential Crises |
---|---|
Drone-based logistics |
|
Autonomous trucks |
|
The use of blockchain |
|
Last-mile logistics solutions |
|
Solution | Role in Case of Potential Crises |
---|---|
Mobility as a Service (MaaS) |
|
Intelligent fleet management systems |
|
Real-time public transport management |
|
Smart parking systems |
|
Solution | Role in Case of Potential Crises |
---|---|
Infrastructure for electric vehicles |
|
Smart roads |
|
Green infrastructure in transport |
|
Solution | Role in Case of Potential Crises |
---|---|
Connected car |
|
Vehicle-to-Everything (V2X) |
|
Advanced driver assistance systems (ADAS) |
|
Modular vehicles |
|
Solution | Role in Case of Potential Crises |
---|---|
Autonomous buses |
|
On-demand public transport |
|
In-vehicle air quality monitoring systems |
|
Contactless payment systems |
|
Smart stops and stations |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobczuk, S.; Borucka, A. Recent Advances for the Development of Sustainable Transport and Their Importance in Case of Global Crises: A Literature Review. Appl. Sci. 2024, 14, 10653. https://doi.org/10.3390/app142210653
Sobczuk S, Borucka A. Recent Advances for the Development of Sustainable Transport and Their Importance in Case of Global Crises: A Literature Review. Applied Sciences. 2024; 14(22):10653. https://doi.org/10.3390/app142210653
Chicago/Turabian StyleSobczuk, Sebastian, and Anna Borucka. 2024. "Recent Advances for the Development of Sustainable Transport and Their Importance in Case of Global Crises: A Literature Review" Applied Sciences 14, no. 22: 10653. https://doi.org/10.3390/app142210653
APA StyleSobczuk, S., & Borucka, A. (2024). Recent Advances for the Development of Sustainable Transport and Their Importance in Case of Global Crises: A Literature Review. Applied Sciences, 14(22), 10653. https://doi.org/10.3390/app142210653