Evaluation of the Thermal Energy Potential of Waste Products from Fruit Preparation and Processing Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Samples
2.2. Physical Properties
- —LHV of the evaluated sample, MJ·kg−1;
- —HHV of the original sample, MJ·kg−1;
- γ—heat of vaporization of 1% of H2O, MJ·kg−1, at 25 °C, γ = 0.02442 MJ·kg−1;
- 8.94—hydrogen to water mass conversion ratio;
- —total water content in the original sample, %;
- —total hydrogen content in the original sample, %.
2.3. Experimental Methods
2.3.1. Determination of Carbon, Hydrogen and Oxygen
2.3.2. Determination of Major and Minor Elements, Total Sulphur and Total Chlorine
2.4. Methods of Statistical Analysis
3. Results and Discussion
3.1. Characterization of Raw Materials for Energy Utilization
3.2. Chemical Composition of Raw Materials
3.3. Assessment of Energy Generation Potential
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The EU’s Energy Dependence: Facts and Figures. Available online: https://www.europarl.europa.eu/news/en/headlines/economy/20140718STO53032/the-eu-s-energy-dependence-facts-and-figures (accessed on 14 October 2023).
- Mandley, S.J.; Wicke, B.; Junginger, M.; van Vuuren, D.P.; Daioglou, V. The implications of geopolitical, socioeconomic, and regulatory constraints on European bioenergy imports and associated greenhouse gas emissions to 2050. Biofuels Bioprod. Biorefining 2022, 16, 1551–1567. [Google Scholar] [CrossRef]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Recast). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02018L2001-20220607 (accessed on 13 October 2023).
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions ‘Fit for 55’: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0550 (accessed on 16 November 2023).
- Raj, T.; Sompura, S.; Chandrasekhar, K.; Singh, S.K.; Pandey, S.; Singh, L.K.; Rajput, M.S.; Kumar, D.; Bhatia, S.K.; Patel, A.K.; et al. Technology development and challenges for the transformation of municipal solid waste into sustainable energy production. Biomass Bioenerg. 2023, 178, 15. [Google Scholar] [CrossRef]
- IEA (International Energy Agency). World Energy Balances: Overview. 2021. Available online: https://www.iea.org/reports/world-energy-balances-overview (accessed on 12 November 2023).
- Alves, J.L.F.; Da Silva, J.C.G.; da Silva, V.F.; Alves, R.F.; Galdino, W.V.D.; Andersen, S.L.F.; De Sena, R.F. Determination of the Bioenergy Potential of Brazilian Pine-Fruit Shell via Pyrolysis Kinetics, Thermodynamic Study, and Evolved Gas Analysis. Bioenergy Res. 2019, 12, 168–183. [Google Scholar] [CrossRef]
- Mao, G.Z.; Zou, H.Y.; Chen, G.Y.; Du, H.B.; Zuo, J. Past, current and future of biomass energy research: A bibliometric analysis. Renew. Sustain. Energ. Rev. 2015, 52, 1823–1833. [Google Scholar] [CrossRef]
- Arena, U.; Di Gregorio, F.; Santonastasi, M. A techno-economic comparison between two design configurations for a small scale, biomass-to-energy gasification based system. Chem. Eng. J. 2010, 162, 580–590. [Google Scholar] [CrossRef]
- European Biofuels Technology Platform: Strategic Research Agenda Update. 2010. Available online: https://www.etipbioenergy.eu/images/SRA_2010_update_web.pdf (accessed on 13 November 2023).
- Mata-Sánchez, J.; Pérez-Jiménez, J.A.; Díaz-Villanueva, M.J.; Serrano, A.; Núñez-Sánchez, N.; López-Giménez, F.J. Development of olive stone quality system based on biofuel energetic parameters study. Renew. Energy 2014, 66, 251–256. [Google Scholar] [CrossRef]
- Petlickait, R.; Jasinskas, A.; Domeika, R.; Pedisius, N.; Lemanas, E.; Praspaliauskas, M.; Kukharets, S. Evaluation of the Processing of Multi-Crop Plants into Pelletized Biofuel and Its Use for Energy Conversion. Processes 2023, 11, 421. [Google Scholar] [CrossRef]
- García-Maraver, A.; Popov, V.; Zamorano, M. A review of European standards for pellet quality. Renew. Energy 2011, 36, 3537–3540. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019; Available online: https://www.fao.org/3/ca6030en/ca6030en.pdf (accessed on 15 November 2023).
- Oliveira, T.C.G.; Caleja, C.; Oliveira, M.B.P.P.; Pereira, E.; Barros, L. Reuse of fruits and vegetables biowaste for sustainable development of natural ingredients. Food Biosci. 2023, 53, 102711. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Farag, M.A. Mediterranean Fruits Bio-Wastes: Chemistry, Functionality and Technological Applications; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
- Marić, M.; Grassino, A.N.; Zhu, Z.; Barba, F.J.; Brnčić, M.; Rimac Brnčić, S. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci. Technol. 2018, 76, 28–37. [Google Scholar] [CrossRef]
- Galanakis, C.M. Valorization of Fruit Processing By-Products; Academic Press Ltd.: Cambridge, MA, USA, 2019; pp. 1–309. [Google Scholar]
- Obernberger, I.; Thek, G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Pradhan, P.; Arora, A.; Mahajani, S.M. Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy Sustain. Dev. 2018, 43, 1–14. [Google Scholar] [CrossRef]
- ISO 18135; Solid Biofuels—Sampling. ISO (International Organization for Standardization): Geneva, Switzerland, 2017.
- Bublíková, L. Situation and Outlook Report—Grape Vine and Wine; The Ministry of Agriculture of the Czech Republic: Prague, Czech Republic, 2023; p. 64.
- Němcová, V.; Buchtová, I. Situation and Outlook Report—Fruit; The Ministry of Agriculture of the Czech Republic: Prague, Czech Republic, 2022; p. 90.
- ISO 17828; Solid Biofuels—Determination of Bulk Density. ISO (International Organization for Standardization): Geneva, Switzerland, 2015.
- ISO 18134-2; Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 2: Total Moisture—Simplified Method. ISO (International Organization for Standardization): Geneva, Switzerland, 2015.
- ISO 18122; Solid Biofuels—Determination of Ash Content. ISO (International Organization for Standardization): Geneva, Switzerland, 2022.
- ISO 18125; Solid Biofuels—Determination of Calorific Value. ISO (International Organization for Standardization): Geneva, Switzerland, 2017.
- ISO 1928; Coal and Coke—Determination of Gross Calorific Value. ISO (International Organization for Standardization): Geneva, Switzerland, 2020.
- ISO 16948; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. ISO (International Organization for Standardization): Geneva, Switzerland, 2015.
- ISO 16967; Solid Biofuels—Determination of Major Elements—Al, Ca, Fe, Mg, P, K, Si, Na and Ti. ISO (International Organization for Standardization): Geneva, Switzerland, 2015.
- ISO 16968; Solid Biofuels—Determination of Minor Elements. ISO (International Organization for Standardization): Geneva, Switzerland, 2015.
- ISO 16994; Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. ISO (International Organization for Standardization): Geneva, Switzerland, 2016.
- Martini, S.; Kharismadewi, D.; Mardwita; Ginting, Y.R. Biomass potential as an alternative resource for valuable products in the perspective of environmental sustainability and a circular economy system. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Virtual, 17–19 August 2022; p. 012012. [Google Scholar] [CrossRef]
- Giwa, A.-S.; Sheng, M.; Maurice, N.-J.; Liu, X.; Wang, Z.; Chang, F.; Huang, B.; Wang, K. Biofuel Recovery from Plantain and Banana Plant Wastes: Integration of Biochemical and Thermochemical Approach. J. Renew. Mater. 2023, 11, 2593–2629. [Google Scholar] [CrossRef]
- Madadian, E.; Rahimi, J.; Mohebbi, M.; Simakov, D.S.A. Grape pomace as an energy source for the food industry: A thermochemical and kinetic analysis. Food Bioprod. Process. 2022, 132, 177–187. [Google Scholar] [CrossRef]
- Correia, L.A.D.; da Silva, J.E.; Calixto, G.Q.; Melo, D.M.D.; Braga, R.M. Pachira aquatica fruits shells valorization: Renewables phenolics through analytical pyrolysis study (Py-GC/MS). Cienc. Rural 2022, 52, 11. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Sieniawska, E.; Ortan, A.; Fierascu, I.; Xiao, J. Fruits By-Products—A Source of Valuable Active Principles. A Short Review. Front. Bioeng. Biotechnol. 2020, 8, 319. [Google Scholar] [CrossRef] [PubMed]
- Arulprakasajothi, M.; Beemkumar, N.; Parthipan, J.; Battu, N.R. Investigating the Physio-chemical Properties of Densified Biomass Pellet Fuels from Fruit and Vegetable Market Waste. Arab. J. Sci. Eng. 2020, 45, 563–574. [Google Scholar] [CrossRef]
- ISO 17225-6; Solid Biofuels—Fuel Specifications and Classes—Part 6: Graded Non-Woody Pellets. ISO (International Organization for Standardization): Geneva, Switzerland, 2021.
- Osman, A.I.; Young, T.J.; Farrell, C.; Harrison, J.; Al-Muhtaseb, A.a.H.; Rooney, D.W. Physicochemical Characterization and Kinetic Modeling Concerning Combustion of Waste Berry Pomace. ACS Sustain. Chem. Eng. 2020, 8, 17573–17586. [Google Scholar] [CrossRef]
- Atimtay, A.T.; Kaynak, B. Co-combustion of peach and apricot stone with coal in a bubbling fluidized bed. Fuel Process. Technol. 2008, 89, 183–197. [Google Scholar] [CrossRef]
- Lahboubi, N.; Kerrou, O.; Sarh, B.; Boushaki, T.; Belandria, V.; El Khattabi, Y.; El Bari, H. Comparative study of energetic potential from anaerobic digestion and direct combustion of date palm wastes. Clean Energy 2023, 7, 747–754. [Google Scholar] [CrossRef]
- Ozturk, H.H.; Bascetincelik, A. Energy exploitation of agricultural biomass potential in Turkey. Energy Explor. Exploit. 2006, 24, 95–111. [Google Scholar] [CrossRef]
- Nasrin, A.B.; Vijaya, S.; Loh, S.K.; Astimar, A.A.; Lim, W.S. Quality compliance and environmental impact assessment of commercial empty fruit bunch (EFB) pellet fuel in Malaysia. J. Oil Palm Res. 2017, 29, 570–578. [Google Scholar] [CrossRef]
- Moreira, B.R.d.A.; Viana, R.d.S.; Cruz, V.H.; Magalhães, A.C.; Miasaki, C.T.; Figueiredo, P.A.M.d.; Lisboa, L.A.M.; Ramos, S.B.; Sánchez, D.E.J.; Teixeira Filho, M.C.M.; et al. Second-Generation Lignocellulosic Supportive Material Improves Atomic Ratios of C:O and H:O and Thermomechanical Behavior of Hybrid Non-Woody Pellets. Molecules 2020, 25, 4219. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, Y.; Zhi, D.; Lin, Y.; He, K.; Liu, B.; Mao, H. Assessment of combustion and emission behavior of corn straw biochar briquette fuels under different temperatures. J. Environ. Manag. 2019, 250, 109399. [Google Scholar] [CrossRef] [PubMed]
- Holubcik, M.; Durcansky, P.; Jandacka, J.; Najser, J.; Klacko, A. Novel Design for Rotary Burner for Low-Quality Pellets. Appl. Sci. 2023, 13, 3053. [Google Scholar] [CrossRef]
- Bassam, N.E. Handbook of Bioenergy Crops: A Complete Reference to Species, Development and Application; International Institute for Environment and Development: London, UK, 2010; Volume 47, p. 516. [Google Scholar]
- Terzopoulou, P.; Kamperidou, V.; Lykidis, C. Cypress Wood and Bark Residues Chemical Characterization and Utilization as Fuel Pellets Feedstock. Forests 2022, 13, 1303. [Google Scholar] [CrossRef]
- Kaliyan, N.; Morey, R.V. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour. Technol. 2010, 101, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Raveendran, K.; Ganesh, A.; Khilar, K.C. Influence of mineral matter on biomass pyrolysis characteristics. Fuel 1995, 74, 1812–1822. [Google Scholar] [CrossRef]
- Fiori, L.; Florio, L. Gasification and Combustion of Grape Marc: Comparison Among Different Scenarios. Waste Biomass Valorization 2010, 1, 191–200. [Google Scholar] [CrossRef]
- Lipiński, A.J.; Lipiński, S.; Kowalkowski, P. Utilization of post-production waste from fruit processing for energetic purposes: Analysis of Polish potential and case study. J. Mater. Cycles Waste Manag. 2018, 20, 1878–1883. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Zheng, N.-Y. Torrefaction of fruit waste seed and shells for biofuel production with reduced CO2 emission. Energy 2021, 225, 120226. [Google Scholar] [CrossRef]
- Bot, B.V.; Axaopoulos, P.J.; Sakellariou, E.I.; Sosso, O.T.; Tamba, J.G. Energetic and economic analysis of biomass briquettes production from agricultural residues. Appl. Energy 2022, 321, 119430. [Google Scholar] [CrossRef]
- Martis, R.; Al-Othman, A.; Tawalbeh, M.; Alkasrawi, M. Energy and Economic Analysis of Date Palm Biomass Feedstock for Biofuel Production in UAE: Pyrolysis, Gasification and Fermentation. Energies 2020, 13, 5877. [Google Scholar] [CrossRef]
- Encinar, J.M.; González, J.F.; Martínez, G. Energetic use of the tomato plant waste. Fuel Process. Technol. 2008, 89, 1193–1200. [Google Scholar] [CrossRef]
- Tanoh, T.S.; Ait Oumeziane, A.; Lemonon, J.; Escudero Sanz, F.J.; Salvador, S. Green Waste/Wood Pellet Pyrolysis in a Pilot-Scale Rotary Kiln: Effect of Temperature on Product Distribution and Characteristics. Energy Fuels 2020, 34, 3336–3345. [Google Scholar] [CrossRef]
- Mozhiarasi, V.; Speier, C.J.; Rose, P.M.B.; Mondal, M.M.; Pragadeesh, S.; Weichgrebe, D.; Srinivasan, S.V. Variations in generation of vegetable, fruit and flower market waste and effects on biogas production, exergy and energy contents. J. Mater. Cycles Waste Manag. 2019, 21, 713–728. [Google Scholar] [CrossRef]
- Zhai, M.; Li, X.; Yang, D.; Ma, Z.; Dong, P. Ash fusion characteristics of biomass pellets during combustion. J. Clean. Prod. 2022, 336, 130361. [Google Scholar] [CrossRef]
- Mani, S.; Tabil, L.G.; Sokhansanj, S. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 2006, 30, 648–654. [Google Scholar] [CrossRef]
- Iranshahi, K.; Psarianos, M.; Rubinetti, D.; Onwude, D.I.; Schlüter, O.K.; Defraeye, T. Impact of pre-treatment methods on the drying kinetics, product quality, and energy consumption of electrohydrodynamic drying of biological materials. Innov. Food Sci. Emerg. Technol. 2023, 85, 10. [Google Scholar] [CrossRef]
- Priedniece, V.; Prodanuks, T.; Fawzy, M.M.; Kazulis, V.; Veidenbergs, I.; Blumberga, D. Biomass co-firing laboratory equipment. In Proceedings of the International Scientific Conference on Environmental and Climate Technologies (CONECT), Riga, Latvia, 12–14 October 2016; pp. 390–395. [Google Scholar]
- Kalisz, S.; Pronobis, M.; Baxter, D. Co-firing of biomass waste-derived syngas in coal power boiler. Energy 2008, 33, 1770–1778. [Google Scholar] [CrossRef]
- Sami, M.; Annamalai, K.; Wooldridge, M. Co-firing of coal and biomass fuel blends. Prog. Energy Combust. Sci. 2001, 27, 171–214. [Google Scholar] [CrossRef]
- Verma, M.; Loha, C.; Sinha, A.N.; Chatterjee, P.K. Drying of biomass for utilising in co-firing with coal and its impact on environment—A review. Renew. Sust. Energ. Rev. 2017, 71, 732–741. [Google Scholar] [CrossRef]
- Flach, B.; Bolla, S. European Union: EU Wood Pellet Annual; E42022-0049; USDA: The Hague, The Netherlands, 2022.
- IEA (International Energy Agency). Key Energy Statistics. 2020. Available online: https://www.iea.org/countries/czechia (accessed on 15 November 2023).
Fruit | Processed Waste Product | Amount of Harvest or Import in the Czech Republic (Tonnes) | Content of Waste Products in the Fruit (g·kg−1) | Potential Amount of Waste Material (Tonnes) |
---|---|---|---|---|
Raspberries (Rubus idaeus) | pomace | 8753 | 421 | 3685 |
Sea-buckthorn (Hippophae rhamnoides) | pomace | 783 | 323 | 253 |
Grape vine (Vitis vinifera) | pomace | 92,000 | 352 | 32,384 |
Grape vine (Vitis vinifera) | seed cake | 92,000 | 85 | 7820 |
Almond (Prunus dulcis) | shell | 4440 | 315 | 1399 |
Pistachio (Pistacia vera) | shell | 1008 | 124 | 125 |
Almond (Prunus dulcis) | seed coat | 4740 | 28 | 133 |
Peach (Prunus persica) | stone | 5731 | 124 | 711 |
Plum (Prunus domestica) | stone | 28,269 | 78 | 2205 |
Date (Phoenix dactylifera) | stone | 1421 | 89 | 126 |
Sum | 239,145 | 48,840 |
Fruit Species and Characteristics | Moisture at Collection (wt. %) | Average Particle Size (mm) | Ash (wt. %) | HHV (MJ·kg−1) | LHV (MJ·kg−1) | Bulk Density (kg·m−3) |
---|---|---|---|---|---|---|
Raspberry pomace | 19.6 | 0.8 | 4.8 ± 0.2 d | 18.8 ± 0.1 c | 15.79 ± 0.07 cd | 486 |
Sea-buckthorn pomace | 21.7 | 1.9 | 2.78 ± 0.05 ab | 21.0 ± 0.1 a | 17.82 ± 0.17 a | 437 |
Grape vine pomace | 36.2 | 2.7 | 2.8 ± 0.6 ab | 20.4 ± 0.5 a | 18.0 ± 0.8 a | 496 |
Grape vine seed cake | 8.0 | 67.4 | 3.5 ± 0.6 bd | 20.84 ± 0.15 a | 17.85 ± 0.24 a | 1163 |
Almond shell | 6.7 | 43.9 | 10.0 ± 0.8 e | 17.51 ± 0.04 b | 14.83 ± 0.05 b | 362 |
Pistachio shell | 4.7 | 19.3 | 2.07 ± 0.12 ab | 17.23 ± 0.03 b | 14.9 ± 0.1 bc | 467 |
Almond seed coat | 18.2 | 50.5 | 19 ± 1 f | 20.49 ± 0.04 a | 17.9 ± 0.2 a | 512 |
Peach stone | 9.7 | 39.4 | 0.51 ± 0.01 c | 19.57 ± 0.06 d | 17.14 ± 0.15 f | 523 |
Plum stone | 7.9 | 27.6 | 1.9 ± 0.6 ac | 18.9 ± 0.1 c | 16.05 ± 0.24 de | 547 |
Date stone | 17.4 | 30.7 | 1.47 ± 0.04 ac | 17.75 ± 0.04 b | 15.1 ± 0.3 bc | 503 |
Fruit Species and Characteristics | C (%, Dry Matter) | O (%, Dry Matter) | H (%, Dry Matter) | O:C |
---|---|---|---|---|
Raspberry pomace | 51.9 ± 2.0 bc | 33.46 ± 0.15 d | 6.5 ± 0.4 b | 0.65 |
Sea-buckthorn pomace | 54.9 ± 0.9 b | 29 ± 1 e | 6.82 ± 0.15 b | 0.64 |
Grape vine pomace | 53.28 ± 0.12 b | 35 ± 1 ad | 5.3 ± 0.8 a | 0.53 |
Grape vine seed cake | 53.0 ± 0.3 b | 40.1 ± 0.4 c | 8.61 ± 0.21 c | 0.80 |
Almond shell | 46.4 ± 0.9 a | 37.1 ± 0.9 ab | 5.78 ± 0.11 ab | 0.69 |
Pistachio shell | 47.43 ± 0.24 a | 40.28 ± 0.21 c | 5.0 ± 0.3 a | 0.81 |
Almond seed coat | 45.8 ± 0.3 a | 38.2 ± 0.4 bc | 5.6 ± 0.4 ab | 0.85 |
Peach stone | 52.5 ± 0.5 bc | 36 ± 2 ab | 5.2 ± 0.4 a | 0.83 |
Plum stone | 49 ± 2 ac | 37.1 ± 0.9 ab | 6.1 ± 0.4 ab | 0.75 |
Date stone | 49 ± 2 ac | 39.8 ± 0.3 c | 5.8 ± 0.6 ab | 0.76 |
Element Content (mg·kg−1) | Raspberry Pomace | Sea-Buckthorn Pomace | Grape Vine Pomace | Grape Vine Seed Cake | Almond Shell | Pistachio Shell | Almond Seed Coat | Peach Stone | Plum Stone | Date Stone | Limit Value ISO 17225-6 |
---|---|---|---|---|---|---|---|---|---|---|---|
Mo | 12.7 ± 1.2 | 9.2 ± 1.3 | 9.4 ± 1.1 | 10.6 ± 1.2 | 10.3 ± 1.1 | 12.5 ± 1.1 | 11.7 ± 1.1 | 12.5 ± 1.1 | 11 ± 1 | 10.6 ± 1.1 | |
Zr | 11.6 ± 1.0 | 11.3 ± 1.1 | 6.7 ± 0.9 | 9.4 ± 1.0 | 9.8 ± 0.9 | 8.9 ± 0.8 | 9.5 ± 0.9 | 11.3 ± 0.8 | 10.1 ± 0.7 | 10.1 ± 0.8 | |
Sr | 30.3 ± 1.0 | 11.3 ± 1.3 | 20.7 ± 0.8 | 23.9 ± 0.9 | 16.9 ± 0.8 | 6 ± 0.5 | 17.3 ± 0.8 | 8.0 ± 0.5 | 4.4 ± 0.5 | 10.1 ± 0.6 | |
U | 5.6 ± 1.7 | ND | ND | ND | ND | ND | ND | 6.5 ± 1.3 | ND | 3 ± 1.2 | |
Rb | 12.4 ± 0.9 | 9.3 ± 1 | 5.6 ± 0.6 | 6.3 ± 0.8 | 4.0 ± 0.7 | 3.3 ± 0.6 | 4 ± 0.6 | 1.9 ± 0.5 | 1.3 ± 0.5 | 5.1 ± 0.6 | |
Zn | 43.5 ± 4.1 | 58 ± 9 | 12 ± 3 | 14.9 ± 3.0 | ND | ND | 7 ± 3 | 7.2 ± 2.5 | 11 ± 2. | 19 ± 3 | 100 |
W | 216 ± 26 | 427 ± 36 | ND | ND | 140 ± 20 | 197 ± 20 | 195 ± 23 | 81 ± 18 | 180 ± 18 | 76 ± 17 | |
Cu | 81 ± 7 | 35 ± 13 | 28.2 ± 4.3 | 30 ± 5 | 22 ± 5 | 19 ± 5 | 28 ± 6 | 17 ± 5 | 29 ± 5 | 14 ± 4 | 20 |
Fe | 1720 ± 33 | 3500 ± 70 | 908 ± 17 | 560 ± 20 | 570 ± 19 | 140 ± 12 | 319 ± 17 | 980 ± 21 | 110 ± 11 | 513 ± 16 | |
Ti | 400 ± 26 | 500 ± 31 | 437 ± 13 | 250 ± 19 | 260 ± 16 | 122 ± 13 | 151 ± 17 | 220 ± 19 | 76 ± 15 | 253 ± 17 | |
Ca | 53,700 ± 500 | 52,500 ± 500 | 34,600 ± 300 | 27,900 ± 300 | 30,400± 400 | 5960 ± 70 | 13,100 ± 300 | 23,400 ± 300 | 6530 ± 80 | 20,800 ± 300 | |
K | 46,300 ± 300 | 41,900 ± 300 | 21,350 ± 120 | 11,400 ± 130 | 74,500 ± 400 | 7000 ± 100 | 70,600 ± 400 | 6500 ± 120 | 11,100 ± 130 | 14,000 ± 150 | |
S | 5300 ± 110 | 1000 ± 160 | 4280 ± 50 | 3450 ± 60 | 1600 ± 80 | 1750 ± 90 | 1330 ± 80 | 2370 ± 70 | 2440 ± 70 | 3010 ± 70 | 3000 |
Sb | ND | 11 ± 7 | ND | ND | ND | ND | ND | 6 ± 4 | ND | ND | |
Sn | 15 ± 5 | 9 ± 6 | ND | ND | ND | ND | 8 ± 4 | 7 ± 4 | 6 ± 3 | 5 ± 4 | |
Cd | 25 ± 3 | 23 ± 4 | ND | ND | ND | ND | 17 ± 3 | 25 ± 3 | 17 ± 2 | 19 ± 2 | 0.5 |
Ag | 8.4 ± 1.7 | 10.4 ± 2.1 | ND | ND | ND | ND | 3.6 ± 1.3 | 9.1 ± 1.3 | 3.7 ± 1.1 | 6.2 ± 1.2 | |
Pd | 17.1 ± 2.1 | 14.2 ± 2.4 | ND | ND | ND | ND | 7.1 ± 1.5 | 15.3 ± 1.6 | 8.1 ± 1.2 | 10.2 ± 1.3 | |
Nb | 16.5 ± 1.3 | 16.1 ± 1.6 | 11.4 ± 1.7 | 12.1 ± 1.2 | 12.7 ± 1.1 | 13.6 ± 1.1 | 14.1 ± 1.2 | 15.3 ± 1.1 | 14.4 ± 1.1 | 12.8 ± 1.1 | |
Al | 7000 ± 500 | 9300 ± 700 | 3300 ± 210 | 3500 ± 230 | 5900 ± 400 | 1800 ± 300 | 1800 ± 400 | 5340 ± 300 | 1690 ± 230 | 4000 ± 300 | |
P | 10,500 ± 200 | 14,700 ± 300 | 6000 ± 100 | 6150 ± 110 | 6180 ± 150 | 5300 ± 160 | 8520 ± 170 | 6380 ± 140 | 5630 ± 120 | 5620 ± 130 | |
Si | 41,100 ± 500 | 57,400 ± 700 | 29,800 ± 300 | 22,200 ± 300 | 33,800 ± 500 | 10,400 ± 300 | 11,200 ± 300 | 33,500 ± 400 | 7660 ± 220 | 26,700 ± 300 | |
Cl | 1000 ± 38 | 2160 ± 50 | 90 ± 13 | 95 ± 16 | 600 ± 30 | 40,900 ± 170 | 1000 ± 35 | 1400 ± 30 | 3120 ± 40 | 3610 ± 40 | 3000 |
Mg | ND | ND | ND | ND | ND | ND | ND | 3900 ± 1100 | 2300 ± 900 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bača, P.; Mašán, V.; Vanýsek, P.; Burg, P.; Binar, T.; Suchý, P.; Vaňková, L. Evaluation of the Thermal Energy Potential of Waste Products from Fruit Preparation and Processing Industry. Appl. Sci. 2024, 14, 1080. https://doi.org/10.3390/app14031080
Bača P, Mašán V, Vanýsek P, Burg P, Binar T, Suchý P, Vaňková L. Evaluation of the Thermal Energy Potential of Waste Products from Fruit Preparation and Processing Industry. Applied Sciences. 2024; 14(3):1080. https://doi.org/10.3390/app14031080
Chicago/Turabian StyleBača, Petr, Vladimír Mašán, Petr Vanýsek, Patrik Burg, Tomáš Binar, Pavel Suchý, and Lenka Vaňková. 2024. "Evaluation of the Thermal Energy Potential of Waste Products from Fruit Preparation and Processing Industry" Applied Sciences 14, no. 3: 1080. https://doi.org/10.3390/app14031080
APA StyleBača, P., Mašán, V., Vanýsek, P., Burg, P., Binar, T., Suchý, P., & Vaňková, L. (2024). Evaluation of the Thermal Energy Potential of Waste Products from Fruit Preparation and Processing Industry. Applied Sciences, 14(3), 1080. https://doi.org/10.3390/app14031080