Enhancing Freeway Traffic Capacity: The Impact of Autonomous Vehicle Platooning Intensity
Abstract
:1. Introduction
2. Conceptual Framework
2.1. Basic Capacity Model
2.2. Headway Consideration
2.3. Platooning Intensity with Market Penetration Rate
2.4. Theoretical Capacity with Mixed Flow
3. Numerical Analysis
3.1. Literature Review of Reaction Time Selection
3.2. Parameters for CAVs and HVs
3.3. Numerical Analysis of Mixed Flow
4. Case Study
4.1. Overview of Simulation
4.2. Simulation Framework and the Selection of Parameters
4.3. Simulation Result
4.4. Simulation Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahmassani, H.S. 50th Anniversary Invited Article—Autonomous Vehicles and Connected Vehicle Systems: Flow and Operations Considerations. Transp. Sci. 2016, 50, 1140–1162. [Google Scholar] [CrossRef]
- Skrúcaný, T.; Milojević, S.; Semanová, Š.; Čechovič, T.; Figlus, T.; Synák, F. The Energy Efficiency of Electric Energy as a Traction Used in Transport. Transp. Tech. Technol. 2018, 14, 9–14. [Google Scholar] [CrossRef]
- Rindone, C. Sustainable Mobility as a Service: Supply Analysis and Test Cases. Information 2022, 13, 351. [Google Scholar] [CrossRef]
- Li, T.; Guo, F.; Krishnan, R.; Sivakumar, A.; Polak, J. Right-of-way reallocation for mixed flow of autonomous vehicles and human driven vehicles. Transp. Res. Part C Emerg. Technol. 2020, 115, 102630. [Google Scholar] [CrossRef]
- Liu, H.; Kan, X.; Shladover, S.E.; Lu, X.-Y.; Ferlis, R.E. Modeling impacts of Cooperative Adaptive Cruise Control on mixed traffic flow in multi-lane freeway facilities. Transp. Res. Part C Emerg. Technol. 2018, 95, 261–279. [Google Scholar] [CrossRef]
- Roncoli, C.; Papamichail, I.; Papageorgiou, M. Model Predictive Control for Motorway Traffic with Mixed Manual and VACS-equipped Vehicles. Transp. Res. Procedia 2015, 10, 452–461. [Google Scholar] [CrossRef]
- Martin-Gasulla, M.; Sukennik, P.; Lohmiller, J. Investigation of the Impact on Throughput of Connected Autonomous Vehicles with Headway Based on the Leading Vehicle Type. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 617–626. [Google Scholar] [CrossRef]
- Talebpour, A.; Mahmassani, H.S. Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transp. Res. Part C Emerg. Technol. 2016, 71, 143–163. [Google Scholar] [CrossRef]
- Arnaout, G.M.; Arnaout, J.-P. Exploring the effects of cooperative adaptive cruise control on highway traffic flow using microscopic traffic simulation. Transp. Plan. Technol. 2014, 37, 186–199. [Google Scholar] [CrossRef]
- Zheng, F.; Liu, C.; Liu, X.; Jabari, S.E.; Lu, L. Analyzing the impact of automated vehicles on uncertainty and stability of the mixed traffic flow. Transp. Res. Part C Emerg. Technol. 2020, 112, 203–219. [Google Scholar] [CrossRef]
- Jerath, K.; Brennan, S.N. Analytical Prediction of Self-Organized Traffic Jams as a Function of Increasing ACC Penetration. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1782–1791. [Google Scholar] [CrossRef]
- Shladover, S.E.; Su, D.Y.; Lu, X.Y. Impacts of Cooperative Adaptive Cruise Control on Freeway Traffic Flow. Transp. Res. Rec. 2012, 2324, 63–70. [Google Scholar] [CrossRef]
- Chen, D.; Ahn, S.; Chitturi, M.; Noyce, D.A. Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles. Transp. Res. Part B Methodol. 2017, 100, 196–221. [Google Scholar] [CrossRef]
- Shi, X.; Li, X. Constructing a fundamental diagram for traffic flow with automated vehicles: Methodology and demonstration. Transp. Res. Part B Methodol. 2021, 150, 279–292. [Google Scholar] [CrossRef]
- Zhou, J.; Zhu, F. Modeling the fundamental diagram of mixed human-driven and connected automated vehicles. Transp. Res. Part C Emerg. Technol. 2020, 115, 102614. [Google Scholar] [CrossRef]
- Alonso, B.; Pòrtilla, Á.I.; Musolino, G.; Rindone, C.; Vitetta, A. Network Fundamental Diagram (NFD) and traffic signal control: First empirical evidences from the city of Santander. Transp. Res. Procedia 2017, 27, 27–34. [Google Scholar] [CrossRef]
- Milanés, V.; Shladover, S.E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data. Transp. Res. Part C Emerg. Technol. 2014, 48, 285–300. [Google Scholar] [CrossRef]
- Wagner, P. Traffic Control and Traffic Management in a Transportation System with Autonomous Vehicles. In Autonomous Driving; Springer: Berlin/Heidelberg, Germany, 2016; pp. 301–316. [Google Scholar] [CrossRef]
- Khattak, Z.H.; Smith, B.L.; Park, H.; Fontaine, M.D. Cooperative lane control application for fully connected and automated vehicles at multilane freeways. Transp. Res. Part C Emerg. Technol. 2020, 111, 294–317. [Google Scholar] [CrossRef]
- Ghiasi, A.; Li, X.; Ma, J. A mixed traffic speed harmonization model with connected autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2019, 104, 210–233. [Google Scholar] [CrossRef]
- van Arem, B.; van Driel, C.J.G.; Visser, R. The Impact of Cooperative Adaptive Cruise Control on Traffic-Flow Characteristics. IEEE Trans. Intell. Transp. Syst. 2006, 7, 429–436. [Google Scholar] [CrossRef]
- Ye, L.; Yamamoto, T. Modeling connected and autonomous vehicles in heterogeneous traffic flow. Phys. A Stat. Mech. Its Appl. 2018, 490, 269–277. [Google Scholar] [CrossRef]
- Amirgholy, M.; Shahabi, M.; Oliver Gao, H. Traffic automation and lane management for communicant, autonomous, and human-driven vehicles. Transp. Res. Part C Emerg. Technol. 2020, 111, 477–495. [Google Scholar] [CrossRef]
- Xiao, L.; Gao, F. Practical String Stability of Platoon of Adaptive Cruise Control Vehicles. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1184–1194. [Google Scholar] [CrossRef]
- Russo, F.; Rindone, C. Smart City for Sustainable Development: Applied Processes from SUMP to MaaS at European Level. Appl. Sci. 2023, 13, 1773. [Google Scholar] [CrossRef]
- Kesting, A.; Treiber, M.; Schönhof, M.; Helbing, D. Adaptive cruise control design for active congestion avoidance. Transp. Res. Part C Emerg. Technol. 2008, 16, 668–683. [Google Scholar] [CrossRef]
- Ghiasi, A.; Hussain, O.; Qian, Z.; Li, X. A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method. Transp. Res. Part B Methodol. 2017, 106, 266–292. [Google Scholar] [CrossRef]
- Guériau, M.; Billot, R.; El Faouzi, N.-E.; Monteil, J.; Armetta, F.; Hassas, S. How to assess the benefits of connected vehicles? A simulation framework for the design of cooperative traffic management strategies. Transp. Res. Part C Emerg. Technol. 2016, 67, 266–279. [Google Scholar] [CrossRef]
- Fountoulakis, M.; Bekiaris-Liberis, N.; Roncoli, C.; Papamichail, I.; Papageorgiou, M. Highway traffic state estimation with mixed connected and conventional vehicles: Microscopic simulation-based testing. Transp. Res. Part C Emerg. Technol. 2017, 78, 13–33. [Google Scholar] [CrossRef]
- Xin, Q.; Yang, N.; Fu, R.; Yu, S.; Shi, Z. Impacts analysis of car following models considering variable vehicular gap policies. Phys. A Stat. Mech. Its Appl. 2018, 501, 338–355. [Google Scholar] [CrossRef]
- Bifulco, G.N.; Pariota, L.; Simonelli, F.; Di Pace, R. Development and testing of a fully Adaptive Cruise Control system. Transp. Res. Part C Emerg. Technol. 2013, 29, 156–170. [Google Scholar] [CrossRef]
- Ntousakis, I.A.; Nikolos, I.K.; Papageorgiou, M. On Microscopic Modelling of Adaptive Cruise Control Systems. Transp. Res. Procedia 2015, 6, 111–127. [Google Scholar] [CrossRef]
- Zhu, W.-X.; Zhang, H.M. Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model. Phys. A Stat. Mech. Its Appl. 2018, 496, 274–285. [Google Scholar] [CrossRef]
- Seraj, M.; Li, J.; Qiu, Z. Modeling Microscopic Car-Following Strategy of Mixed Traffic to Identify Optimal Platoon Configurations for Multiobjective Decision-Making. J. Adv. Transp. 2018, 2018, 7835010. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, J. Simulation Framework for Vehicle Platooning and Car-following Behaviors Under Connected-vehicle Environment. Procedia-Soc. Behav. Sci. 2013, 96, 914–924. [Google Scholar] [CrossRef]
- He, S.; Ding, F.; Lu, C.; Qi, Y. Impact of connected and autonomous vehicle dedicated lane on the freeway traffic efficiency. Eur. Transp. Res. Rev. 2022, 14, 12. [Google Scholar] [CrossRef]
- Lioris, J.; Pedarsani, R.; Tascikaraoglu, F.Y.; Varaiya, P. Platoons of connected vehicles can double throughput in urban roads. Transp. Res. Part C Emerg. Technol. 2017, 77, 292–305. [Google Scholar] [CrossRef]
- Nikolos, I.K.; Delis, A.I.; Papageorgiou, M. Macroscopic Modelling and Simulation of ACC and CACC Traffic. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 5–18 September 2015; pp. 2129–2134. [Google Scholar]
- Mohajerpoor, R.; Ramezani, M. Mixed flow of autonomous and human-driven vehicles: Analytical headway modeling and optimal lane management. Transp. Res. Part C Emerg. Technol. 2019, 109, 194–210. [Google Scholar] [CrossRef]
- Lu, Q.; Tettamanti, T.; Hörcher, D.; Varga, I. The impact of autonomous vehicles on urban traffic network capacity: An experimental analysis by microscopic traffic simulation. Transp. Lett. 2019, 12, 540–549. [Google Scholar] [CrossRef]
- Nishimura, Y.; Fujita, A.; Hiromori, A.; Yamaguchi, H.; Higashino, T.; Suwa, A.; Urayama, H.; Takeshima, S.; Takai, M.; IEEE. A Study on Behavior of Autonomous Vehicles Cooperating with Manually-Driven Vehicles. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications (PerCom), Kyoto, Japan, 11–15 March 2019. [Google Scholar]
- Zhao, L.H.; Malikopoulos, A.A.; Rios-Torres, J.; IEEE. On the Traffic Impacts of Optimally Controlled Connected and Automated Vehicles. In Proceedings of the 3rd IEEE Conference on Control Technology and Applications (IEEE CCTA), Hong Kong, China, 19–21 August 2019; pp. 935–940. [Google Scholar]
- Schakel, W.J.; Arem, B.v.; Netten, B.D. Effects of Cooperative Adaptive Cruise Control on traffic flow stability. In Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal, 19–22 September 2010; pp. 759–764. [Google Scholar]
- Calvert, S.C.; van den Broek, T.H.A.; van Noort, M.; IEEE. Cooperative Driving in Mixed Traffic Networks-Optimizing for Performance. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Alcala de Henares, Spain, 3–7 June 2012; pp. 861–866. [Google Scholar]
- Larsson, A.F. Driver usage and understanding of adaptive cruise control. Appl. Ergon. 2012, 43, 501–506. [Google Scholar] [CrossRef]
- Altay, İ.; Aksun Güvenç, B.; Güvenç, L. Lidar Data Analysis for Time to Headway Determination in the DriveSafe Project Field Tests. Int. J. Veh. Technol. 2013, 2013, 749896. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Ouyang, Y.; Li, M. Emission Mitigation via Longitudinal Control of Intelligent Vehicles in a Congested Platoon. Comput.-Aided Civ. Infrastruct. Eng. 2015, 30, 490–506. [Google Scholar] [CrossRef]
- Board, T.R.; National Academies of Sciences, Engineering, and Medicine. Highway Capacity Manual 7th Edition: A Guide for Multimodal Mobility Analysis; The National Academies Press: Washington, DC, USA, 2022; p. 1286. [Google Scholar] [CrossRef]
References | Type of Vehicle | Method | (s) | (s) | (s) | (s) |
---|---|---|---|---|---|---|
[7] | CAV | Simulation with PTV Vissim 11 | 0.9 | 0.9 | 2.0/2.5 | 0.6 |
[21] | CACC | Simulation with simulation model MIXIC 1.3 | 1.4 | 1.4 | 1.4 | 0.5 |
[35] | CACC/ACC | Simulation with PTV Vissim 5.3 | / | / | 1.4 | 0.5 |
[27] | CAV | Numerical analysis | 0.8–2.2 | 0.8–2.2 | 0.7–1.5 | 0.6–1.1 |
[38] | CACC/ACC | Numerical simulations | / | / | 0.8–2.2 | / |
[39] | AV | Simulations with Aimsun 20.0.1 | 1.8 | 1.8 | 1.2 | 0.9 |
[40] | AV | Simulations with SUMO 1.0.0 | 0.9 | 0.9 | 0.6 | 0.6 |
[41] | AV | Simulations with self-developed simulator | 1.69 | 1.69 | 0.1–3.0 | 0.1–3.0 |
[42] | CAV | Simulations with PTV Vissim 11 | 1.2 | 1.2 | 0.9 | 0.9 |
[43] | CACC | Simulations | / | / | 0.9–1.5 | 0.9–1.5 |
[44] | CACC | Simulations with ITS Modeler | / | / | / | 0.3–1.4 |
[45] | ACC | Qualitative questionnaire | / | / | 1.0–2.6 | / |
[46] | CACC/ACC | Field test | / | / | 0.6–2.0 | 0.6–2.0 |
[47] | CAV | Simulations with MATLAB R2014a | / | / | 0.5–2.0 | / |
Parameters | Value |
---|---|
0.9 m | |
0.1 m | |
4.5 m | |
0.8 s | |
1.2 s | |
1.5 s | |
length | 4.5 m |
n | = 25% | = 50% | = 75% | |||
---|---|---|---|---|---|---|
20 | 20.00% | 80.00% | 45.00% | 55.00% | 71.48% | 28.52% |
32 | 21.88% | 78.13% | 46.67% | 53.33% | 72.33% | 27.67% |
40 | 22.50% | 77.50% | 47.50% | 52.50% | 72.72% | 27.28% |
52 | 23.08% | 76.92% | 48.00% | 52.00% | 73.15% | 26.85% |
100 | 24.00% | 76.00% | 49.00% | 51.00% | 74.00% | 26.00% |
150 | 24.67% | 75.33% | 49.33% | 50.67% | 74.34% | 25.66% |
References | Speed Limit (km/h) | MPR | Capacity in Reference (veh/h) | Capacity in This Study (veh/h) |
---|---|---|---|---|
[14] | 45 | 0 | 2000 | 1847 |
[19] | 104 | 0 | 1621 | 2125 |
[9] | 96 | 0 | 2106 | 2100 |
[44] | 108 | 0 | 2090 | 2140 |
108 | 100 | 3200 | 3376 | |
[12] | 105 | 0 | 2018 | 2130 |
105 | 60 | 2500 | 2548 | |
105 | 100 | 3970 | 3351 | |
[36] | / | 0 | 1805 | 2145 |
/ | 67 | 2700 | 2660 | |
/ | 100 | 3600 | 3376 | |
[4] | 50 | 0 | 1620 | 1893 |
50 | 50 | 1734 | 2102 | |
50 | 100 | 2044 | 2757 | |
[48] | 60 | 0 | 1746 | 1965 |
80 | 0 | 1994 | 2059 | |
100 | 0 | 2200 | 2116 | |
[5] | 110 | 0 | 2133 | 2145 |
110 | 20 | 2230 | 2232 | |
110 | 40 | 2366 | 2354 | |
110 | 60 | 2643 | 2584 | |
110 | 80 | 3170 | 2872 | |
110 | 100 | 3873 | 3376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Q.; Chen, H. Enhancing Freeway Traffic Capacity: The Impact of Autonomous Vehicle Platooning Intensity. Appl. Sci. 2024, 14, 1362. https://doi.org/10.3390/app14041362
Chang Q, Chen H. Enhancing Freeway Traffic Capacity: The Impact of Autonomous Vehicle Platooning Intensity. Applied Sciences. 2024; 14(4):1362. https://doi.org/10.3390/app14041362
Chicago/Turabian StyleChang, Qing, and Hong Chen. 2024. "Enhancing Freeway Traffic Capacity: The Impact of Autonomous Vehicle Platooning Intensity" Applied Sciences 14, no. 4: 1362. https://doi.org/10.3390/app14041362
APA StyleChang, Q., & Chen, H. (2024). Enhancing Freeway Traffic Capacity: The Impact of Autonomous Vehicle Platooning Intensity. Applied Sciences, 14(4), 1362. https://doi.org/10.3390/app14041362