Diurnal Variations and Driving Factors of CO2 Flux at Water–Air Interfaces in the Open-Flow Sections of Karst Underground Rivers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Processing
2.3. Monitoring of CO2 Exchange Flux at the Water-Air Interface
2.4. CO2 Exchange Flux Calculation
2.5. Data Analysis
3. Results and Analysis
3.1. Characteristics of Hydrochemical Parameters
3.2. DIC Species
3.3. CO2 Fluxes
4. Discussion
4.1. The Influence of Factors on CO2 Exchange Flux
4.2. Changes in the Sources and Processes of Carbon Components in Rivers
4.3. CO2 Exchange Flux Comparation of Study Area and the World Rivers
4.4. The Limitations of Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davies, B.T.; Valdes, P.J.; Singarayer, J.S.; Wiltshire, A.J.; Jones, C.D. Quantifying the relative importance of land cover change from climate and land use in the representative concentration pathways. Glob. Biogeochem. Cycles 2019, 29, 842–853. [Google Scholar] [CrossRef]
- Liu, Z.H.; Dreybrodt, W. Significance of the carbon sink produced by H2O–carbonate–CO2–aquatic phototroph interaction on land. Sci. Bull. 2015, 60, 182–191. [Google Scholar] [CrossRef]
- Yuan, D.X. Sensitivity of karst process to environmental change along the Pep II transect. Quat. Int. 1997, 37, 105–113. [Google Scholar] [CrossRef]
- Liu, Z.H.; Dreybrodt, W.; Wang, H.J. A potentially important CO2 sink generated by the global water cycle. Sci. Bull. 2007, 52, 2418–2422. [Google Scholar]
- Liu, Z.; Dreybrodt, W.; Wang, H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth Sci. Rev. 2010, 99, 162–172. [Google Scholar] [CrossRef]
- Aufdenkampe, A.K.; Mayorga, E.; Raymond, P.A.; Melack, J.M.; Doney, S.C.; Alin, S.R. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 2011, 9, 53–60. [Google Scholar] [CrossRef]
- Larson, C. Climate change. An unsung carbon sink. Science 2011, 334, 886–887. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Dreybrodt, W.; Liu, H. Atmospheric CO2 sink: Silicate weathering or carbonate weathering? Appl. Geochem. 2011, 26, 5292–5294. [Google Scholar] [CrossRef]
- Yu, S.; He, S.Y.; Sun, P.A.; Pu, J.B.; Huang, J.; Luo, H.X.; Li, Y.S.; Li, R.; Yuan, Y.Q. Impacts of anthropogenic activities on weathering and carbon fluxes: A case study in the Xijiang River basin, southwest China. Environ. Earth Sci. 2016, 75, 1–11. [Google Scholar] [CrossRef]
- Atekwana, E.A.; Fonyuy, E.W. Dissolved inorganic carbon concentrations and stable carbon isotope ratios in streams polluted by variable amounts of acid mine drainage. J. Hydrol. 2009, 372, 136–148. [Google Scholar] [CrossRef]
- Sharma, S.; Sack, A.; Adams, J.P.; Vesper, D.V.; Capo, R.C.; Hartsock, A.; Edenborn, H.M. Isotopic evidence of enhanced carbonate dissolution at a coal mine drainage site in Allegheny County, Pennsylvania, USA. Appl. Geochem. 2013, 29, 32–42. [Google Scholar] [CrossRef]
- Peter, H.; Singer, G.A.; Preiler, C.; Chifflard, P.; Steniczka, G.; Battin, T.J. Scales and drivers of temporal pCO2 dynamics in an Alpine stream. J. Geophys. Res. Biogeosci. 2014, 119, 1078–1091. [Google Scholar] [CrossRef]
- Wang, F.S.; Wang, Y.C.; Zhang, J.; Xu, H.; Wei, X.G. Human impact on the historical change of CO2 degassing flux in River Changjiang. Geochem. Trans. 2007, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Chen, J.; Yin, J.B.; Xu, C.Y.; Zhou, J.H. Responses of Precipitation and Runoff to Climate Warming and Implications for Future Drought Changes in China. Earth’s Future 2020, 8, 32. [Google Scholar] [CrossRef]
- Gong, S.H.; Wang, S.J.; Bai, X.Y.; Luo, G.J.; Zeng, C. Response of the weathering carbon sink in terrestrial rocks to climate variables and ecological restoration in China. Sci. Total Environ. 2020, 750, 141525. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.B.; Liu, Z.H.; Kaufmann, G. Sensitivity of the global carbonate weathering carbon-sink flux to climate and land-use changes. Nat. Commun. 2019, 10, 5749. [Google Scholar] [CrossRef] [PubMed]
- Battin, T.J.; Luyssaert, S.; Kaplan, L.A.; Aufdenkampe, A.K.; Richter, A.; Tranvik, L.J. The boundless carbon cycle. Nat. Geosci. 2009, 2, 598–600. [Google Scholar] [CrossRef]
- Hope, D.; Palmer, S.M.; Billett, M.F.; Dawson, J.J.C. Variations in dissolved CO2 and CH4 in a first-order stream and catchment: An investigation of soil–stream linkages. Hydrol. Process. 2004, 18, 3255–3275. [Google Scholar] [CrossRef]
- Lynch, J.K.; Beatty, C.M.; Seidel, M.P.; Jungst, L.J.; Degrandpre, M.D. Controls of riverine CO2 over an annual cycle determined using direct, high temporal resolution pCO2 measurements. J. Geophys. Res. 2010, 115, 3016. [Google Scholar] [CrossRef]
- Ni, M.F.; Li, S.Y. Partial Pressure of Carbon Dioxide and Water-air Exchange in a Typical Karst River. Quat. Sci. 2023, 43, 412–424. [Google Scholar]
- Cao, J.H.; Jiang, Z.C.; Yuan, D.X.; Xia, R.Y.; Zhang, C. The progress in the study of the karst dynamic system and global changes in the past 30 years. Geol. China 2017, 44, 874–900. (In Chinese) [Google Scholar]
- Zhang, T.; Li, J.H.; Pu, J.B.; Wu, F.H.; Li, L.; Yuan, D.X. Spatial Variations of CO2 Degassing Across Water-air Interface and Its Impact Factors in Summer in Guijiang River, China. Environ. Sci. 2017, 38, 11. (In Chinese) [Google Scholar]
- Regnier, P.; Friedlingstein, P.; Ciais, P.; Thullner, M. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 2013, 6, 597–607. [Google Scholar] [CrossRef]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C.; et al. Global carbon dioxide emissions from inland waters. Erratum in Nature 2014, 503, 355–359. [Google Scholar] [CrossRef]
- Butman, D.; Raymond, P.A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nat. Geosci. 2011, 4, 839–842. [Google Scholar] [CrossRef]
- Pu, J.B.; Li, J.H.; Khadka, M.B.; Martin, J.B.; Zhang, T.; Yu, S.; Yuan, D.X. In-stream metabolism and atmospheric carbon sequestration in a groundwater-fed karst stream. Sci. Total Environ. 2017, 579, 1343–1355. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhang, H.T.; Xiao, J.; Qiu, X.L.; Wang, B.L. Effects of river hydrology on phytoplankton dynamics in dammed rivers. Earth Environ. 2019, 47, 857–863. (In Chinese) [Google Scholar]
- Tan, S.C.; Shi, G.Y. Remote sensing for ocean primary productivity and its spatio-temporal variability in the China Seas. Acta Geogr. Sin. 2006, 61, 1189–1199. [Google Scholar]
- Wang, J.Y. Comparison Table of Water Environment Monitoring Parameters and Selection Standards. Water Conserv. Tech. Superv. 2004, 4, 53–63. (In Chinese) [Google Scholar]
- Zhang, T.; Li, J.H.; Pu, J.B.; Martin, J.B.; Khadka, M.B.; Wu, F.H.; Li, L.; Jiang, F.; Huang, S.Y.; Yuan, D.X. River sequesters atmospheric carbon and limits the CO2 degassing in karst area, southwest China. Sci. Total Environ. 2017, 609, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Duchemin, E.; Lucotte, M.; Canuel, R.; Chamberland, A. Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the boreal region. Glob. Biogeochem. Cycles 1995, 9, 529–540. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, S.B.; Wang, C.H.; Yang, Z.J.; Liu, D.F.; Guo, X.; Liu, L.; Lorke, A. Spatial and temporal variability of dissolved methane concentrations and diffusive emissions in the Three Gorges Reservoir. Water Res. 2021, 207, 117788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, J.H.; Pu, J.B.; Martin, J.B.; Yuan, D.X. Rainfall possibly disturbs the diurnal pattern of CO2 degassing in the Lijiang River, SW China. J. Hydrol. 2020, 590, 125540. [Google Scholar] [CrossRef]
- Odum, H.T. Primary Production in Flowing Waters. Limnol. Oceanogr. 1956, 1, 102–117. [Google Scholar] [CrossRef]
- Doctor, D.H.; Kendall, C.; Sebestyen, S.D.; Shanley, J.B.; Ohte, N.; Boyer, E.W. Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream. Hydrol. Process. 2008, 22, 2410–2423. [Google Scholar] [CrossRef]
- Wallin, M.; Audet, J.; Peacock, M.; Sahlee, E.; Winterdahl, M. Carbon dioxide dynamics in an agricultural headwater stream driven by hydrology and primary production. Biogeosciences 2020, 17, 2487–2498. [Google Scholar] [CrossRef]
- Abril, G.L.; Guérin, F.; Richard, S.; Delmas, R.; Corinne, G.L.; Gosse, P.; Tremblay, A. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Glob. Biogeochem. Cycles 2005, 19, 4. [Google Scholar] [CrossRef]
- Hotchkiss, E.R.; Hall, R.O.; Sponseller, R.A.; Butman, D.; Klaminder, J.; Laudon, H.; Rosvall, M.; Karlsson, J. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 2015, 8, 696. [Google Scholar] [CrossRef]
- Yang, M.X.; Liu, Z.H.; Sun, H.L.; Yang, R.; Chen, B. Organic carbon source tracing and DIC fertilization effect in the Pearl River: Insights from lipid biomarker and geochemical analysis. Appl. Geochem. 2016, 73, 132–141. [Google Scholar] [CrossRef]
- Wang, W.F.; Li, S.L.; Zhong, J.; Wang, L.C.; Yang, H.; Xiao, H.Y.; Liu, C.Q. CO2 emissions from karst cascade hydropower reservoirs: Mechanisms and reservoir effect. Environ. Res. Lett. 2021, 16, 044013. [Google Scholar] [CrossRef]
- de Montety, V.; Martin, J.B.; Cohen, M.J.; Foster, C.; Kurz, M.J. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river. Chem. Geol. 2011, 283, 31–43. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; Wiley: Hoboken, NJ, USA, 1995; Volume 179, p. A277. [Google Scholar]
- Marx, A.; Hintze, S.; Sanda, M.; Jankovec, J.; Barth, J.A. Acid rain footprint three decades after peak deposition: Long-term recovery from pollutant sulphate in the Uhlirska catchment (Czech Republic). Sci. Total Environ. 2017, 598, 1037–1049. [Google Scholar] [CrossRef]
- Li, D.Y.; Zhang, L.K.; Li, C.F.; Wang, X.Y.; Wang, X.R.; Yang, Z.F.; Qian, L.T. Quantitative analysis of dissolved inorganic carbon sources in water bodies in the Lujiang River Basin. Carsologica Sin. 1–17. Available online: https://link.cnki.net/urlid/45.1157.P.20231016.1203.002 (accessed on 16 October 2023). (In Chinese).
- Zhang, L.K.; Qin, X.Q.; Yang, H.; Huang, Q.B.; Liu, P.Y. Characteristics of river carbon output flux and variation in the Pearl River Basin. Environ. Sci. 2013, 34, 10. (In Chinese) [Google Scholar] [CrossRef]
- Dagg, M.; Benner, R.; Lohrenz, S.; Lawrence, D. Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: Plume processes. Cont. Shelf Res. 2004, 24, 833–858. [Google Scholar] [CrossRef]
- Kendall, C.; Silva, S.R.; Kelly, V.J. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrol. Process. 2010, 15, 7. [Google Scholar] [CrossRef]
- LaZerte, B.D. Stable carbon isotope ratios: Implications for the source of sediment carbon and for phytoplankton carbon assimilation in Lake Memphremagog, Quebec. Can. J. Fish. Aquat. Sci. 1983, 40, 1658–1666. [Google Scholar] [CrossRef]
- Hung, J.J.; Lin, L.L.; Liu, K.K. Dissolved and particulate organic carbon in the southern East China Sea. Cont. Shelf Res. 2000, 20, 4–5. [Google Scholar] [CrossRef]
- Li, Z.K.; Lan, J.; Wang, G.; Han, B.; Lu, Y.F.; He, Q.; Zhang, Z.H. Mutual inductance measurement of the superconducting coil for Joule Balance. IEEE Trans. Instrum. Meas. 2013, 62, 1531–1536. [Google Scholar] [CrossRef]
- Raymond, P.A.; Bauer, J.E.; Caraco, N.F.; Cole, J.J.; Longworth, B.; Petsch, S.T. Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers. Mar. Chem. 2004, 92, 353–366. [Google Scholar] [CrossRef]
- Teodoru, C.R.; Giorgio, P.A.; Prairie, Y.T.; Camire, M. Patterns in pCO2 in boreal streams and rivers of northern Quebec, Canada. Glob. Biogeochem. Cycles 2009, 23, GB2012. [Google Scholar] [CrossRef]
- Varol, M.; Li, S.Y. Biotic and abiotic controls on CO2 partial pressure and CO2 emission in the Tigris River, Turkey. Chem. Geol. 2017, 449, 193. [Google Scholar] [CrossRef]
- Yao, G.R.; Gao, Q.Z.; Wang, Z.G.; Huang, X.K.; He, T.; Zhang, Y.L.; Jiao, S.L.; Ding, J. Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China. Sci. Total Environ. 2007, 376, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Alin, S.R.; Rasera, M.L.; Salimon, C.I.; Richey, J.E.; Holtgrieve, G.W.; Krusche, A.V.; Snidvongs, A. Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J. Geophys. Res. Biogeosciences 2011, 116, g01009. [Google Scholar] [CrossRef]
- Li, S.Y.; Lu, X.X.; Bush, R.T. CO2 partial pressure and CO2 emission in the Lower Mekong River. J. Hydrol. 2013, 504, 40–56. [Google Scholar] [CrossRef]
- Rocher-Ros, G.; Harms, T.K.; Sponseller, R.A.; Visnen, M.; Mrth, C.; Giesler, R. Metabolism overrides photo-oxidation in CO2 dynamics of Arctic permafrost streams. Limnol. Oceanogr. 2020, 66, S169–S181. [Google Scholar] [CrossRef]
- Louis, V.S.; Kelly, C.A.; Duchemin, E.; Rudd, J.W.; Rosenberg, D.M. Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate. Bioscience 2000, 50, 766–775. [Google Scholar] [CrossRef]
- Ternon, J.F.; Oudot, C.; Dessier, A.; Diverres, D. A seasonal tropical sink for atmospheric CO2 in the Atlantic ocean: The role of the Amazon River discharge. Mar. Chem. 2000, 68, 183–201. [Google Scholar] [CrossRef]
- Yang, C.; Telmer, K.; Veizer, J. Chemical dynamics of the “St. Lawrence” riverine system: δDH2O, δ18OH2O, δ13CDIC, δ34S sulfate, and dissolved 87Sr/86Sr. Geochim. Et Cosmochim. Acta 1996, 60, 851–866. [Google Scholar] [CrossRef]
- Raymond, P.A.; Bauer, J.E.; Cole, J.J. Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnol. Oceanogr. 2000, 45, 1707–1717. [Google Scholar] [CrossRef]
- Santos, M.A.; Rosa, L.P.; Sikar, B.; Sikar, E.; Santos, E.O. Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy Policy 2006, 34, 481–488. [Google Scholar] [CrossRef]
- Liu, C.Q.; Wang, F.S.; Wang, Y.C.; Wang, B.L. Responses of Aquatic Environment to River Damming—From the Geochemical View. Resour. Environ. Yangtze Basin 2009, 18, 384–396. [Google Scholar]
- Yu, Y.X.; Liu, C.Q.; Wang, F.S.; Wang, B.L.; Liu, F. Spatiotemporal characteristics and diffusion flux of partial pressure of dissolved carbon dioxide (pCO2) in Hongjiadu reservoir. Chin. J. Ecol. 2008, 27, 1193–1199. [Google Scholar]
- Mei, H.Y.; Wang, F.S.; Yao, C.C.; Wang, B.L. Diffusion flux of partial pressure of dissolved carbon dioxide in Wan’an Reservoir in spring. Environ. Sci. 2011, 32, 58–63. [Google Scholar]
Water Type | Name | Country | Climatic Zone | CO2 Flux/mmol/(m2·d) | Reference |
---|---|---|---|---|---|
River | Heilongtan H1–H2 | China | Subtropic | 5.97 | This study |
Long Chuan | China | Subtropic | 6.87 | [51] | |
Lower Xljing | China | Subtropic | 8.32–15.67 | [55] | |
Yangtze (Datong) | China | Subtropic | 1.69–6.51 | [12] | |
Hudson | USA | Temperate | 0.70–1.63 | [26] | |
St. Lawrence | Canada | Temperate | 1.05–3.62 | [61] | |
Eastmain, Quebec | Canada | Boreal | 0.71 | [53] | |
Lowet Mekong | Tropic | 8.56 | [56] | ||
Amazon | Brazil | Tropic | 15.19 | [57] | |
Tigris | Turkey | Continental | 4.74 | [54] | |
York | USA | Warm | 1 | [62] | |
Reservoir | Heilongtan Q1 | China | Subtropic | 14.86 | This study |
Curua–Una | Brazil | Tropic | 65.91 | [63] | |
Tucurui | Brazil | Tropic | 192.61 | [64] | |
Hongfenghu Reservoir | China | Subtropic | 20.2 | [65] | |
Hongjiadu Reservoir | China | Subtropic | 6.14 | [66] | |
Wan‘an Reservoir | China | Subtropic | 12.74 | [60] | |
Laforge–1 | Canada | Temperate zone | 52.27 | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Li, C.; Huang, C.; Li, H.; Xu, X.; Peng, X.; Chen, G.; Zhang, L. Diurnal Variations and Driving Factors of CO2 Flux at Water–Air Interfaces in the Open-Flow Sections of Karst Underground Rivers. Appl. Sci. 2024, 14, 1395. https://doi.org/10.3390/app14041395
Li D, Li C, Huang C, Li H, Xu X, Peng X, Chen G, Zhang L. Diurnal Variations and Driving Factors of CO2 Flux at Water–Air Interfaces in the Open-Flow Sections of Karst Underground Rivers. Applied Sciences. 2024; 14(4):1395. https://doi.org/10.3390/app14041395
Chicago/Turabian StyleLi, Danyang, Canfeng Li, Chao Huang, Hong Li, Xiongwei Xu, Xuefeng Peng, Guiren Chen, and Liankai Zhang. 2024. "Diurnal Variations and Driving Factors of CO2 Flux at Water–Air Interfaces in the Open-Flow Sections of Karst Underground Rivers" Applied Sciences 14, no. 4: 1395. https://doi.org/10.3390/app14041395
APA StyleLi, D., Li, C., Huang, C., Li, H., Xu, X., Peng, X., Chen, G., & Zhang, L. (2024). Diurnal Variations and Driving Factors of CO2 Flux at Water–Air Interfaces in the Open-Flow Sections of Karst Underground Rivers. Applied Sciences, 14(4), 1395. https://doi.org/10.3390/app14041395