Influence of Eisenia fetida on the Nematode Populations during Vermicomposting Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
- Without Earthworms:
- With Earthworms:
2.2. Nematodes Extraction
2.3. DNA Extraction and Libraries Preparation
2.4. Processing and Analysis of Sequencing Data
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahapatra, S.; Hibzur Ali, M.; Samal, K. Assessment of compost maturity-stability indices and recent development of composting bin. Energy Nexus. 2022, 6, 100062. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Kleofas Berbeć, A.; Radzikowski, P. Rola dżdżownic w kształtowaniu jakości gleb oraz wpływ różnych zabiegów agrotechnicznych na ich występowanie. Stud. Rap. IUNG-PIB 2017, 54, 57–71. [Google Scholar] [CrossRef]
- Plisko, J.D. Lumbricidae—Dżdżownice (Annelida: Oligochaeta). Fauna Polski 1973, 1, 1–155. [Google Scholar]
- Przemieniecki, S.W.; Zapałowska, A.; Skwiercz, A.; Damszel, M.; Telesiński, A.; Sierota, Z.; Gorczyca, A. An evaluation of selected chemical, biochemical, and biological parameters of soil enriched with vermicompost. Environ. Sci. Pollut. Res. 2021, 28, 8117–8127. [Google Scholar] [CrossRef]
- Ma, W.C.; Immerzeel, J.; Bodt, J. Earthworm and Food Interactions on Bioaccumulation and Disappearance in Soil of Polycyclic Aromatic Hydrocarbons: Studies on Phenanthrene and Fluoranthene. Ecotoxicol. Environ. Saf. 1995, 32, 226–232. [Google Scholar] [CrossRef]
- Sizmur, T.; Hodson, M.E. Do earthworms impact metal mobility and availability in soil? —A review. Environ. Pollut. 2009, 157, 1981–1989. [Google Scholar] [CrossRef]
- Meyer, W.J.; Bouwman, H. Suitable characters for selective breeding in Eisenia fetida (Oligochaeta). Biol. Fertil. Soils 1995, 20, 53–56. Available online: https://link.springer.com/article/10.1007/BF00307841 (accessed on 1 November 2023). [CrossRef]
- Boruszko, D. Badania i Ocena Wartości Nawozowej Kompostów i Wermikompostów. Rocz. Ochr. Sr. 2011, 13, 1417–1428. Available online: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPWR-0002-0089 (accessed on 1 November 2023).
- Domene, X. Chapter 11—A Critical Analysis of Meso- and Macrofauna Effects Following Biochar Supplementation. In Biochar Application Essential Soil Microbial Ecology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 268–292. [Google Scholar] [CrossRef]
- de Goede, R.G.M.; Bongers, T. Nematode community structure in relation to soil and vegetation characteristics. Appl. Soil Ecol. 1994, 1, 29–44. [Google Scholar] [CrossRef]
- Bongers, T.; Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 1999, 14, 224–228. [Google Scholar] [CrossRef]
- Neher, D.A. Role of Nematodes in Soil Health and Their Use as Indicators. J. Nematol. 2001, 33, 161–168. [Google Scholar]
- Yeates, G.W. Nematodes as soil indicators: Functional and biodiversity aspects. Biol. Fertil. Soils 2003, 37, 199–210. [Google Scholar] [CrossRef]
- Trett, M.W.; Urbano, B.C.; Forster, S.J.; Trett, S.P. Commercial aspects of the use of nematodes as bioindicators. In Nematodes as Environmental Indicators; CABI: Wallingford, UK, 2009. [Google Scholar] [CrossRef]
- Biswal, D. Nematodes as Ghosts of Land Use Past: Elucidating the Roles of Soil Nematode Community Studies as Indicators of Soil Health and Land Management Practices. Appl. Biochem. Biotechnol. 2022, 194, 2357–2417. [Google Scholar] [CrossRef] [PubMed]
- Hunt, H.W.; Wall, D.H. Modelling the effects of loss of soil biodiversity on ecosystem function. Glob. Chang. Biol. 2002, 8, 33–50. [Google Scholar] [CrossRef]
- Freckman, D.W. Bacterivorous nematodes and organic matter decomposition. Agric. Ecosyst. Environ. 1988, 24, 195–217. [Google Scholar] [CrossRef]
- de Ruiter, P.C.; Bloem, J.; Bouwman, L.A.; Didden, W.A.M.; Hoenderboom, G.H.J.; Lebbink, G.; Marinissen, J.C.Y.; de Vos, J.A.; Vreeken-Buijs, M.J.; Zwart, K.B.; et al. Simulation of dynamics in nitrogen mineralisation in the belowground food webs of two arable farming systems. Agric. Ecosyst. Environ. 1994, 51, 199–208. [Google Scholar] [CrossRef]
- Bernard, G.C.; Egnin, M.; Bonsi, C. The Impact of Plant-Parasitic Nematodes on Agriculture and Methods of Control. In Nematology—Concepts, Diagnosis and Control; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Zapałowska, A.; Skwiercz, A.; Tereba, A.; Puchalski, C.; Malewski, T. Next-Generation Sequencing for Evaluating the Soil Nematode Diversity and Its Role in Composting Processes. Int. J. Mol. Sci. 2023, 24, 15749. [Google Scholar] [CrossRef]
- Brzeski, M.W. Nematodes of Tylenchina in Poland and Temperate Europe; Muzeum i Instytutu Zoologii, Polska Akademia Nauk (MiIZ PAN): Warsaw, Poland, 1998. [Google Scholar]
- Andrássy, I. Free-Living Nematodes of Hungary (Nematoda Errantia). In Pedozoologica Hungarica; No. 4; Csuzdi, C., Mahunka, S., Eds.; Hungarian Natural History Museum: Budapest, Hungary, 2007; p. 496. ISBN 9637093982. [Google Scholar]
- Yeates, G.W.; Bongers, T.; De Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feedeing Habits in Soil Nematde Families and Genera An Outline for Soil Ecologists. J. Nematol. 1993, 25, 315–331. [Google Scholar]
- Vu, D.; Groenewald, M.; Szöke, S.; Cardinali, G.; Eberhardt, U.; Stielow, B.; de Vries, M.; Verkleij, G.; Crous, P.; Boekhout, T.; et al. DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud. Mycol. 2016, 85, 91–105. [Google Scholar] [CrossRef]
- Cristescu, M.E. From barcoding single individuals to metabarcoding biological communities: Towards an integrative approach to the study of global biodiversity. Trends Ecol. Evol. 2014, 29, 566–571. [Google Scholar] [CrossRef]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Brochmann, C.; Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 2012, 21, 2045–2050. [Google Scholar] [CrossRef]
- Bongers, T.; Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Deagle, B.E.; Jarman, S.N.; Coissac, E.; Pompanon, F.; Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: Not a perfect match. Biol. Lett. 2014, 10, 20140562. [Google Scholar] [CrossRef]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; de Vere, N.; et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [CrossRef] [PubMed]
- Bánki, O.; Roskov, Y.; Döring, M.; Ower, G.; Robles, D.R.H.; Corredor, C.A.P.; Jeppesen, T.S.; Örn, A.; Vandepitte, L.; Hobern, D.; et al. Nemys, World Database of Nematodes. Catalogue of Life Checklist; (ver. (10/2023). 2023. Available online: https://obis.org/dataset/29dbebfe-bf43-4167-ab9b-48bcd546edc9 (accessed on 31 January 2024). [CrossRef]
- Ilieva-Makulec, K.; Makulec, G. Effect of the earthworm Lumbricus rubellus on the nematode community in a peat meadow soil. Eur. J. Soil Biol. 2002, 38, 59–62. [Google Scholar] [CrossRef]
- Dominguez, J.; Parmelee, W.; Edwards, C.A. Interaction between Eisenia Andrei (Oligochaeta) and nematode populations during vermicomposting. Pedobiologia 2003, 47, 53–60. [Google Scholar] [CrossRef]
- Renčo, M.; Kováčik, P. Assessment of the nematicidal potential of vermicompost, vermicompost tea, and urea application on the potato-cystnematodes Globodera rostochiensis and Globodera pallida. J. Plant Prot. Res. 2015, 55, 2. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, M.; Jiang, L.; Chen, X.; Griffiths, B.S.; Li, H.; Hu, F. Vermicompost increases defense against root-knot nematode (Meloidogyne incognita) in tomato plants. Appl. Soil Ecol. 2016, 105, 177–186. [Google Scholar] [CrossRef]
- Rostami, M.; Karegar, A.; Taghavi, S.M. Biocontrol potential of bacterial isolates from vermicompost and earthworm against the root-knot nematode Meloidogyne javanica infecting tomato plants. Egypt. J. Biol. Pest Control 2021, 31, 36. [Google Scholar] [CrossRef]
- Siddiqui, Z.A.; Mahmood, I. Role of bacteria in the management of plant parasitic nematodes: A review. Bioresour. Technol. 1999, 69, 167–179. [Google Scholar] [CrossRef]
- Bongers, T. The Maturity Index: An Ecological Measure of Environmental Disturbance Based on Nematode Species Composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Sudhaus, W.; Fürst von Lieven, A. A Phylogenetic Classification of the Diplogastridae (Secernentea, Nematoda). J. Nematode Morph. Syst. 2003, 6, 43–90. [Google Scholar]
- Kanzaki, N.; Giblin-Davis, R.M.; Zeng, Y.; Ye, W.; Center, B.J.; Thomas, W.K. Acrostichus puri n. sp. (Nematoda: Diplogastridae), a phoretic associate of Augochlora pura mosieri Cockerell (Hymenoptera: Halictidae). Nematology 2010, 12, 49–64. [Google Scholar] [CrossRef]
- Massey, C.L. Biology and Taxonomy of Nematodes Parasites and Associates of Bark Beetles in the United States. In Agriculture Handbook; United States Governmental Printing Office: Washington, DC, USA, 1974; p. 446. [Google Scholar]
- Tahseen, Q.; Ahlawat, S.; Asif, M.; Mustaqim, M. Description of a new species of Acrostichus Rahm 1928 (Nematoda: Diplogastridae) from India with a note on its position and relationship with the congeners. Biodivers. Data J. 2016, 4, e8029. [Google Scholar] [CrossRef] [PubMed]
- Kanzaki, N.; Giblin-Davis, R.M.; Gonzalez, R.; Manzoor, M. Nematodes associated with palm and sugar weevils in south Florida with a description of Acrostichus floridensis n. sp. Nematology 2017, 19, 515–531. [Google Scholar] [CrossRef]
- Ricci, C.; Pagani, M. Desiccation of Panagrolaimus rigidus (Nematoda): Survival, reproduction and the influence on the internal clock. Hydrobiologia 1997, 347, 1–13. [Google Scholar] [CrossRef]
- Treonis, A.M.; Wall, D.H. Soil nematodes and desiccation survival in the extreme arid environment of the Antarctic Dry Valleys. Integr. Comp. Biol. 2005, 45, 741–750. [Google Scholar] [CrossRef]
- Wharton, D.A.; Barclay, S. Anhydrobiosis in the free-living antarctic nematode Panagrolaimus davidi (Nematoda: Rhabditida). Fundam. Appl. Nematol. 1993, 16, 17–22. [Google Scholar]
- Anderson, R.C.; Linder, K.E.; Peregrine, A.S. Halicephalobus gingivalis (Stefanski, 1954) from a fatal infection in a horse in Ontario, Canada with comments on the validity of H. deletrix and a review of the genus. Parasite 1998, 5, 255–261. [Google Scholar] [CrossRef]
- Peters, B.G. On the bionomics of the vinegar eelworm. J. Helminthol. 1928, 6, 1–38. [Google Scholar] [CrossRef]
- Onyiche, T.E.; Okute, T.O.; Oseni, O.S.; Okoro, D.O.; Biu, A.A.; Mbaya, A.W. Parasitic and zoonotic meningoencephalitis in humans and equids: Current knowledge and the role of Halicephalobus gingivalis. Parasite Epidemiol. Control 2018, 3, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Nadler, S.A.; De Ley, P.; Mundo-Ocampo, M.; Smythe, A.B.; Patricia Stock, S.; Bumbarger, D.; Adams, B.J.; De Ley, I.T.; Holovachov, O.; Baldwin, J.G. Phylogeny of Cephalobina (Nematoda): Molecular evidence for recurrent evolution of probolae and incongruence with traditional classifications. Mol. Phylogenet. Evol. 2006, 40, 696–711. [Google Scholar] [CrossRef]
- Fonderie, P.; Bert, W.; Hendrickx, F.; Houthoofd, W.; Moens, T. Anthelmintic tolerance in free-living and facultative parasitic isolates of Halicephalobus (Panagrolaimidae). Parasitology 2012, 139, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Steel, H.; de la Peña, E.; Fonderie, P.; Willekens, K.; Borgonie, G.; Bert, W. Nematode succession during composting and the potential of the nematode community as an indicator of compost maturity. Pedobiologia 2010, 53, 181–190. [Google Scholar] [CrossRef]
- Bröjer, J.T.; Parsons, D.A.; Linder, K.E.; Peregrine, A.S.; Dobson, H. Halicephalobus gingivalis encephalomyelitis in a horse. Can. Vet. J. 2000, 41, 559–561. [Google Scholar]
- Hermosilla, C.; Coumbe, K.M.; Habershon-Butcher, J.; Schoniger, S. Fatal equine meningoencephalitis in the United Kingdom caused by the panagrolaimid nematode Halicephalobus gingivalis: Case report and review of the literature. Equine Vet. J. 2011, 43, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Isaza, R.; Schiller, C.A.; Stover, J.; Smith, P.J.; Greiner, E.C. Halicephalobus gingivalis (Nematoda) infection in a Grevy’s zebra (Equus grevyi). J. Zoo Wildl. Med. 2000, 31, 77–81. [Google Scholar] [CrossRef]
- Ondrejka, S.L.; Procop, G.W.; Lai, K.K.; Prayson, R.A. Fatal parasitic meningoencephalomyelitis caused by Halicephalobus deletrix. A case report and review of the literature. Arch. Pathol. Lab. Med. 2010, 134, 625–629. [Google Scholar] [CrossRef]
- Lim, C.K.; Crawford, A.; Moore, C.V.; Gasser, R.B.; Nelson, R.; Koehler, A.V.; Weldhagen, G.F. First human case of fatal Halicephalobus gingivalis meningoencephalitis in Australia. J. Clin. Microbiol. 2015, 53, 1768–1774. [Google Scholar] [CrossRef]
- Dunn, D.G.; Gardiner, C.H.; Dralle, K.R.; Thilsted, J.P. Nodular granulomatous posthitis caused by Halicephalobus (syn. Micronema) sp. in a horse. Vet. Pathol. 1993, 30, 207–208. [Google Scholar] [CrossRef]
- Muller, S.; Grzybowski, M.; Sager, H.; Bornand, V.; Brehm, W. A nodular granulomatous posthitis caused by Halicephalobus sp. in a horse. Vet. Dermatol. 2008, 19, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, R.; Van Dreumel, T.; Keystone, J.S.; Manning, A.; Malatestinic, A.; Caswell, J.L.; Peregrine, A.S. Unsuccessful treatment of a horse with mandibular granulomatous osteomyelitis due to Halicephalobus gingivalis. Can. Vet. J. 2008, 49, 1099–1103. [Google Scholar]
Number of Species in Genus. N = Number of Species | Species with GenBank Records. n = Number of Records (Records Include at Least 18S and 28S rRNA Sequences) |
---|---|
Demaniella N = 5 | identified to genus level, n = 4 |
Cephalobus N = 19 | C. cubaensis, n = 5 |
C. oryzae, n = 1; 18S rRNA only | |
C. persegnis, n = 17 | |
identified to genus level, n = 34 | |
Panagrolaimus N = 11 | P. artyukhovskii, n = 1; 1818S rRNA only |
Disagreement between species list in WDN and supplementary publications and GenBank TaxI Species listed in WDN and supplementary publications: P. davidi Timm, 1971 P. detritophagus Fuchs, 1930 P. hygrophilus Bassen, 1940 P. kolymaensis Shatilovich, Gade, Pippel, Hoffmeyer, Tchesunov, Stevens, Winkler, Hughes, Traikov, Hiller, Rivkina, Schiffer, Myers & Kurzchalia, 2023 P. magnivulvatus Boström, 1995 P. neotropicus Poinar, 2011 P. papillosus Loof, 1971 P. rigidus Schneider, 1866 P. subelongatus, Cobb, 1914 P. superbus Fuchs, 1930 P. thiennemanni Hirschmann, 1952 Panagrellus N = 4 | P. davidi, n = 1 |
P. detritophagus, n = 25 | |
P. facetus, n = 2; 18S rRNA only | |
P. kolymaensis ** | |
P. labiatus, n = 10 | |
P. paetzoldi, n = 10 | |
P. cf. papillosus, n = 2; 18S rRNA only | |
P. rigidus, n = 6 | |
P. cf. rigidus, n = 8 | |
P. subelongatus, n = 36; 18S rRNA only | |
P. superbus, n = 7620 | |
P. trilabiatus, n = 6; 18S rRNA only | |
identified to genus level n = 315 | |
P. ceylonensis, n = 3 | |
Disagreement between species list in WDN and supplementary publications and GenBank TaxI Species listed in WDN and supplementary publications: P. filiformis Sukul, 1971, Andrássy, 1984 P. nepenthicola Menzel, 1922, Goodey, 1945 P. redivivus Linnaeus, 1767, Goodey, 1945 P. ulmi Abolafia, Alizadeh & Khakvar, 2016 | P. dubius, n = 9, 28S rRNA only |
P. levitatus, n = 2 | |
P. pycnus, n = 2 | |
P. redivivoides, n = 11 | |
P. redivivus, n = 687 | |
identified to genus level n = 9 | |
Halicephalobus N = 10 | H. gingivalis, n = 33 |
H. cf. gingivalis, n = 4 | |
H. mephisto, whole genome shotgun sequence identified to genus level, n = 2550 | |
Rhabditella N = 7 | R. axei, n = 9 identified to genus level, n = 4, 18S rRNA only |
Protorhabditis | identified to genus level, n = 14 |
Rhabditis N = 40 | R. belari, n = 1, 28S rRNA only |
R. blumi, n = 4 | |
R. brassicae, n = 4 | |
R. dolichura, n = 1, 28S rRN R. cf. longicaudata, n = 1, 18S rRNA | |
R. nidrosiensis, n = 1, 28S rRNA | |
R. remanei, n = 1, 28S rRNA only | |
R. terricola, n = 1, 28S rRNA only | |
R. cf. terricola, n = 49, 18S rRNA only | |
R. tokai, n = 1, 5S rRNA only | |
identified to genus level, n = 208 | |
Eucephalobus N = 10 | E. hooperi, n = 1, 18S rRNA only |
E. laevis, n = 4, 18S rRNA only | |
E. mucronatus, n = 2 | |
E. oxyuroides, n = 17 | |
E. cf. oxyuroides, n = 33, 18S rRNA | |
E. striatus, n = 86 | |
E. cf. teres, n = 1, 18S rRNA only | |
identified to genus level, n = 20 | |
Ektaphelenchus N = 7 | E. apophysatus, n = 9, 28S rRNA only |
Disagreement between species list in WDN and supplementary publications and GenBank TaxI E. berbericus Alvani, Mahdikhani Moghadam, Giblin Davis & Pedram, 2016 E. cupressi Golhasan, Abdollahpour, Fang, Abolafia & Heydari, 2019 E. kanzakii Pedram, 2019 E. koreanus Gu, Maria, Fang & Liu, 2019 E. masseyi Heydari & Pedram, 2021 E. oleae Miraeiz, Heydari, Adeldoost & Ye, 2017 E. phoenicis Keramat, Mahboubi, Atighi, Pourjam, Abolafia, Alghanimi & Pedram, 2023 | E. berbericus, n = 5 |
E. cupressi, n = 3 | |
E. joyceae, n = 18S rRNA only | |
E. kanzakii, n = 3 | |
E. masseyi, n = 4 | |
E. obtusus, n = 3 | |
E. oleae, n = 4 | |
E. phoenicis, n = 2 | |
E. taiwanensis, n = 3 | |
identified to genus level, n = 13 | |
Bursaphelenchus N = 43 | B. abietinus, n = 5 |
Disagreement between species list in WDN and supplementary publications and GenBank TaxI B. andrassyi Dayi, Calin, Akbulut, Gu, Schroder, Vieira & Braasch, 2014 B. carpini Kanzaki, Masuya, Ichihara, Maehara, Aikawa, Ekino & Ide, 2019 B. cryphali, Fuchs, 1930, Meyl, 1960 B. decraemerae Wang, Gu, Maria, Fang & Li, 2018 B. fagi Tomalak & Filipiak, 2014 B. firmae Kanzaki, Maehara, Aikawa & Matsumoto, 2012 B. geraerti Wang, Maria, Gu, Fang, Wang & Li, 2018 B. gillanii Schoenfeld, Braasch, Riedel & Gu, 2014 B. hirsutae Kanzaki, Ekino, Ide, Masuya & Degawa, 2018 B. irokophilus Torrini, Strangi, Mazza, Marianelli, Roversi & Kanzaki, 2019 B. juglandis Ryss, Parker, Alvarez-Ortega, Nadler & Subbotin, 2021 B. kesiyae Kanzaki, Aikawa, Maehara & Pham, 2016 B. kiyoharai Kanzaki, Maehara, Aikawa, Masuya & Giblin Davis, 2011 B. koreanus Gu, Wang & Chen, 2013 B. laciniatae Kanzaki, Masuya, Ichihara, Maehara Aikawa, Ekino & Ide, 2019 B. manipurensis Chanu & Meitei, 2014 B. michaelseni Tomalak & Filipiak, 2019 B. microcarpae Kanzaki, Ekino, Kajimura & Degawa, 2021 B. moensi Wang, Maria, Gu, Fang, Wang & Li, 2018 B. mucronatus Mamiya & Enda, 1979 B. niphades Tanaka, Tanaka, Akiba, Aikawa, Maehara, Takeuchi & Kanzaki, 2014 B. osumiana Kanzaki, Akiba, Kanetani, Tetsuka & Ikegame, 2014 B. paraburgeri Wang & Gu, 2012 B. paraluxuriosae Gu, Wang, Braasch, Burgermeister & Schroeder, 2012 B. parantoniae Munawar, Fang, He, Gu & Li, 2015 B. penai Kanzaki, Giblin Davis, Carillo, Duncan & Gonzalez, 2014 B. piceae Tomalak & Pomorski, 2015 B. populi Tomalak & Filipiak, 2010 B. posterovulvus Gu, Wang, He, Wang, Chen & Wang, 2014 B. pterocarpi Gu, Fang, Liu, Pedram & Li, 2019 B. rockyi Wang, Fang, Maria, Gu & Ge, 2019 B. sakishimanus Kanzaki, Okabe & Kobori, 2015 B. saudi Gu, Maria, Fang, He, Braasch & Li, 2016 B. similus Poinar, 2011 B. sycophilus Kanzaki, Tanaka, Giblin Davis & Davies, 2014 B. tadamiensis Kanzaki, Taki, Masuya & Okabe, 2012 B. taprhorychi Tomalak, Malewski, Gu & Fa Qiang, 2017 B. tiliae Tomalak & Malewski, 2014 B. trypophloei Tomalak & Filipiak, 2011 B. ulmophilus Ryss, Polyanina, Popovichev & Subbotin, 2015 B. yuyaoensis Gu, He, Wang & Chen, 2014 B. cryphali okhotskensis Kanzaki, Masuya, Ichihara, Maehara, Aikawa, Ekino & Ide, 2019 B. mucronatus kolymensis, Braasch, Gu & Burgermeister, 2011 | B. abruptus, n = 6 |
B. acaloleptae, n = 2 | |
B. africanus, n = 6 | |
B. anamurius, n = 3 | |
B. anatolius, n = 3 | |
B. andrassyi, n = 8 | |
B. antoniae, n = 26 | |
B. arthuri, n = 4 | |
B. arthuroides, n = 6 | |
B. borealis, n = 9 | |
B. braascha, n = 4 | |
B. carpini, n = 4 | |
B. chengi, n = 4 | |
B. cocophilus, n = 2 | |
B. conicaudatus, n = 28 | |
B. corneolus, n = 39 | |
B. crenati, n = 15 | |
B. cryphali, n = 10 | |
B. cryphali okhotskensis, n = 2 | |
B. debrae, n = 4; 28S rRNA only | |
B. doui, n = 31 | |
B. eggersi, n = 21 | |
B. eremus, n = 8 | |
B. eucarpus, n = 3 | |
B. fagi, n = 2 | |
B. firmae, n = 3 | |
B. fraudulentus, n = 23 | |
B. fungivorus, n = 16 | |
B. gerberae, n = 5 | |
B. gillanii, n = 1; 18S rRNA | |
B. hellenicus, n = 4 | |
B. hildegardae, n = 6 | |
B. hofmann, n = 16 | |
B. hylobianum, n = 6 | |
B. kesiyae, n = 2 | |
B. kevin, n = 4 | |
B. kiyoharai, n = 6 | |
B. koreanus, n = 3 | |
B. laciniatae, n = 2 | |
B. leoni, n = 8 | |
B. luxuriosae, n = 14 | |
B. macromucronatus, n = 5 | |
B. masseyi, n = 2 | |
B. mazandaranense, n = 4 | |
B. michalskii, n = 4 | |
B. microcarpae, n = 2 | |
B. minutus, n = 18 | |
B. mucronatus * | |
B. obeche, n = 2 | |
B. okinawaensis * | |
B. paraburgeri, n = 6 | |
B. paracorneolus, n = 4 | |
B. paraluxuriosae, n = 7 | |
B. parantoniae, n = 3 | |
B. paraparvispicularis, n = 7 | |
B. parapinasteri, n = 3 | |
B. parathailandae, n = 4 | |
B. parvispicularis, n = 7 | |
B. penai, n = 6 | |
B. pinasteri, n = 7 | |
B. piniperdae, n = 1 | |
B. pinophilus, n = 3 | |
B. platzeri, n = 4 | |
B. poligraphi, n = 10 | |
B. populi, n = 6 | |
B. posterovulvus, n = 5 | |
B. pterocarpi, n = 4 | |
B. rainulfi, n = 23 | |
B. ratzeburgii, n = 5 | |
B. rufipennis, n = 4 | |
B. sakishimanus, n = 2 | |
B. saudi, n = 4 | |
B. seani, n = 9 | |
B. sexdentati, n = 100 | |
B. sinensis, n = 6 | |
B. singaporensis, n = 4 | |
B. sycophilus, n = 2 | |
B. tadamiensis, n = 6 | |
B. taphrorychi, n = 8 28S rRNA only | |
B. thailandae, n = 10 | |
B. tiliae, n = 29 | |
B. tokyoensis, n = 13 | |
B. trypophloei, n = 2 | |
B. tusciae, n = 9 | |
B. ulmophilus, n = 3 | |
B. vallesianus, n = 23 | |
B. willibaldi, n = 9 | |
B. wuae, n = 5 | |
B. xylophilus * | |
B. yongensis, n = 6 | |
B. zvyagintsevi, n = 2 | |
identified to genus level, n = 251 | |
Plectus N = 77 | P. acuminatus, n = 19 |
P. cf. acuminatus, n = 3 | |
P. andrassyi, n = 2, 18S rRNA, only | |
P. antarcticus, n = 7 | |
P. cf. antarcticus, n = 3 | |
P. aquatilis, n = 20 | |
P. cf. aquatilis, n = 3 | |
P. belgicae, n = 10 | |
P. cirratus, n = 11 | |
P. cf. cirratus, n = 2, 18S rRNA, only | |
P. exinocaudatus, n = 1, 28S rRNA, only | |
P. frigophilus, n = 36, COI, only | |
P. cf. frigophilus, n = 73, COI, only | |
P. infundibulifer, n = 1, 28S rRNA, only | |
P. longicaudatus, n = 9, 28S rRNA, only | |
P. cf. meridianus, n = 5 | |
P. minimus, n = 8 | |
P. murrayi, n = 2819 | |
P. opisthocirculus, n = 3 | |
P. parietinus, n = 19 | |
P. cf. parietinus, n = 2, 18S rRNA, only | |
P. parvus, n = 9 | |
P. pusillus, n = 1, 18S rRNA, only | |
P. cf. pusillus, n = 3, 18S rRNA, only | |
P. pusteri, n = 1, 28S rRNA, only | |
P. rhizophilus, n = 2, 18S rRNA, only | |
P. sambesii, whole genome shotgun sequencing | |
P. tenuis, n = 2, 18S rRNA, only | |
P. velox, n = 28 | |
identified to genus level, n = 214 | |
Aphelenchus N = 10 | A. avenae * |
A. cf. avenae, n = 1, 18S rRNA, only | |
identified to genus level, n = 60 | |
Aphelenchoides N = 83 | A. besseyi * |
A. cf. besseyi, n = 2, 18S rRNA, only | |
A. bicaudatus, n = 100 | |
A. cf. bicaudatus, n = 1, 18S rRNA, only | |
A. blastophthorus, n = 18 | |
A. capsuloplanus, n = 2 | |
A. centralis, n = 1, 18S rRNA, only | |
A. cibolensis, n = 1, 28S rRNA, only | |
A. clarus, n = 1, 18S rRNA, only | |
A. composticola, n = 2, 18S rRNA, only | |
A. eldaricus, n = 2 | |
A. fragariae, n = 53 | |
A. fuchsi, n = 2 | |
A. fujianensis, n = 660 | |
A. giblindavisi, n = 2 | |
A. gorganensis, n = 2 | |
A. graminis, n = 1, 28S rRNA, only | |
A. haguei, n = 1, 28S rRNA, only | |
A. hamospiculatus, n = 3 | |
A. heidelbergi, n = 16 | |
A. iranicus, n = 2 | |
A. limberi, n = 1, 18S rRNA, only | |
A. macronucleatus, n = 1, 18S rRNA, only | |
A. medicagus ** | |
A. obtusicaudatus, n = 1, 28S rRNA, only | |
A. obtusus, n = 2 | |
A. cf. obtusus, n = 1, 18S rRNA, only | |
A. pannocaudus, n = 7 | |
A. paradalianensis, n = 19 | |
A. parietinus, n = 2, 28S rRNA, only | |
A. cf. parietinus, n = 1, 18S rRNA, only | |
A. primadentus, n = 2, 18S rRNA, only | |
A. pseudobesseyi, n = 14 | |
A. pseudogoodeyi, n = 4 | |
A. ritzemabosi, n = 26 | |
A. rotundicaudatus, n = 3 | |
A. rutgersi, n = 4 | |
A. salixae, n = 4 | |
A. saprophilus, n = 2, 18S rRNA, only | |
A. varicaudatus, n = 3 | |
A. xui, n = 3 | |
A. xylocopae, n = 6 | |
identified to genus level, n = 504 | |
Dorylaimus N = 10 | D. elegans, n = 1, 28S rRNA, only |
D. stagnalis, n = 79 | |
D. aff. stagnalis, n = 52, 18S rRNA, only | |
identified to genus level, n = 2 | |
Eudorylaimus N = 114 | E. altherri, n = 4, 28S rRNA, only |
E. carteri, n = 7 | |
E. cf. carteri, n = 3, 18S rRNA, only | |
E. centrocercus, n = 1, 28S rRNA, only | |
E. centrocercus, n = 5, 18S rRNA, only | |
E. cf. coloradensis, n = 3, 18S rRNA, only | |
E. coniceps, n = 12, 18S rRNA, only | |
E. cf. meridionalis, n = 3, 18S rRNA, only | |
E. cf. silvaticus, n = 5, 18S rRNA, only | |
E. cf. sodakus, n = 6, 18S rRNA, only | |
E. cf. subdigitalis, n = 2, 18S rRNA, only | |
identified to genus level, n = 23 | |
Pristionchus N = 58 | P. aerivorus, n = 40 |
P. americanus, n = 42 | |
P. arcanus * | |
P. atlanticus, n = 3 | |
P. auriculatae * | |
P. boliviae, n = 28 | |
P. borbonicus, n = 25 | |
P. brevicauda, n = 4 | |
P. bucculentus, n = 28 | |
P. bulgaricus, n = 28 | |
P. chinensis * | |
P. clavus, n = 28 | |
P. degawai, n = 1 18SRNA, n = 39 COI | |
P. dorci, n = 2, 18SRNA only | |
P. elegans, n = 6 | |
P. entomophagus * | |
P. entomophilus, n = 2, 18SRNA only | |
P. exspectatus * | |
P. fissidentatus * | |
P. fukushimae, n = 28 | |
P. hongkongensis, n = 1, 18SRNA only | |
P. hoplostomus, n = 28 | |
P. japonicas * | |
P. kurosawai, n = 1, 18S RNA only | |
P. laevicollis, n = 4, 18S RNA only | |
P. lheritieri, n = 61 | |
P. lucani, n = 3 | |
P. magnolia * | |
P. marianneae, n = 32 | |
P. maupasi, n = 54 | |
P. maxplancki * | |
P. mayeri * | |
P. musae * | |
P. neolucani, n = 1, 18S RNA only | |
P. nudus, n = 1, 18S RNA only | |
P. occultus, n = 1, 18S RNA only | |
P. pacificus * | |
P. cf. pacificus, n = 4 | |
P. paranudus * | |
P. passalidorum, n = 2, 18S RNA only | |
P. pauli, n = 32 | |
P. paulseni, n = 1, 18S RNA only | |
P. pseudaerivorus, n = 35 | |
P. purgamentorium * | |
P. quartusdecimus, n = 5 | |
P. racemosae, n = 2 | |
P. riukiariae, n = 1, 18S RNA only | |
P. sikae, n = 1, 18S RNA only | |
P. sycomori, n = 5 | |
P. taiwanensis, n = 1, 18S RNA only | |
P. trametes, n = 2 | |
P. triformis, n = 3 | |
P. uniformis, n = 121 | |
P. yamagatae, n = 1, 18S RNA only | |
identified to genus level, n = 317 | |
Mononchoides N = 51 | M. americanus, n = 2 |
M. cf. americanu, n = 2 | |
M. colobocercus, n = 1, 18S rRNA, only | |
M. composticola, n = 6 | |
M. iranicus, n = 2 | |
M. kanzakii, n = 2 | |
M. macrospiculum, n = 18 | |
M. striatus, n = 18, 18S rRNA, only | |
identified to genus level, n = 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapałowska, A.; Skwiercz, A.; Puchalski, C.; Malewski, T. Influence of Eisenia fetida on the Nematode Populations during Vermicomposting Process. Appl. Sci. 2024, 14, 1576. https://doi.org/10.3390/app14041576
Zapałowska A, Skwiercz A, Puchalski C, Malewski T. Influence of Eisenia fetida on the Nematode Populations during Vermicomposting Process. Applied Sciences. 2024; 14(4):1576. https://doi.org/10.3390/app14041576
Chicago/Turabian StyleZapałowska, Anita, Andrzej Skwiercz, Czesław Puchalski, and Tadeusz Malewski. 2024. "Influence of Eisenia fetida on the Nematode Populations during Vermicomposting Process" Applied Sciences 14, no. 4: 1576. https://doi.org/10.3390/app14041576
APA StyleZapałowska, A., Skwiercz, A., Puchalski, C., & Malewski, T. (2024). Influence of Eisenia fetida on the Nematode Populations during Vermicomposting Process. Applied Sciences, 14(4), 1576. https://doi.org/10.3390/app14041576