Argininemia: Pathophysiology and Novel Methods for Evaluation of the Disease
Abstract
:1. Introduction
2. Clinical Manifestations and Physical History
3. Pathophysiology
3.1. Urea Cycle Disorders
3.2. Arginase 1/Arginase 2
3.3. Mechanisms of the Disease
4. Novel Methods of Evaluation
4.1. Current Methods of Diagnosis and Treatment
4.2. Novel Evaluation Methods
4.2.1. Use of Arginine/Ornithine Ratio
4.2.2. Use of Metabolomics and Machine Learning
4.2.3. Use of Genetic Databases
4.2.4. Use of Apps for Diet Monitoring
4.2.5. Use of Neurophysiological Methods and Multi-Modal Imaging
4.2.6. Discovery of Novel Mutations
4.2.7. Use of New Modeling Methods
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Bin Sawad, A.; Pothukuchy, A.; Badeaux, M.; Hodson, V.; Bubb, G.; Lindsley, K.; Uyei, J.; Diaz, G.A. Natural History of Arginase 1 Deficiency and the Unmet Needs of Patients: A Systematic Review of Case Reports. JIMD Rep. 2022, 63, 330–340. [Google Scholar] [CrossRef]
- Kido, J.; Matsumoto, S.; Takeshita, E.; Hayasaka, C.; Yamada, K.; Kagawa, J.; Nakajima, Y.; Ito, T.; Iijima, H.; Endo, F.; et al. Current Status of Surviving Patients with Arginase 1 Deficiency in Japan. Mol. Genet. Metab. Rep. 2021, 29, 100805–102214. [Google Scholar] [CrossRef] [PubMed]
- Bin Sawad, A.; Jackimiec, J.; Bechter, M.; Trucillo, A.; Lindsley, K.; Bhagat, A.; Uyei, J.; Diaz, G.A. Epidemiology, Methods of Diagnosis, and Clinical Management of Patients with Arginase 1 Deficiency (ARG1-D): A Systematic Review. Mol. Genet. Metab. 2022, 137, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Uchino, T.; Endo, F.; Matsuda, I. Neurodevelopmental Outcome of Long-Term Therapy of Urea Cycle Disorders in Japan. J. Inherit. Metab. Dis. 1998, 21 (Suppl. 1), 151–159. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.J.; Wei, N.; Li, M.; Xie, K.; Li, J.Q.; Huang, C.G.; Xiao, Y.S.; Liu, W.H.; Chen, X.G. Diagnosis and Therapeutic Monitoring of Inborn Errors of Metabolism in 100,077 Newborns from Jining City in China. BMC Pediatr. 2018, 18, 100. [Google Scholar] [CrossRef] [PubMed]
- Burrage, L.C.; Thistlethwaite, L.; Stroup, B.M.; Sun, Q.; Miller, M.J.; Nagamani, S.C.S.; Craigen, W.; Scaglia, F.; Sutton, V.R.; Graham, B.; et al. Untargeted Metabolomic Profiling Reveals Multiple Pathway Perturbations and New Clinical Biomarkers in Urea Cycle Disorders. Genet. Med. 2019, 21, 1977–1986. [Google Scholar] [CrossRef] [PubMed]
- Keskinen, P.; Siitonen, A.; Salo, M. Hereditary Urea Cycle Diseases in Finland. Acta Paediatr. 2008, 97, 1412–1419. [Google Scholar] [CrossRef] [PubMed]
- McNutt, M.C.; Foreman, N.; Gotway, G. Arginase 1 Deficiency in Patients Initially Diagnosed with Hereditary Spastic Paraplegia. Mov. Disord. Clin. Pract. 2023, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- Schlune, A.; Vom Dahl, S.; Häussinger, D.; Ensenauer, R.; Mayatepek, E. Hyperargininemia Due to Arginase I Deficiency: The Original Patients and Their Natural History, and a Review of the Literature. Amino Acids 2015, 47, 1751–1762. [Google Scholar] [CrossRef]
- Morales, J.A.; Sticco, K.L. Arginase Deficiency; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Freua, F.; De Castro Almeida, M.E.; Nóbrega, P.R.; De Paiva, A.R.B.; Della-Ripa, B.; Cunha, P.; Macedo-Souza, L.I.; Bueno, C.; Lynch, D.S.; Houlden, H.; et al. Arginase 1 Deficiency Presenting as Complicated Hereditary Spastic Paraplegia. Cold Spring Harb. Mol. Case Stud. 2022, 8, a006232. [Google Scholar] [CrossRef]
- Bakirtzis, C.; Smyrni, N.; Afrantou, T.; Boziki, M.K.; Grigoriadis, N. Spastic Gait, Intellectual Disability and Seizures Due to a Rare Mutation Causing Hyperargininemia. Clin. Neurol. Neurosurg. 2021, 208, 106895. [Google Scholar] [CrossRef] [PubMed]
- Scaglia, F.; Lee, B. Clinical, Biochemical, and Molecular Spectrum of Hyperargininemia Due to Arginase I Deficiency. Am. J. Med. Genet. C Semin. Med. Genet. 2006, 142C, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.R.; Brum, J.M.; Speck-Martins, C.E.; Ventura, F.D.; Navarro, M.M.M.; Coelho, K.E.F.A.; Portugal, D.; Pratesi, R. Clinical Features and Neurologic Progression of Hyperargininemia. Pediatr. Neurol. 2012, 46, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Dorum, S.; Havalı, C. Case Series of Arginase 1 Deficiency: Expanding the Spectrum in Hyperargininemia. Pediatr. Int. 2022, 64, e14945. [Google Scholar] [CrossRef] [PubMed]
- Huemer, M.; Carvalho, D.R.; Brum, J.M.; Ünal, Ö.; Coskun, T.; Weisfeld-Adams, J.D.; Schrager, N.L.; Scholl-Bürgi, S.; Schlune, A.; Donner, M.G.; et al. Clinical Phenotype, Biochemical Profile, and Treatment in 19 Patients with Arginase 1 Deficiency. J. Inherit. Metab. Dis. 2016, 39, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Pearson, T.S.; Pons, R.; Ghaoui, R.; Sue, C.M. Genetic Mimics of Cerebral Palsy. Mov. Disord. 2019, 34, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.R.; Christopher, R.; Ramanujam, C.N.; Harikrishna, G.V. Hyperargininemia Experiences over Last 7 Years from a Tertiary Care Center. J. Pediatr. Neurosci. 2019, 14, 2. [Google Scholar] [CrossRef]
- Iyer, R.; Jenkinson, C.P.; Vockley, J.G.; Kern, R.M.; Grody, W.W.; Cederbaum, S. The Human Arginases and Arginase Deficiency. J. Inherit. Metab. Dis. 1998, 21 (Suppl. 1), 86–100. [Google Scholar] [CrossRef]
- Cornelius, L.; Raju, V.; Julin, A. Arginase Deficiency Presenting as Acute Encephalopathy. J. Pediatr. Neurosci. 2019, 14, 133–136. [Google Scholar] [CrossRef]
- Braga, A.C.; Vilarinho, L.; Ferreira, E.; Rocha, H. Hyperargininemia Presenting as Persistent Neonatal Jaundice and Hepatic Cirrhosis. J. Pediatr. Gastroenterol. Nutr. 1997, 24, 218–221. [Google Scholar] [CrossRef]
- Sun, A.; Crombez, E.A.; Wong, D. Arginase Deficiency; GeneReviews: Seattle, WA, USA, 2020. [Google Scholar]
- Sin, Y.Y.; Baron, G.; Schulze, A.; Funk, C.D. Arginase-1 Deficiency. J. Mol. Med. 2015, 93, 1287–1296. [Google Scholar] [CrossRef]
- Crombez, E.A.; Cederbaum, S.D. Hyperargininemia Due to Liver Arginase Deficiency. Mol. Genet. Metab. 2005, 84, 243–251. [Google Scholar] [CrossRef]
- Cowley, D.M.; Bowling, F.G.; McGiil, J.J.; Van Dongen, J.; Morris, D. Adult-Onset Arginase Deficiency. J. Inherit. Metab. Dis. 1998, 21, 677–678. [Google Scholar] [CrossRef] [PubMed]
- Maramattom, B.V.; Raja, R.; Balagopal, A. Late Onset Arginase Deficiency Presenting with Encephalopathy and Midbrain Hyperintensity. Ann. Indian. Acad. Neurol. 2016, 19, 392. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Yu, D.; Xie, Y.; Zhou, H. Argininemia as a Cause of Severe Chronic Stunting and Partial Growth Hormone Deficiency (PGHD): A Case Report. Medicine 2018, 97, e9880. [Google Scholar] [CrossRef]
- King, N.; Alvizures, R.; García, P.; Wessel, A.; Rohloff, P. Argininemia as a Cause of Severe Chronic Stunting in a Low-Resource Developing Country Setting: A Case Report. BMC Pediatr. 2016, 16, 142. [Google Scholar] [CrossRef]
- Cederbaum, S.D.; Moedjono, S.J.; Shaw, K.N.F.; Carter, M.; Naylor, E.; Walzer, M. Treatment of Hyperargininaemia Due to Arginase Deficiency with a Chemically Defined Diet. J. Inherit. Metab. Dis. 1982, 5, 95–99. [Google Scholar] [CrossRef]
- Cui, B.; Wei, L.; Zhu, Z.J.; Sun, L.Y. Neurophysiological Characteristics in Argininemia: A Case Report. Transl. Pediatr. 2021, 10, 1947. [Google Scholar] [CrossRef] [PubMed]
- Güngör, S.; Akinci, A.; Firat, A.K.; Tabel, Y.; Alkan, A. Neuroimaging Findings in Hyperargininemia. J. Neuroimaging 2008, 18, 457–462. [Google Scholar] [CrossRef]
- Oldham, M.S.; vanMeter, J.W.; Shattuck, K.F.; Cederbaum, S.D.; Gropman, A.L. Diffusion Tensor Imaging in Arginase Deficiency Reveals Damage to Corticospinal Tracts. Pediatr. Neurol. 2010, 42, 49. [Google Scholar] [CrossRef]
- Panza, E.; Martinelli, D.; Magini, P.; Vici, C.D.; Seri, M. Hereditary Spastic Paraplegia Is a Common Phenotypic Finding in ARG1 Deficiency, P5CS Deficiency and HHH Syndrome: Three Inborn Errors of Metabolism Caused by Alteration of an Interconnected Pathway of Glutamate and Urea Cycle Metabolism. Front. Neurol. 2019, 10, 428346. [Google Scholar] [CrossRef]
- Gropman, A.L.; Summar, M.; Leonard, J.V. Neurological Implications of Urea Cycle Disorders. J. Inherit. Metab. Dis. 2007, 30, 865–879. [Google Scholar] [CrossRef]
- Lichter-Konecki, U. Defects of the Urea Cycle. Transl. Sci. Rare Dis. 2016, 1, 23–43. [Google Scholar] [CrossRef]
- Cederbaum, S.D.; Yu, H.; Grody, W.W.; Kern, R.M.; Yoo, P.; Iyer, R.K. Arginases I and II: Do Their Functions Overlap? Mol. Genet. Metab. 2004, 81, 38–44. [Google Scholar] [CrossRef]
- Jenkinson, C.P.; Grody, W.W.; Cederbaum, S.D. Comparative Properties of Arginases. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1996, 114, 107–132. [Google Scholar] [CrossRef]
- Waddington, S.N.; Mosley, K.; Cook, H.T.; Tam, F.W.K.; Cattell, V. Arginase AI Is Upregulated in Acute Immune Complex-Induced Inflammation. Biochem. Biophys. Res. Commun. 1998, 247, 84–87. [Google Scholar] [CrossRef]
- Zhang, C.; Hein, T.W.; Wang, W.; Chang, C.; Kuo, L. Constitutive Expression of Arginase in Microvascular Endothelial Cells Counteracts Nitric Oxide-Mediated Vasodilatory Function. FASEB J. 2001, 15, 1264–1266. [Google Scholar] [CrossRef]
- Di Costanzo, L.; Sabio, G.; Mora, A.; Rodriguez, P.C.; Ochoa, A.C.; Centeno, F.; Christianson, D.W. Crystal Structure of Human Arginase I at 1.29-A Resolution and Exploration of Inhibition in the Immune Response. Proc. Natl. Acad. Sci. USA 2005, 102, 13058–13063. [Google Scholar] [CrossRef] [PubMed]
- Diaz, G.A.; Bechter, M.; Cederbaum, S.D. The Role and Control of Arginine Levels in Arginase 1 Deficiency. J. Inherit. Metab. Dis. 2023, 46, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.M.; Bhamidipati, D.; Kepka-Lenhart, D. Human Type II Arginase: Sequence Analysis and Tissue-Specific Expression. Gene 1997, 193, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Vockley, J.G.; Jenkinson, C.P.; Shukla, H.; Kern, R.M.; Grody, W.W.; Cederbaum, S.D. Cloning and Characterization of the Human Type II Arginase Gene. Genomics 1996, 38, 118–123. [Google Scholar] [CrossRef]
- Yip, M.C.; Knox, W.E. Function of Arginase in Lactating Mammary Gland. Biochem. J. 1972, 127, 893. [Google Scholar] [CrossRef]
- Li, H.; Meininger, C.J.; Hawker, J.R.; Haynes, T.E.; Kepka-Lenhart, D.; Mistry, S.K.; Morris, S.M.; Wu, G. Regulatory Role of Arginase I and II in Nitric Oxide, Polyamine, and Proline Syntheses in Endothelial Cells. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E75–E82. [Google Scholar] [CrossRef]
- Dos Reis, E.A.; De Oliveira, L.S.; Lamers, M.L.; Netto, C.A.; Wyse, A.T. de S. Arginine Administration Inhibits Hippocampal Na+,K+-ATPase Activity and Impairs Retention of an Inhibitory Avoidance Task in Rats. Brain Res. 2002, 951, 151–157. [Google Scholar] [CrossRef]
- Morris, S.M., Jr. Recent advances in arginine metabolism: Roles and regulation of the arginases. Br. J. Pharmacol. 2009, 157, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Marescau, B.; Qureshi, I.A.; De Deyn, P.; Letarte, J.; Ryba, R.; Lowenthal, A. Guanidino Compounds in Plasma, Urine and Cerebrospinal Fluid of Hyperargininemic Patients during Therapy. Clin. Chim. Acta 1985, 146, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Marescau, B.; De Deyn, P.P.; Lowenthal, A.; Qureshi, I.A.; Antonozzi, I.; Bachmann, C.; Cederbaum, S.D.; Cerone, R.; Chamoles, N.; Colombo, J.P.; et al. Guanidino Compound Analysis as a Complementary Diagnostic Parameter for Hyperargininemia: Follow-up of Guanidino Compound Levels during Therapy. Pediatr. Res. 1990, 27, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Deignan, J.L.; Marescau, B.; Livesay, J.C.; Iyer, R.K.; De Deyn, P.P.; Cederbaum, S.D.; Grody, W.W. Increased Plasma and Tissue Guanidino Compounds in a Mouse Model of Hyperargininemia. Mol. Genet. Metab. 2008, 93, 172–178. [Google Scholar] [CrossRef]
- Mizutani, N.; Hayakawa, C.; Ohya, Y.; Watanabe, K.; Watanabe, Y.; Mori, A. Guanidino Compounds in Hyperargininemia. Tohoku J. Exp. Med. 1987, 153, 197–205. [Google Scholar] [CrossRef]
- Hiramatsu, M. A Role for Guanidino Compounds in the Brain. Mol. Cell Biochem. 2003, 244, 57–62. [Google Scholar] [CrossRef]
- De Deyn, P.P.; Marescau, B.; Macdonald, R.L. Guanidino Compounds That Are Increased in Hyperargininemia Inhibit GABA and Glycine Responses on Mouse Neurons in Cell Culture. Epilepsy Res. 1991, 8, 134–141. [Google Scholar] [CrossRef]
- Delwing-de Lima, D.; Wollinger, L.F.; Casagrande, A.C.M.; Delwing, F.; da Cruz, J.G.P.; Wyse, A.T.S.; Delwing-Dal Magro, D. Guanidino Compounds Inhibit Acetylcholinesterase and Butyrylcholinesterase Activities: Effect Neuroprotector of Vitamins E plus C. Int. J. Dev. Neurosci. 2010, 28, 465–473. [Google Scholar] [CrossRef]
- Da Silva, C.G.; Parolo, E.; Streck, E.L.; Wajner, M.; Wannmacher, C.M.D.; De Souza Wyse, A.T. In Vitro Inhibition of Na+,K+-ATPase Activity from Rat Cerebral Cortex by Guanidino Compounds Accumulating in Hyperargininemia. Brain Res. 1999, 838, 78–84. [Google Scholar] [CrossRef]
- Lonergan, E.T.; Semar, M.; Sterzel, R.B.; Treser, G.; Needle, M.A.; Voyles, L.; Lange, K. Erythrocyte Transketolase Activity in Dialyzed Patients. A Reversible Metabolic Lesion of Uremia. N. Engl. J. Med. 1971, 284, 1399–1403. [Google Scholar] [CrossRef]
- Terezinha de Souza Wyse, A.; Serra Bavaresco, C.; Elisabeth Kienzle Hagen, M.; Delwing, D.; Milton Duval Wannmacher, C.; Severo Dutra-Filho, C.; Wajner, M. In Vitro Stimulation of Oxidative Stress in Cerebral Cortex of Rats by the Guanidino Compounds Accumulating in Hyperargininemia. Brain Res. 2001, 923, 50–57. [Google Scholar] [CrossRef]
- Brosnan, M.E.; Brosnan, J.T. Orotic Acid Excretion and Arginine Metabolism. J. Nutr. 2007, 137, 1656S–1661S. [Google Scholar] [CrossRef]
- Liu, X.B.; Haney, J.R.; Cantero, G.; Lambert, J.R.; Otero-Garcia, M.; Truong, B.; Gropman, A.; Cobos, I.; Cederbaum, S.D.; Lipshutz, G.S. Hepatic Arginase Deficiency Fosters Dysmyelination during Postnatal CNS Development. JCI Insight 2019, 4, e130260. [Google Scholar] [CrossRef]
- Ojha, U. Protein-Induced Satiation and the Calcium-Sensing Receptor. Diabetes Metab. Syndr. Obes. 2018, 11, 45. [Google Scholar] [CrossRef]
- Mellinkoff, S.M.; Frankland, M.; Boyle, D.; Greipel, M. Relationship between Serum Amino Acid Concentration and Fluctuations in Appetite. J. Appl. Physiol. 1956, 8, 535–538. [Google Scholar] [CrossRef]
- Feldman, J.M.; Lebovitz, H.E. Ammonium Ion, a Modulator of Insulin Secretion. Am. J. Physiol. 1971, 221, 1027–1032. [Google Scholar] [CrossRef]
- Grody, W.W.; Kern, R.M.; Klein, D.; Dodson, A.E.; Wissman, P.B.; Barsky, S.H.; Cederbaum, S.D. Arginase Deficiency Manifesting Delayed Clinical Sequelae and Induction of a Kidney Arginase Isozyme. Hum. Genet. 1993, 91, 1–5. [Google Scholar] [CrossRef]
- Sin, Y.Y.; Ballantyne, L.L.; Mukherjee, K.; St Amand, T.; Kyriakopoulou, L.; Schulze, A.; Funk, C.D. Inducible Arginase 1 Deficiency in Mice Leads to Hyperargininemia and Altered Amino Acid Metabolism. PLoS ONE 2013, 8, e0080001. [Google Scholar] [CrossRef]
- Shi, O.; Morris, S.M., Jr.; Zoghbi, H.; Porter, C.W.; O’Brien, W.E. Generation of a mouse model for arginase II deficiency by targeted disruption of the arginase II gene. Mol. Cell Biol. 2001, 21, 811–813. [Google Scholar] [CrossRef]
- Yin, Y.; Phạm, T.L.; Shin, J.; Shin, N.; Kang, D.W.; Lee, S.Y.; Lee, W.; Kim, C.S.; Kim, S.R.; Hong, J.; et al. Arginase 2 Deficiency Promotes Neuroinflammation and Pain Behaviors Following Nerve Injury in Mice. J. Clin. Med. 2020, 9, 305. [Google Scholar] [CrossRef]
- Häberle, J.; Burlina, A.; Chakrapani, A.; Dixon, M.; Karall, D.; Lindner, M.; Mandel, H.; Martinelli, D.; Pintos-Morell, G.; Santer, R.; et al. Suggested Guidelines for the Diagnosis and Management of Urea Cycle Disorders: First Revision. J. Inherit. Metab. Dis. 2019, 42, 1192–1230. [Google Scholar] [CrossRef]
- Therrell, B.L.; Currier, R.; Lapidus, D.; Grimm, M.; Cederbaum, S.D. Newborn Screening for Hyperargininemia Due to Arginase 1 Deficiency. Mol. Genet. Metab. 2017, 121, 308–313. [Google Scholar] [CrossRef]
- Diez-Fernandez, C.; Rüfenacht, V.; Gemperle, C.; Fingerhut, R.; Häberle, J. Mutations and Common Variants in the Human Arginase 1 (ARG1) Gene: Impact on Patients, Diagnostics, and Protein Structure Considerations. Hum. Mutat. 2018, 39, 1029–1050. [Google Scholar] [CrossRef]
- Batshaw, M.L.; Macarthur, R.B.; Tuchman, M. Alternative Pathway Therapy for Urea Cycle Disorders: Twenty Years Later. J. Pediatr. 2001, 138, S46–S55. [Google Scholar] [CrossRef]
- Amayreh, W.; Meyer, U.; Das, A.M. Treatment of Arginase Deficiency Revisited: Guanidinoacetate as a Therapeutic Target and Biomarker for Therapeutic Monitoring. Dev. Med. Child. Neurol. 2014, 56, 1021–1024. [Google Scholar] [CrossRef]
- Kang, S.S.; Wong, P.W.K.; Melyn, M.A. Hyperargininemia: Effect of Ornithine and Lysine Supplementation. J. Pediatr. 1983, 103, 763–765. [Google Scholar] [CrossRef]
- Pardridge, W.M. Lysine Supplementation in Hyperargininemia. J. Pediatr. 1977, 91, 1032. [Google Scholar] [CrossRef]
- Silva, E.S.; Cardoso, M.L.; Vilarinho, L.; Medina, M.; Barbot, C.; Martins, E. Liver Transplantation Prevents Progressive Neurological Impairment in Argininemia. JIMD Rep. 2013, 11, 25. [Google Scholar] [CrossRef]
- Cui, B.; Wei, L.; Sun, L.Y.; Qu, W.; Zeng, Z.G.; Liu, Y.; Zhu, Z.J. The Effect of Liver Transplantation for Argininemia-the Largest Experiences in a Single Center. Transl. Pediatr. 2022, 11, 495–504. [Google Scholar] [CrossRef]
- Jain-Ghai, S.; Nagamani, S.C.S.; Blaser, S.; Siriwardena, K.; Feigenbaum, A. Arginase I Deficiency: Severe Infantile Presentation with Hyperammonemia: More Common than Reported? Mol. Genet. Metab. 2011, 104, 107–111. [Google Scholar] [CrossRef]
- Sakiyama, T.; Nakabayashi, H.; Shimizu, H.; Kondo, W.; Kodama, S.; Kitagawa, T. A Successful Trial of Enzyme Replacement Therapy in a Case of Argininemia. Tohoku J. Exp. Med. 1984, 142, 239–248. [Google Scholar] [CrossRef]
- Diaz, G.A.; Schulze, A.; McNutt, M.C.; Leão-Teles, E.; Merritt, J.L.; Enns, G.M.; Batzios, S.; Bannick, A.; Zori, R.T.; Sloan, L.S.; et al. Clinical Effect and Safety Profile of Pegzilarginase in Patients with Arginase 1 Deficiency. J. Inherit. Metab. Dis. 2021, 44, 847. [Google Scholar] [CrossRef]
- Kelle, B.; Yavuz, F. Arginiemia Is Not a Contraindication for Botulinum Toxin Injection. J. Pediatr. Orthop. B 2016, 25, 86–87. [Google Scholar] [CrossRef]
- Jay, A.; Seeterlin, M.; Stanley, E.; Grier, R. Case Report of Argininemia: The Utility of the Arginine/Ornithine Ratio for Newborn Screening (NBS). JIMD Rep. 2013, 9, 121. [Google Scholar] [CrossRef]
- Huang, Y.; Sharma, R.; Feigenbaum, A.; Lee, C.; Sahai, I.; Sanchez Russo, R.; Neira, J.; Brooks, S.S.; Jackson, K.E.; Wong, D.; et al. Arginine to Ornithine Ratio as a Diagnostic Marker in Patients with Positive Newborn Screening for Hyperargininemia. Mol. Genet. Metab. Rep. 2021, 27, 100735. [Google Scholar] [CrossRef]
- Miller, M.J.; Kennedy, A.D.; Eckhart, A.D.; Burrage, L.C.; Wulff, J.E.; Miller, L.A.D.; Milburn, M.V.; Ryals, J.A.; Beaudet, A.L.; Sun, Q.; et al. Untargeted Metabolomic Analysis for the Clinical Screening of Inborn Errors of Metabolism. J. Inherit. Metab. Dis. 2015, 38, 1029. [Google Scholar] [CrossRef]
- Thistlethwaite, L.R.; Li, X.; Burrage, L.C.; Riehle, K.; Hacia, J.G.; Braverman, N.; Wangler, M.F.; Miller, M.J.; Elsea, S.H.; Milosavljevic, A. Clinical Diagnosis of Metabolic Disorders Using Untargeted Metabolomic Profiling and Disease-Specific Networks Learned from Profiling Data. Sci. Rep. 2022, 12, 6556. [Google Scholar] [CrossRef]
- Catsburg, C.; Anderson, S.; Upadhyaya, N.; Bechter, M. Arginase 1 Deficiency: Using Genetic Databases as a Tool to Establish Global Prevalence. Orphanet J. Rare Dis. 2022, 17, 1–7. [Google Scholar] [CrossRef]
- Prasad, A.N.; Breen, J.C.; Ampola, M.G.; Rosman, N.P. Argininemia: A Treatable Genetic Cause of Progressive Spastic Diplegia Simulating Cerebral Palsy: Case Reports and Literature Review. J. Child. Neurol. 1997, 12, 301–309. [Google Scholar] [CrossRef]
- MacDonald, A.; Van Rijn, M.; Feillet, F.; Lund, A.M.; Bernstein, L.; Bosch, A.M.; Gizewska, M.; Van Spronsen, F.J. Adherence Issues in Inherited Metabolic Disorders Treated by Low Natural Protein Diets. Ann. Nutr. Metab. 2012, 61, 289–295. [Google Scholar] [CrossRef]
- Ho, G.; Ueda, K.; Houben, R.F.A.; Joa, J.; Giezen, A.; Cheng, B.; van Karnebeek, C.D.M. Metabolic Diet App Suite for Inborn Errors of Amino Acid Metabolism. Mol. Genet. Metab. 2016, 117, 322–327. [Google Scholar] [CrossRef]
- Sen, K.; Anderson, A.A.; Whitehead, M.T.; Gropman, A.L. Review of Multi-Modal Imaging in Urea Cycle Disorders: The Old, the New, the Borrowed, and the Blue. Front. Neurol. 2021, 12, 632307. [Google Scholar] [CrossRef]
- Sparkes, R.S.; Dizikes, G.J.; Klisak, I.; Grody, W.W.; Mohandas, T.; Heinzmann, C.; Zollman, S.; Lusis, A.J.; Cederbaum, S.D. The Gene for Human Liver Arginase (ARG1) Is Assigned to Chromosome Band 6q23. Am. J. Hum. Genet. 1986, 39, 186. [Google Scholar]
- Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M. Molecular Cloning and Nucleotide Sequence of CDNA for Human Liver Arginase. Proc. Natl. Acad. Sci. USA 1987, 84, 412–415. [Google Scholar] [CrossRef]
- Mohseni, J.; Boon Hock, C.; Abdul Razak, C.; Othman, S.N.I.; Hayati, F.; PeiTee, W.O.; Haniffa, M.; Zilfalil, B.A.; Mohd Rawi, R.; Ngu, L.H.; et al. Novel Complex Re-Arrangement of ARG1 Commonly Shared by Unrelated Patients with Hyperargininemia. Gene 2014, 533, 240–245. [Google Scholar] [CrossRef]
- Korman, S.H.; Gutman, A.; Stemmer, E.; Kay, B.S.; Ben-Neriah, Z.; Zeigler, M. Prenatal Diagnosis for Arginase Deficiency by Second-Trimester Fetal Erythrocyte Arginase Assay and First-Trimester ARG1 Mutation Analysis. Prenat. Diagn. 2004, 24, 857–860. [Google Scholar] [CrossRef]
- Vockley, J.G.; Goodman, B.K.; Tabor, D.E.; Kern, R.M.; Jenkinson, C.P.; Grody, W.W.; Cederbaum, S.D. Loss of Function Mutations in Conserved Regions of the Human Arginase I Gene. Biochem. Mol. Med. 1996, 59, 44–51. [Google Scholar] [CrossRef]
- Ash, D.E.; Scolnick, L.R.; Kanyo, Z.F.; Vockley, J.G.; Cederbaum, S.D.; Christianson, D.W. Molecular Basis of Hyperargininemia: Structure-Function Consequences of Mutations in Human Liver Arginase. Mol. Genet. Metab. 1998, 64, 243–249. [Google Scholar] [CrossRef]
- Cardoso, M.L.; Martins, E.; Vasconcelos, R.; Vilarinho, L.; Rocha, J. Identification of a Novel R21X Mutation in the Liver-Type Arginase Gene (ARG1) in Four Portuguese Patients with Argininemia. Hum. Mutat. 1999, 14, 355–356. [Google Scholar] [CrossRef]
- Qureshi, I.A.; Letarte, J.; Ouellet, R.; Larochelle, J.; Lemieux, B. A New French-Canadian Family Affected by Hyperargininaemia. J. Inherit. Metab. Dis. 1983, 6, 179–182. [Google Scholar] [CrossRef]
- Carvalho, D.R.; Brand, G.D.; Brum, J.M.; Takata, R.I.; Speck-Martins, C.E.; Pratesi, R. Analysis of Novel ARG1 Mutations Causing Hyperargininemia and Correlation with Arginase I Activity in Erythrocytes. Gene 2012, 509, 124–130. [Google Scholar] [CrossRef]
- Uchino, T.; Snyderman, S.E.; Lambert, M.; Qureshi, I.A.; Shapira, S.K.; Sansaricq, C.; Smit, L.M.E.; Jakobs, C.; Matsuda, I. Molecular Basis of Phenotypic Variation in Patients with Argininemia. Hum. Genet. 1995, 96, 255–260. [Google Scholar] [CrossRef]
- Elsayed, L.E.O.; Mohammed, I.N.; Hamed, A.A.A.; Elseed, M.A.; Salih, M.A.M.; Yahia, A.; Abubaker, R.; Koko, M.; Abd Allah, A.S.I.; Elbashir, M.I.; et al. Novel Homozygous Missense Mutation in the ARG1 Gene in a Large Sudanese Family. Front. Neurol. 2020, 11, 569996. [Google Scholar] [CrossRef]
- Cui, D.; Liu, Y.; Jin, L.; Hu, L.; Cao, L. A Novel Compound Heterozygous Mutation in the Arginase-1 Gene Identified in a Chinese Patient with Argininemia: A Case Report. Medicine 2020, 99, E21634. [Google Scholar] [CrossRef]
- Iyer, R.K.; Yoo, P.K.; Kern, R.M.; Rozengurt, N.; Tsoa, R.; O’Brien, W.E.; Yu, H.; Grody, W.W.; Cederbaum, S.D. Mouse Model for Human Arginase Deficiency. Mol. Cell Biol. 2002, 22, 4491. [Google Scholar] [CrossRef]
- Deignan, J.L.; Livesay, J.C.; Yoo, P.K.; Goodman, S.I.; O’Brien, W.E.; Iyer, R.K.; Cederbaum, S.D.; Grody, W.W. Ornithine Deficiency in the Arginase Double Knockout Mouse. Mol. Genet. Metab. 2006, 89, 87–96. [Google Scholar] [CrossRef]
- Kasten, J.; Hu, C.; Bhargava, R.; Park, H.; Tai, D.; Byrne, J.A.; Marescau, B.; De Deyn, P.P.; Schlichting, L.; Grody, W.W.; et al. Lethal Phenotype in Conditional Late-Onset Arginase 1 Deficiency in the Mouse. Mol. Genet. Metab. 2013, 110, 222. [Google Scholar] [CrossRef] [PubMed]
- Duff, C.; Baruteau, J. Modelling Urea Cycle Disorders Using IPSCs. NPJ Regen. Med. 2022, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Truong, B.; Lee, P.C.; Vega-Crespo, A.; Gilmore, W.B.; Hermann, K.; Kingman, S.; Tang, J.K.; Chang, K.M.; Byrne, J.A.; Lipshutz, G.S. CRISPR/Cas9-Based Gene Correction of Arginase-Deficient Human Induced Pluripotent Stem Cells to Recover Enzyme Function. Molecular Therapy 2016, 24, S139. [Google Scholar] [CrossRef]
- Lee, P.C.; Truong, B.; Vega-Crespo, A.; Gilmore, W.B.; Hermann, K.; Angarita, S.A.; Tang, J.K.; Chang, K.M.; Wininger, A.E.; Lam, A.K.; et al. Restoring Ureagenesis in Hepatocytes by CRISPR/Cas9-Mediated Genomic Addition to Arginase-Deficient Induced Pluripotent Stem Cells. Mol. Ther. Nucleic Acids 2016, 5, e394. [Google Scholar] [CrossRef]
Study (First Author, Year of Publication) | Design/Method of Evaluation | Key Findings |
---|---|---|
Catsburg et al., 2022 [82] | Genetic database analysis to establish the prevalence of ARG1-D |
|
Thistlethwaite et al., 2022 [81] | Use of untargeted metabolomic profiling, and disease-specific networks to diagnose IEMs |
|
Cui et al., 2021 [29] | Neurophysiological characteristics of a patient with ARG1-D |
|
Huang et al., 2021 [79] | Development of Arg/Orn ratio as a secondary diagnostic marker in patients with positive NBS for ARG1-D |
|
Sen et al., 2021 [86] | Review of multi-modal imaging in UCDs |
|
Burrage et al., 2019 [6] | Untargeted metabolomics analysis for discovery of pathway perturbations, and novel biomarkers in UCDs |
|
Ho et al., 2016 [85] | Development of an app for diet monitoring in patients with IEMs |
|
Miller et al., 2015 [80] | Untargeted metabolomics analysis for clinical screening of IEMs |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nteli, D.; Nteli, M.; Konstantinidis, K.; Foka, A.; Charisi, F.; Michailidou, I.; Stavropoulou De Lorenzo, S.; Boziki, M.; Tzitiridou-Chatzopoulou, M.; Spandou, E.; et al. Argininemia: Pathophysiology and Novel Methods for Evaluation of the Disease. Appl. Sci. 2024, 14, 1647. https://doi.org/10.3390/app14041647
Nteli D, Nteli M, Konstantinidis K, Foka A, Charisi F, Michailidou I, Stavropoulou De Lorenzo S, Boziki M, Tzitiridou-Chatzopoulou M, Spandou E, et al. Argininemia: Pathophysiology and Novel Methods for Evaluation of the Disease. Applied Sciences. 2024; 14(4):1647. https://doi.org/10.3390/app14041647
Chicago/Turabian StyleNteli, Despoina, Maria Nteli, Konstantinos Konstantinidis, Anastasia Foka, Foteini Charisi, Iliana Michailidou, Sotiria Stavropoulou De Lorenzo, Marina Boziki, Maria Tzitiridou-Chatzopoulou, Evangelia Spandou, and et al. 2024. "Argininemia: Pathophysiology and Novel Methods for Evaluation of the Disease" Applied Sciences 14, no. 4: 1647. https://doi.org/10.3390/app14041647
APA StyleNteli, D., Nteli, M., Konstantinidis, K., Foka, A., Charisi, F., Michailidou, I., Stavropoulou De Lorenzo, S., Boziki, M., Tzitiridou-Chatzopoulou, M., Spandou, E., Simeonidou, C., Bakirtzis, C., & Kesidou, E. (2024). Argininemia: Pathophysiology and Novel Methods for Evaluation of the Disease. Applied Sciences, 14(4), 1647. https://doi.org/10.3390/app14041647