Soil Mineral-Associated Organic Carbon and Its Relationship to Clay Minerals across Grassland Transects in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Sites
2.2. Soil Physicochemical Analyses
2.3. SOC and MOC Analysis
2.4. XRD Analyses
2.5. Statistical Analyses
3. Results
3.1. Soil Physicochemical Properties
3.2. SOC and MOC in Different Grassland Transect Soils
3.3. Clay Minerals Component Characteristics
3.4. Linking MOC to Clay Minerals and Other Factors
4. Discussion
4.1. SOC and MOC in Grassland Soil Samples
4.2. Influence of Soil Physicochemical Properties on MOC
4.3. Relationship between Clay Minerals and MOC
4.4. Comprehensive Effects of Climate, Soil Properties, and Minerals on MOC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scurlock, J.M.O.; Hall, D.O. The global carbon sink: A grassland perspective. Glob. Chang. Biol. 1998, 4, 229–233. [Google Scholar] [CrossRef]
- Schlesinger, W.H. Biogeochemistry: An Analysis of Global Change; Academic Press: San Diego, CA, USA, 1997. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Chadwick, D.R.; Jones, D.L.; Evans, C.D.; Jones, M.B.; Rees, R.M.; Smith, P. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric. Ecosyst. Environ. 2018, 253, 62–81. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Hu, Z.M.; Lai, D.Y.F.; Han, D.R.; Wang, M.; Liu, M.; Zhang, M.; Guo, M.Y. Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: A meta-analysis. Glob. Chang. Biol. 2020, 26, 7186–7197. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fischer, G. A New Digital Georeferenced Data Base of Grassland in China; IIASA Interim Report (IR-98-062); International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 1998; Available online: https://core.ac.uk/download/pdf/33897057.pdf (accessed on 15 February 2024).
- Ni, J. Carbon storage in grasslands of China. J. Arid. Environ. 2002, 50, 205–218. [Google Scholar] [CrossRef]
- Wang, S.P.; Wilkes, A.; Zhang, Z.; Chang, X.F.; Lang, R.; Wang, Y.; Niu, H.S. Management and land use change effects on soil carbon in northern China’s grasslands: A synthesis. Agric. Ecosyst. Environ. 2011, 142, 329–340. [Google Scholar] [CrossRef]
- Godde, C.M.; Thorburn, P.J.; Biggs, J.S.; Meier, E.A. Understanding the impacts of soil, climate, and farming practices on soil organic carbon sequestration: A simulation study in Australia. Front. Plant Sci. 2016, 7, 661. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.K.; Baldock, J.; Wang, E.L. Modelling the dynamic physical protection of soil organic carbon: Insights into carbon predictions and explanation of the priming effect. Glob. Chang. Biol. 2017, 23, 5273–5283. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A.; Six, J.; Kaiser, M.; Benbi, D.; Chenu, C.; Cotrufo, M.F.; Derrien, D.; Gioacchini, P.; Grand, S.; et al. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils-A comprehensive method comparison. Soil Biol. Biochem. 2018, 125, 10–26. [Google Scholar] [CrossRef]
- Lawrence, C.R.; Schulz, M.S.; Masiello, C.A.; Chadwick, O.A.; Harden, J.W. The trajectory of soil development and its relationship to soil carbon dynamics. Geoderma 2021, 403, 115378. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Ranalli, M.G.; Haddix, M.L.; Six, J.; Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 2019, 12, 989–994. [Google Scholar] [CrossRef]
- Wang, X.; Wackett, A.A.; Toner, B.M.; Yoo, K. Consistent mineral-associated organic carbon chemistry with variable erosion rates in a mountainous landscape. Geoderma 2022, 405, 115448. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K.; Doran, J.W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1998, 62, 1367–1377. [Google Scholar] [CrossRef]
- Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 2020, 26, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.B.; Wu, Y.P.; Hui, J.Y.; Sivakumar, B.; Meng, X.Y.; Liu, S.G. Projected soil organic carbon loss in response to climate warming and soil water content in a loess watershed. Carbon Balance Manag. 2021, 16, 24–38. [Google Scholar] [CrossRef]
- Cai, A.D.; Xu, H.; Duan, Y.H.; Zhang, X.B.; Ashraf, M.N.; Zhang, W.J.; Xu, M.G. Changes in mineral-associated carbon and nitrogen by long-term fertilization and sequestration potential with various cropping across China dry croplands. Soil Till Res. 2020, 205, 104725. [Google Scholar] [CrossRef]
- Wang, Z.G.; Govers, G.; Van Oost, K.; Clymans, W.; Van Den Putte, A.; Merckx, R. Soil organic carbon mobilization by interrill erosion: Insights from size fractions. J. Geophys. Res. Earth Surf. 2013, 118, 348–360. [Google Scholar] [CrossRef]
- Luo, Z.K.; Rossel, R.A.V.; Shi, Z. Distinct controls over the temporal dynamics of soil carbon fractions after land use change. Glob. Chang. Biol. 2020, 26, 4614–4625. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.Z.; Zhao, Z.Y.; Fu, B.; Wang, J.G.; Tang, W. Characteristics of soil organic carbon fractions under different land use patterns in a tropical area. J. Soil Sediment 2020, 21, 689–697. [Google Scholar] [CrossRef]
- Duan, Y.; Chen, L.; Li, Y.M.; Wang, Q.Y.; Zhang, C.Z.; Ma, D.H.; Li, J.Y.; Zhang, J.B. N, P and straw return influence the accrual of organic carbon fractions and microbial traits in a Mollisol. Geoderma 2021, 403, 115373. [Google Scholar] [CrossRef]
- Li, Y.S.; Xie, Z.H.; Yu, Z.H.; Wang, Y.H.; Liu, C.K.; Wang, G.H.; Wu, J.J.; Jin, J.; Liu, X.B. Impact of surface soil manuring on particulate carbon fractions in relevant to nutrient stoichiometry in a Mollisol profile. Soil Till Res. 2021, 207, 104859. [Google Scholar] [CrossRef]
- Cai, A.D.; Feng, W.T.; Xu, M.G. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China. J. Environ. Manag. 2016, 172, 2–9. [Google Scholar] [CrossRef]
- Schweizer, S.A.; Mueller, C.W.; Hoschen, C.; Ivanov, P.; Kogel-Knabner, I. The role of clay content and mineral surface area for soil organic carbon storage in an arable toposequence. Biogeochemistry 2021, 156, 401–420. [Google Scholar] [CrossRef]
- Feng, W.T.; Plante, A.F.; Six, J. Improving estimates of maximal organic carbon stabilization by fine soil particles. Biogeochemistry 2013, 112, 81–93. [Google Scholar] [CrossRef]
- Lehmann, P.; Leshchinsky, B.; Gupta, S.; Mirus, B.B.; Bickel, S.; Lu, N.; Or, D. Clays are not created equal: How clay mineral type affects soil parameterization. Geophys. Res. Lett. 2022, 48, e2021GL095311. [Google Scholar] [CrossRef]
- Kane, E.S.; Hockaday, W.C.; Turetsky, M.R.; Masiello, C.A.; Valentine, D.W.; Finney, B.P.; Baldock, J.A. Topographic controls on black carbon accumulation in Alaskan black spruce forest soils: Implications for organic matter dynamics. Biogeochemistry 2010, 100, 39–56. [Google Scholar] [CrossRef]
- Yang, J.J.; Wang, J.; Li, A.Y.; Li, G.H.; Zhang, F. Disturbance, carbon physicochemical structure, and soil microenvironment codetermine soil organic carbon stability in oilfields. Environ. Int. 2020, 135, 105390. [Google Scholar] [CrossRef]
- McNally, S.R.; Beare, M.H.; Curtin, D.; Meenken, E.D.; Kelliher, F.M.; Pereira, R.C.; Shen, Q.H.; Baldock, J. Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand. Glob. Chang. Biol. 2017, 23, 4544–4555. [Google Scholar] [CrossRef] [PubMed]
- Barre, P.; Fernandez-Ugalde, O.; Virto, I.; Velde, B.; Chenu, C. Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: Incomplete knowledge and exciting prospects. Geoderma 2014, 235, 382–395. [Google Scholar] [CrossRef]
- Traore, S.; Thiombiano, L.; Bationo, B.A.; Kogel-Knabner, I.; Wiesmeier, M. Organic carbon fractional distribution and saturation in tropical soils of West African savannas with contrasting mineral composition. Catena 2020, 190, 104550. [Google Scholar] [CrossRef]
- Fukumasu, J.; Poeplau, C.; Coucheney, E.; Jarvis, N.; Kloffel, T.; Koestel, J.; Katterer, T.; Svensson, D.N.; Wetterlind, J.; Larsbo, M. Oxalate-extractable aluminum alongside carbon inputs may be a major determinant for organic carbon content in agricultural topsoils in humid continental climate. Geoderma 2021, 402, 115345. [Google Scholar] [CrossRef]
- Bruun, T.B.; Elberling, B.; Christensen, B.T. Lability of soil organic carbon in tropical soils with different clay minerals. Soil Biol. Biochem. 2010, 42, 888–895. [Google Scholar] [CrossRef]
- King, A.E.; Congreves, K.A.; Deen, B.; Dunfield, K.E.; Voroney, R.P.; Wagner-Riddle, C. Quantifying the relationships between soil fraction mass, fraction carbon, and total soil carbon to assess mechanisms of physical protection. Soil Biol. Biochem. 2019, 135, 95–107. [Google Scholar] [CrossRef]
- Hu, P.L.; Zhang, W.; Wang, K.L. Soil carbon accumulation with increasing temperature under both managed and natural vegetation restoration in calcareous soils. Sci. Total Environ. 2021, 767, 145298. [Google Scholar] [CrossRef]
- Wu, X.L.; Wei, Y.J.; Cai, C.F.; Yuan, Z.J.; Li, D.Q.; Liao, Y.S.; Deng, Y.S. Quantifying the contribution of phyllosilicate mineralogy to aggregate stability in the East Asian monsoon region. Geoderma 2021, 393, 115036. [Google Scholar] [CrossRef]
- Wang, D.D.; Shi, X.Z.; Wang, H.J.; Weindorf, D.C.; Yu, D.S.; Sun, W.X.; Ren, H.Y.; Zhao, Y.C. Scale Effect of climate and soil texture on soil organic carbon in the uplands of northeast China. Pedosphere 2010, 20, 525–535. [Google Scholar] [CrossRef]
- Zhou, Y.P.; Zhang, D.Z.; Zhang, J.J.; Zhao, M.S.; He, N.P. Changes in Soil Particulate Organic Carbon and Their Response to Changing Environments on the Tibetan Plateau, Mongolian Plateau, and Loess Plateau, China. J. Soil Sci. Plant Nutr. 2022, 311, 420–430. [Google Scholar] [CrossRef]
- Yang, L.; Ning, D.; Yang, Y.; He, N.; Li, X.; Cornell, C.R.; Bates, C.T.; Filimonenko, E.; Kuzyakov, Y.; Zhou, J.; et al. Precipitation balances deterministic and stochastic processes of bacterial community assembly in grassland soils. Soil Biol. Biochem. 2022, 168, 108635. [Google Scholar] [CrossRef]
- Chan, O.C.; Yang, X.; Fu, Y.; Feng, Z.; Sha, L.; Peter, C.; Zou, X. 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiol. Ecol. 2010, 2, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.W.; Zhang, J.; Li, Q.G.; Zhang, L.F.; Wang, W.; Yang, P.T. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lüliang Complex and constraints on the evolution of the TransNorth China Orogen, North China Craton. Precambr. Res. 2012, 223, 173–190. [Google Scholar] [CrossRef]
- Manganese Brass Composition Analysis Standard Material GBW02103. Available online: http://www.gbw.org.cn/gbw114/yjgbw/GBW02103.html (accessed on 15 February 2024).
- Wang, R.J.; Song, J.S.; Feng, Y.T.; Zhou, J.X.; Xie, J.Y.; Khan, A.; Che, Z.X.; Zhang, S.L.; Yang, X.Y. Changes in soil organic carbon pools following long-term fertilization under a rain-fed cropping system in the Loess Plateau, China. J. Integr. Agric. 2021, 20, 2512–2525. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Elliott, E.T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Sheng, Q.N.; Zhao, M.S.; Zhong, J.J.; He, N.P.; Li, R.; Zhang, L.N.; Guo, D.; Zhang, J.J. Analysis of soil clay mineral in terrestrial ecosystem using X-ray diffraction spectroscopy. Spectrosc. Lett. 2021, 54, 65–71. [Google Scholar] [CrossRef]
- Biscaye, P.E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic ocean and adjacent seas and oceans. Bull. Geol. Soc. Am. 1965, 76, 803–832. [Google Scholar] [CrossRef]
- Lu, S.G.; Wang, S.Y.; Chen, Y.Y. Palaeopedogenesis of red palaeosols in Yunnan Plateau, southwestern China: Pedogenical, geochemical and mineralogical evidences and palaeoenvironmental implication. Palaeogeogr. Palaeocl. 2015, 420, 35–48. [Google Scholar] [CrossRef]
- Lin, Z.B.; Zhang, R.D. Dynamics of soil organic carbon under uncertain climate change and elevated atmospheric CO2. Pedosphere 2012, 22, 489–496. [Google Scholar] [CrossRef]
- Yang, W.S.; Liu, Y.; Zhao, J.X.; Chang, X.F.; Wiesmeier, M.; Sun, J.; Lopez-Vicente, M.; Garcia-Ruiz, R.; Gomez, J.A.; Zhou, H.K.; et al. SOC changes were more sensitive in alpine grasslands than in temperate grasslands during grassland transformation in China: A meta-analysis. J. Clean. Prod. 2021, 308, 127430. [Google Scholar] [CrossRef]
- Lu, M.; Zhou, X.H.; Li, B. Responses of ecosystem carbon cycle to experimental warming: A meta-analysis. Ecology 2013, 94, 726–738. [Google Scholar] [CrossRef] [PubMed]
- Crowther, T.W.; Todd-Brown, K.E.O.; Rowe, C.W.; Wieder, W.R.; Carey, J.C.; Machmuller, M.B.; Snoek, B.L.; Fang, S.; Zhou, G.; Allison, S.D.; et al. Quantifying global soil carbon losses in response to warming. Nature 2016, 540, 104–110. [Google Scholar] [CrossRef]
- Gottschalk, P.; Smith, J.U.; Wattenbach, M.; Bellarby, J.; Stehfest, E.; Arnell, N.; Osborn, T.J.; Jones, C.; Smith, P. How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios. Biogeosciences 2012, 9, 3151–3171. [Google Scholar] [CrossRef]
- Heikkinen, J.; Keskinen, R.; Kostensalo, J.; Nuutinen, V. Climate change induces carbon loss of arable mineral soils in boreal conditions. Glob. Chang. Biol. 2022, 28, 3960–3973. [Google Scholar] [CrossRef]
- Wang, S.Z.; Fan, J.W.; Zhong, H.P.; Li, Y.Z.; Zhu, H.Z.; Qiao, Y.X.; Zhang, H.Y. A multi-factor weighted regression approach for estimating the spatial distribution of soil organic carbon in grasslands. Catena 2019, 174, 248–258. [Google Scholar] [CrossRef]
- Quan, Q.; Tian, D.S.; Luo, Y.Q.; Zhang, F.Y.; Crowthers, T.W.; Zhu, K.; Chen, H.Y.H.; Zhou, Q.P.; Niu, S.L. Water scaling of ecosystem carbon cycle feedback to climate warming. Sci. Adv. 2019, 5, 1131. [Google Scholar] [CrossRef] [PubMed]
- Bosatta, E.; Ågren, G. Theoretical analyses of soil texture effects on organic matter dynamics. Soil Biol. Biochem. 1997, 29, 1633–1638. [Google Scholar] [CrossRef]
- Rasmussen, C.; Heckman, K.; Wieder, W.R.; Keiluweit, M.; Lawrence, C.R.; Berhe, A.A.; Blankinship, J.C.; Crow, S.E.; Druhan, J.L.; Pries, C.E.H.; et al. Beyond clay: Towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 2018, 137, 297–306. [Google Scholar] [CrossRef]
- Dzemua, G.L.; Mees, F.; Stoops, G.; Van Ranst, E. Micromorphology, mineralogy and geochemistry of lateritic weathering over serpentinite in south-east Cameroon. J. Afr. Earth Sci. 2011, 60, 38–48. [Google Scholar] [CrossRef]
- Barbera, V.; Raimondi, S.; Egli, M.; Plotze, M. The influence of weathering processes Mediterranean on labile and stable organic matter in volcanic soils. Geoderma 2008, 143, 191–205. [Google Scholar] [CrossRef]
- Schrumpf, M.; Kaiser, K.; Mayer, A.; Hempel, G.; Trumbore, S. Age distribution, extractability, and stability of mineral-bound organic carbon in central European soils. Biogeosciences 2021, 18, 1241–1257. [Google Scholar] [CrossRef]
- Keiblinger, K.M.; Bauer, L.M.; Deltedesco, E.; Holawe, F.; Unterfrauner, H.; Zehetner, F.; Peticzka, R. Quicklime application instantly increases soil aggregate stability. Int. Agrophys. 2016, 30, 123–128. [Google Scholar] [CrossRef]
- Han, L.F.; Sun, K.; Jin, J.; Xing, B.S. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biol. Biochem. 2016, 94, 107–121. [Google Scholar] [CrossRef]
- Seth, D.; Subudhi, S.; Rajput, V.D.; Kusumavathi, K.; Sahoo, T.R.; Dash, S.; Mangaraj, S.; Nayak, D.K.; Pattanayak, S.K.; Minkina, T.; et al. Exploring the role of mycorrhizal and rhizobium inoculation with organic and inorganic fertilizers on the nutrient uptake and growth of acacia mangium saplings in acidic soil. Forests 2022, 12, 1657. [Google Scholar] [CrossRef]
- Getahun, G.T.; Etana, A.; Munkholm, L.J.; Kirchmann, H. Liming with CaCO3 or CaO affects aggregate stability and dissolved reactive phosphorus in a heavy clay subsoil. Soil Till Res. 2021, 214, 105162. [Google Scholar] [CrossRef]
- Li, Y.Y.; Feng, G.; Tewolde, H.; Zhang, F.B.; Yan, C.; Yang, M.Y. Soil aggregation and water holding capacity of soil amended with agro-industrial byproducts and poultry litter. J. Soils Sediments 2020, 21, 1127–1135. [Google Scholar] [CrossRef]
- Gelsomino, A.; Petrovicova, B.; Zaffina, F.; Peruzzi, A. Chemical and microbial properties in a greenhouse loamy soil after steam disinfestation alone or combined with CaO addition. Soil Biol. Biochem. 2010, 42, 1091–1100. [Google Scholar] [CrossRef]
- Nan, H.Y.; Yin, J.X.; Yang, F.; Luo, Y.; Zhao, L.; Cao, X.D. Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration. Environ. Pollut. 2021, 287, 117566. [Google Scholar] [CrossRef] [PubMed]
- Wattel-Koekkoek, E.J.W.; Buurman, P.; Van Der Plicht, J.; Wattel, E.; Van Breemen, N. Mean residence time of soil organic matter associated with kaolinite and smectite. Eur. J. Soil Sci. 2003, 54, 269–278. [Google Scholar] [CrossRef]
- Liu, M.; Han, G.L.; Zhang, Q. Effects of soil aggregate stability on soil organic carbon and nitrogen under land use change in an erodible region in southwest China. Int. J. Environ. Res. Public Health 2019, 16, 3809. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, F.C.; Shi, H.Z.; Jin, Z.D.; Sun, X.H.; Zhang, F.; Wu, F.; Kan, S. The significant role of inorganic matters in preservation and stability of soil organic carbon in the Baoji and Luochuan loess/paleosol profiles, Central China. Catena 2013, 109, 186–194. [Google Scholar] [CrossRef]
- Ilg, K.; Dominik, P.; Kaupenjohann, M.; Siemens, J. Phosphorus-induced mobilization of colloids: Model systems and soils. Eur. J. Soil Sci. 2008, 59, 233–246. [Google Scholar] [CrossRef]
- Rui, J.P.; Peng, J.J.; Lu, Y.H. Succession of bacterial populations during plant residue decomposition in rice field soil. Appl. Environ. Microb. 2009, 75, 4879–4886. [Google Scholar] [CrossRef]
- Lian, T.X.; Jin, J.; Wang, G.H.; Tang, C.X.; Yu, Z.H.; Li, Y.S.; Liu, J.J.; Zhang, S.Q.; Liu, X.B. The fate of soybean residue-carbon links to changes of bacterial community composition in Mollisols differing in soil organic carbon. Glob. Chang. Biol. 2017, 109, 50–58. [Google Scholar] [CrossRef]
- Ni, X.Y.; Liao, S.; Tan, S.Y.; Peng, Y.; Wang, D.Y.; Yue, K.; Wu, F.Z.; Yang, Y.S. The vertical distribution and control of microbial necromass carbon in forest soils. Glob. Ecol. Biogeogr. 2020, 29, 1829–1839. [Google Scholar] [CrossRef]
- Guo, X.W.; Rossel, R.A.V.; Wang, G.C.; Xiao, L.J.; Wang, M.M.; Zhang, S.; Luo, Z.K. Particulate and mineral-associated organic carbon turnover revealed by modelling their long-term dynamics. Soil Biol. Biochem. 2022, 173, 108780. [Google Scholar] [CrossRef]
- Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S. Mineral-organic associations: Formation, properties, and relevance in soil environments. Adv. Agron. 2015, 130, 1–140. [Google Scholar] [CrossRef]
- Dixon, J.L.; Chadwick, O.A.; Vitousek, P.M. Climate-driven thresholds for chemical weathering in postglacial soils of New Zealand. J. Geophys. Res.-Earth Surf. 2016, 121, 1619–1634. [Google Scholar] [CrossRef]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in soils. J. Plant Nutr. Siol Sci. 2018, 181, 104–136. [Google Scholar] [CrossRef]
Transects | Grassland Type | Altitude (m) | MAP (mm) | MAT (°C) | pH |
---|---|---|---|---|---|
MP | MS | 344 | 405.78 | 4.87 | 8.18 |
TS | 1108 | 362.39 | 0.96 | 7.59 | |
DS | 1029 | 220.88 | 2.09 | 7.96 | |
TP | MS | 4292 | 552.67 | −1.82 | 6.92 |
TS | 4640 | 433.99 | −4.04 | 8.16 | |
DS | 4415 | 266.75 | −2.89 | 8.23 | |
LP | MS | 834 | 573.73 | 10.82 | 8.05 |
TS | 1291 | 466.37 | 8.23 | 8.09 | |
DS | 1553 | 256.58 | 7.047 | 8.22 |
Transect | SiO2 | Al2O3 | Fe2O3 | TiO2 | MnO | CaO | MgO | K2O | Na2O | P2O5 | Sa | Saf | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MP | Mean | 67.50 ± 4.10 a | 14.00 ± 1.53 a | 5.30 ± 1.58 b | 0.96 ± 0.24 c | 0.31 ± 0.17 a | 3.28 ± 1.57 c | 1.56 ± 0.35 b | 4.76 ± 0.36 a | 2.03 ± 0.35 a | 0.20 ± 0.05 a | 8.33 ± 1.37 a | 6.77 ± 1.35 a |
CV% | 6.08 | 10.91 | 29.80 | 24.82 | 55.29 | 47.88 | 22.36 | 7.64 | 17.33 | 26.94 | 16.44 | 20.00 | |
TP | Mean | 59.21 ± 5.19 b | 14.36 ± 1.86 a | 8.13 ± 2.58 a | 0.97 ± 0.20 ab | 0.16 ± 0.06 b | 8.53 ± 7.31 b | 2.34 ± 0.86 a | 4.09 ± 0.82 b | 1.50 ± 0.54 b | 0.24 ± 0.09 a | 7.10 ± 1.04 b | 5.26 ± 0.93 b |
CV% | 8.77 | 12.98 | 31.73 | 21.10 | 36.68 | 85.72 | 37.00 | 20.02 | 35.80 | 39.59 | 14.69 | 17.67 | |
LP | Mean | 55.76 ± 3.01 b | 12.97 ± 1.42 a | 8.32 ± 1.23 a | 1.17 ± 0.12 a | 0.16 ± 0.03 b | 13.73 ± 3.19 a | 2.60 ± 0.29 a | 3.34 ± 0.18 c | 1.55 ± 0.30 b | 0.18 ± 0.03 a | 7.39 ± 0.94 b | 5.26 ± 0.77 b |
CV% | 5.41 | 10.92 | 14.73 | 10.04 | 18.83 | 23.25 | 11.21 | 5.29 | 19.12 | 16.94 | 12.72 | 14.66 |
SOC | MOC | pH | Clay | Silt | Sand | MAP | MAT | SiO2 | Al2O3 | Fe2O3 | CaO | Sa | Saf | Bacteria | Fungi | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | 0.99 | −0.70 | 0.64 | 0.43 | −0.55 | 0.57 | −0.08 | 0.01 | 0.43 | 0.38 | −0.28 | −0.33 | −0.37 | 0.70 | 0.60 | |
MOC | −0.69 | 0.67 | 0.47 | −0.58 | 0.53 | −0.07 | −0.03 | 0.48 | 0.43 | −0.27 | −0.40 | −0.42 | 0.67 | 0.56 | ||
pH | −0.22 | 0.06 | 0.04 | −0.21 | 0.20 | −0.50 | −0.36 | −0.07 | 0.74 | −0.02 | −0.01 | −0.54 | −0.51 | |||
Clay | 0.63 | −0.78 | 0.37 | 0.18 | −0.33 | 0.54 | 0.55 | 0.06 | −0.61 | −0.60 | 0.33 | 0.32 | ||||
Silt | −0.95 | 0.59 | 0.36 | −0.72 | 0.17 | 0.86 | 0.40 | −0.59 | −0.79 | 0.16 | 0.10 | |||||
Sand | −0.57 | −0.37 | 0.64 | −0.26 | −0.82 | −0.32 | 0.61 | 0.76 | −0.20 | −0.15 | ||||||
MAP | 0.18 | −0.29 | 0.03 | 0.46 | 0.17 | −0.19 | −0.38 | 0.40 | 0.34 | |||||||
MAT | −0.30 | −0.31 | 0.19 | 0.29 | 0.02 | −0.09 | −0.65 | −0.69 | ||||||||
SiO2 | 0.08 | −0.65 | −0.84 | 0.62 | 0.70 | 0.08 | 0.17 | |||||||||
Al2O3 | 0.41 | −0.37 | −0.71 | −0.56 | 0.33 | 0.45 | ||||||||||
Fe2O3 | 0.20 | −0.75 | −0.93 | 0.17 | 0.18 | |||||||||||
CaO | −0.26 | −0.27 | −0.22 | −0.30 | ||||||||||||
Sa | 0.91 | −0.17 | −0.20 | |||||||||||||
Saf | −0.18 | −0.19 | ||||||||||||||
Bacteria | 0.92 | |||||||||||||||
Fungi |
Kao | Chl | Sme | It | Ver | I/Sme | |
---|---|---|---|---|---|---|
MP | −0.17 | 0.47 | −0.24 | −0.01 | 0.66 * | 0.14 |
TP | 0.62 | 0.75 * | 0.83 ** | 0.41 | −0.05 | −0.73 ** |
LP | 0.32 | −0.13 | 0.12 | 0.10 | 0.42 * | −0.22 |
Zero-Order | MAP | pH | Clay | |
---|---|---|---|---|
SOC | −0.25 | −0.40 * | −0.08 | −0.33 |
MOC | −0.26 | −0.41 * | −0.10 | −0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Zhang, Z.; Li, M.; Gao, C.; Zhang, J.; He, N. Soil Mineral-Associated Organic Carbon and Its Relationship to Clay Minerals across Grassland Transects in China. Appl. Sci. 2024, 14, 2061. https://doi.org/10.3390/app14052061
Zhao M, Zhang Z, Li M, Gao C, Zhang J, He N. Soil Mineral-Associated Organic Carbon and Its Relationship to Clay Minerals across Grassland Transects in China. Applied Sciences. 2024; 14(5):2061. https://doi.org/10.3390/app14052061
Chicago/Turabian StyleZhao, Minshuang, Zhidan Zhang, Meijia Li, Chunyang Gao, Jinjing Zhang, and Nianpeng He. 2024. "Soil Mineral-Associated Organic Carbon and Its Relationship to Clay Minerals across Grassland Transects in China" Applied Sciences 14, no. 5: 2061. https://doi.org/10.3390/app14052061
APA StyleZhao, M., Zhang, Z., Li, M., Gao, C., Zhang, J., & He, N. (2024). Soil Mineral-Associated Organic Carbon and Its Relationship to Clay Minerals across Grassland Transects in China. Applied Sciences, 14(5), 2061. https://doi.org/10.3390/app14052061