High-Frequency Surface Wave Radar Current Measurement Corrections via Machine Learning and Towed Acoustic Doppler Current Profiler Integration
Abstract
:1. Introduction
2. Materials and Methods
2.1. High-Frequency Radar
2.2. Wind and Tide Data
2.3. Mooring Data
2.4. LSTM Neural Network
2.5. Empirical Orthogonal Function (EOF) Ellipse
3. Results
3.1. Radar and ADCP Comparisons
3.2. Experimentation with Inputs
3.3. Comparison of Radar Altimeter Correction for Bottom-Mounted ADCP and Towed ADCP
3.4. Time Sensitivity Experiment of Bottom-Mounted and Towed ADCPs
3.5. Spatial Comparison of Bottom-Mounted and Towed ADCPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manley, R.S.J.; Arlov, A.P.; Mason, S.G. Rotations, Orientations and Collisions of Suspended Particles in Velocity Gradients. Nature 1955, 175, 682–683. [Google Scholar] [CrossRef]
- Wait, J.R. Theory of HF Ground Wave Backscatter from Sea Waves. J. Geophys. Res. 1966, 71, 4839–4842. [Google Scholar] [CrossRef]
- Barrick, D. First-Order Theory and Analysis of MF/HF/VHF Scatter from the Sea. IEEE Trans. Antennas Propagat. 1972, 20, 2–10. [Google Scholar] [CrossRef]
- Barrick, D.E.; Evans, M.W.; Weber, B.L. Ocean Surface Currents Mapped by Radar: Mobile coastal units can map variable surface currents in real time to 70 kilometers, using ocean wave scatte. Science 1977, 198, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Barrick, D.E.; Lipa, B.J. Ocean Surface Features Observed by HF Coastal Ground-Wave Radars: A Progress Review. In Ocean Wave Climate; Earle, M.D., Malahoff, A., Eds.; Springer: Boston, MA, USA, 1979; pp. 129–152. ISBN 978-1-4684-3401-9. [Google Scholar]
- Liu, Y.; Weisberg, R.H.; Merz, C.R. Assessment of CODAR SeaSonde and WERA HF Radars in Mapping Surface Currents on the West Florida Shelf. J. Atmos. Ocean. Technol. 2014, 31, 1363–1382. [Google Scholar] [CrossRef]
- Mau, J.-C.; Wang, D.-P.; Ullman, D.S.; Codiga, D.L. Comparison of Observed (HF Radar, ADCP) and Model Barotropic Tidal Currents in the New York Bight and Block Island Sound. Estuar. Coast. Shelf Sci. 2007, 72, 129–137. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, T.; Yang, F.; Liu, B.; Wu, L.; Wei, J. Comparisons of Tidal Currents in the Pearl River Estuary between High-Frequency Radar Data and Model Simulations. Appl. Sci. 2022, 12, 6509. [Google Scholar] [CrossRef]
- Sentchev, A.; Yaremchuk, M. Monitoring Tidal Currents with a Towed ADCP System. Ocean Dyn. 2016, 66, 119–132. [Google Scholar] [CrossRef]
- Vennell, R. Acoustic Doppler Current Profiler Measurements of Tidal Phase and Amplitude in Cook Strait, New Zealand. Cont. Shelf Res. 1994, 14, 353–364. [Google Scholar] [CrossRef]
- Simpson, J.H.; Mitchelson-Jacob, E.G.; Hill, A.E. Flow Structure in a Channel from an Acoustic Doppler Current Profiler. Cont. Shelf Res. 1990, 10, 589–603. [Google Scholar] [CrossRef]
- Candela, J.; Beardsley, R.C.; Limeburner, R. Separation of Tidal and Subtidal Currents in Ship-mounted Acoustic Doppler Current Profiler Observations. J. Geophys. Res. 1992, 97, 769–788. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, T.; Yang, F.; Wei, C.; Wei, J. Performance Assessment of a High-Frequency Radar Network for Detecting Surface Currents in the Pearl River Estuary. Remote Sens. 2024, 16, 198. [Google Scholar] [CrossRef]
- Deo, M.C.; Sridhar Naidu, C. Real Time Wave Forecasting Using Neural Networks. Ocean Eng. 1998, 26, 191–203. [Google Scholar] [CrossRef]
- Kalra, R.; Deo, M.C.; Kumar, R.; Agarwal, V.K. Artificial Neural Network to Translate Offshore Satellite Wave Data to Coastal Locations. Ocean Eng. 2005, 32, 1917–1932. [Google Scholar] [CrossRef]
- Makarynskyy, O. Improving Wave Predictions with Artificial Neural Networks. Ocean Eng. 2004, 31, 709–724. [Google Scholar] [CrossRef]
- Deo, M.C.; Jagdale, S.S. Prediction of Breaking Waves with Neural Networks. Ocean Eng. 2003, 30, 1163–1178. [Google Scholar] [CrossRef]
- Lee, T.-L. Back-Propagation Neural Network for Long-Term Tidal Predictions. Ocean Eng. 2004, 31, 225–238. [Google Scholar] [CrossRef]
- Liang, S.X.; Li, M.C.; Sun, Z.C. Prediction Models for Tidal Level Including Strong Meteorologic Effects Using a Neural Network. Ocean Eng. 2008, 35, 666–675. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Gong, J.; Chen, Z. Short and Mid-Term Sea Surface Temperature Prediction Using Time-Series Satellite Data and LSTM-AdaBoost Combination Approach. Remote Sens. Environ. 2019, 233, 111358. [Google Scholar] [CrossRef]
- Fan, S.; Xiao, N.; Dong, S. A Novel Model to Predict Significant Wave Height Based on Long Short-Term Memory Network. Ocean Eng. 2020, 205, 107298. [Google Scholar] [CrossRef]
- Pei, J.; Yang, Y.; Wu, Z.; Ma, Y.; Huo, W.; Zhang, Y.; Huang, Y.; Yang, J. A Sea Clutter Suppression Method Based on Machine Learning Approach for Marine Surveillance Radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3120–3130. [Google Scholar] [CrossRef]
- Callaghan, D.; Burger, J.; Mishra, A.K. A Machine Learning Approach to Radar Sea Clutter Suppression. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1222–1227. [Google Scholar]
- Cenkeramaddi, L.R.; Rai, P.K.; Dayal, A.; Bhatia, J.; Pandya, A.; Soumya, J.; Kumar, A.; Jha, A. A Novel Angle Estimation for mmWave FMCW Radars Using Machine Learning. IEEE Sens. J. 2021, 21, 9833–9843. [Google Scholar] [CrossRef]
- Wang, R.; Wen, B.; Huang, W. A Support Vector Regression-Based Method for Target Direction of Arrival Estimation From HF Radar Data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 674–678. [Google Scholar] [CrossRef]
- Carrera, E.V.; Lara, F.; Ortiz, M.; Tinoco, A.; Leon, R. Target Detection Using Radar Processors Based on Machine Learning. In Proceedings of the 2020 IEEE ANDESCON, Quito, Ecuador, 13–16 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Wong, L.A.; Chen, J.C.; Xue, H.; Dong, L.X.; Su, J.L.; Heinke, G. A Model Study of the Circulation in the Pearl River Estuary (PRE) and Its Adjacent Coastal Waters: 1. Simulations and Comparison with Observations. J. Geophys. Res. 2003, 108, 2002JC001451. [Google Scholar] [CrossRef]
- Pan, J.; Lai, W.; Thomas Devlin, A. Circulations in the Pearl River Estuary: Observation and Modeling. In Estuaries and Coastal Zones—Dynamics and Response to Environmental Changes; Pan, J., Devlin, A., Eds.; IntechOpen: London, UK, 2020; ISBN 978-1-78985-579-1. [Google Scholar]
- Tian, Y.; Wen, B.; Li, Z.; Hou, Y.; Tian, Z.; Huang, W. Fully Digital Multi-frequency Compact High-frequency Radar System for Sea Surface Remote Sensing. IET Radar Sonar Navig. 2019, 13, 1359–1365. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Efficient Inverse Modeling of Barotropic Ocean Tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, C.; Yang, F.; Lu, T.; Zhu, L.; Wei, J. A Machine Learning-Based Correction Method for High-Frequency Surface Wave Radar Current Measurements. Appl. Sci. 2022, 12, 12980. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, F.; Yang, Y.; Xiong, Z.; Wei, J. Designing Theoretical Shipborne ADCP Survey Trajectories for High-Frequency Radar Based on a Machine Learning Neural Network. Appl. Sci. 2023, 13, 7208. [Google Scholar] [CrossRef]
Frequency | 600 kHz |
---|---|
Max profiling range | 70 m |
Max bottom tracking range | N/A |
Velocity accuracy (typical) | ±0.3% of measured velocity +0.3 cm/s |
Velocity range | +5 m/s (default) to +20 m/s |
Ping rate | 2 Hz (typical) |
Beam angle | 20° |
Depth rating | 200 m (optional 500 m or 6000 m) |
Standard sensors | Temperature, tilt, compass |
Communications | Serial RS-422 or RS-232 ASCll or binary |
Experiment | Target Value Time Length | Correlation Coefficient | RMSE(m/s) |
---|---|---|---|
Exp 1 | Towed ADCP (1.5 d) | 0.49 | 0.21 |
Exp 2 | Towed ADCP (2 d) | 0.57 | 0.18 |
Exp 3 | Towed ADCP (3 d) | 0.64 | 0.17 |
Exp 4 | Bottom-mounted ADCP (3 d) | 0.59 | 0.15 |
Exp 5 | Bottom-mounted ADCP (5 d) | 0.65 | 0.14 |
Exp 6 | Bottom-mounted ADCP (10 d) | 0.75 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Z.; Wei, C.; Yang, F.; Zhu, L.; Huang, R.; Wei, J. High-Frequency Surface Wave Radar Current Measurement Corrections via Machine Learning and Towed Acoustic Doppler Current Profiler Integration. Appl. Sci. 2024, 14, 2105. https://doi.org/10.3390/app14052105
Xiong Z, Wei C, Yang F, Zhu L, Huang R, Wei J. High-Frequency Surface Wave Radar Current Measurement Corrections via Machine Learning and Towed Acoustic Doppler Current Profiler Integration. Applied Sciences. 2024; 14(5):2105. https://doi.org/10.3390/app14052105
Chicago/Turabian StyleXiong, Zhaomin, Chunlei Wei, Fan Yang, Langfeng Zhu, Rongyong Huang, and Jun Wei. 2024. "High-Frequency Surface Wave Radar Current Measurement Corrections via Machine Learning and Towed Acoustic Doppler Current Profiler Integration" Applied Sciences 14, no. 5: 2105. https://doi.org/10.3390/app14052105
APA StyleXiong, Z., Wei, C., Yang, F., Zhu, L., Huang, R., & Wei, J. (2024). High-Frequency Surface Wave Radar Current Measurement Corrections via Machine Learning and Towed Acoustic Doppler Current Profiler Integration. Applied Sciences, 14(5), 2105. https://doi.org/10.3390/app14052105