Antioxidant and Anti-Inflammatory Phytochemicals for the Treatment of Inflammatory Bowel Disease: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Study Screening
2.5. Limitations and Strengths of the Study
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Phytochemical Preparations and IBD Clinical Status
3.4. Phytochemical or Plant Extract Effectiveness on IBD Patients
4. Discussion
4.1. Phytochemicals
4.1.1. Classification of Compounds
4.1.2. Phytochemical Administration and Delivery in IBD Patients
4.2. IBD
4.2.1. Pathophysiological Pathways of Inflammation and Oxidative Stress
4.2.2. Current Practice for IBD Treatment
4.3. Antioxidant and Anti-Inflammatory Pathways Targeted by Phytochemicals for the Treatment of IBD
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahadevan, U.; Silverberg, M.S. Inflammatory Bowel Disease—Gastroenterology Diamond Jubilee Review. Gastroenterology 2018, 154, 1555–1558. [Google Scholar] [CrossRef] [PubMed]
- Flynn, S.; Eisenstein, S. Inflammatory Bowel Disease Presentation and Diagnosis. Surg. Clin. N. Am. 2019, 99, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019, 2019, 7247238. [Google Scholar] [CrossRef] [PubMed]
- Imbrizi, M.; Magro, F.; Coy, C.S.R. Pharmacological Therapy in Inflammatory Bowel Diseases: A Narrative Review of the Past 90 Years. Pharmaceuticals 2023, 16, 1272. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Nirmal, P.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; Sneha, K.; et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef] [PubMed]
- Lai, P.K.; Roy, J. Antimicrobial and Chemopreventive Properties of Herbs and Spices. Curr. Med. Chem. 2004, 11, 1451–1460. [Google Scholar] [CrossRef] [PubMed]
- Campos-Vega, R.; Oomah, B.D. Chemistry and Classification of Phytochemicals. In Handbook of Plant Food Phytochemicals; Tiwari, B.K., Brunton, N.P., Brennan, C.S., Eds.; Wiley: Hoboken, NJ, USA, 2013; pp. 5–48. ISBN 978-1-4443-3810-2. [Google Scholar]
- Zhang, Y.-J.; Gan, R.-Y.; Li, S.; Zhou, Y.; Li, A.-N.; Xu, D.-P.; Li, H.-B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed]
- Tapsell, L.C.; Hemphill, I.; Cobiac, L.; Patch, C.S.; Sullivan, D.R.; Fenech, M.; Roodenrys, S.; Keogh, J.B.; Clifton, P.M.; Williams, P.G.; et al. Health Benefits of Herbs and Spices: The Past, the Present, the Future. Med. J. Aust. 2006, 185, S1–S24. [Google Scholar] [CrossRef]
- Borges, A.; Saavedra, M.J.; Simões, M. Insights on Antimicrobial Resistance, Biofilms and the Use of Phytochemicals as New Antimicrobial Agents. Curr. Med. Chem. 2015, 22, 2590–2614. [Google Scholar] [CrossRef]
- Shin, S.A.; Joo, B.J.; Lee, J.S.; Ryu, G.; Han, M.; Kim, W.Y.; Park, H.H.; Lee, J.H.; Lee, C.S. Phytochemicals as Anti-Inflammatory Agents in Animal Models of Prevalent Inflammatory Diseases. Molecules 2020, 25, 5932. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nahrstedt, A.; Butterweck, V. Lessons Learned from Herbal Medicinal Products: The Example of St. John’s Wort (Perpendicular). J. Nat. Prod. 2010, 73, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Okoli, E.C.; Umaru, I.J.; Olawale, O. Determination of Phytochemical Constituents, Antibacterial and Antioxidant Activities of Ethanolic Leaf Extracts of Pterocarpus Erinaceus. Biodiversitas 2023, 24, 2272–2277. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 88, 105906. [Google Scholar] [CrossRef]
- Almeida, C.P.B.D.; Goulart, B.N.G.D. How to Avoid Bias in Systematic Reviews of Observational Studies. Rev. CEFAC 2017, 19, 551–555. [Google Scholar] [CrossRef]
- Review Manager (RevMan); Version 5.3; Software for Cochrane Reviews; The Cochrane Collaboration: London, UK, 2014.
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. In Proceedings of the 3rd Symposium on Systematic Reviews: Beyond the Basics, Oxford, UK, 3–5 July 2000; p. 15. [Google Scholar]
- Amerikanou, C.; Papada, E.; Gioxari, A.; Smyrnioudis, I.; Kleftaki, S.-A.; Valsamidou, E.; Bruns, V.; Banerjee, R.; Trivella, M.G.; Milic, N.; et al. Mastiha Has Efficacy in Immune-Mediated Inflammatory Diseases through a microRNA-155 Th17 Dependent Action. Pharmacol. Res. 2021, 171, 105753. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Pal, P.; Penmetsa, A.; Kathi, P.; Girish, G.; Goren, I.; Reddy, D.N. Novel Bioenhanced Curcumin with Mesalamine for Induction of Clinical and Endoscopic Remission in Mild-to-Moderate Ulcerative Colitis: A Randomized Double-Blind Placebo-Controlled Pilot Study. J. Clin. Gastroenterol. 2021, 55, 702–708. [Google Scholar] [CrossRef]
- Benjamin, J.L.; Hedin, C.R.H.; Koutsoumpas, A.; Ng, S.C.; McCarthy, N.E.; Hart, A.L.; Kamm, M.A.; Sanderson, J.D.; Knight, S.C.; Forbes, A.; et al. Randomised, Double-Blind, Placebo-Controlled Trial of Fructo-Oligosaccharides in Active Crohn’s Disease. Gut 2011, 60, 923–929. [Google Scholar] [CrossRef]
- Bommelaer, G.; Laharie, D.; Nancey, S.; Hebuterne, X.; Roblin, X.; Nachury, M.; Peyrin-Biroulet, L.; Fumery, M.; Richard, D.; Pereira, B.; et al. Oral Curcumin No More Effective Than Placebo in Preventing Recurrence of Crohn’s Disease After Surgery in a Randomized Controlled Trial. Clin. Gastroenterol. Hepatol. 2020, 18, 1553–1560.e1. [Google Scholar] [CrossRef]
- Casellas, F.; Borruel, N.; Torrejón, A.; Varela, E.; Antolin, M.; Guarner, F.; Malagelada, J.-R. Oral Oligofructose-Enriched Inulin Supplementation in Acute Ulcerative Colitis Is Well Tolerated and Associated with Lowered Faecal Calprotectin. Aliment. Pharmacol. Ther. 2007, 25, 1061–1067. [Google Scholar] [CrossRef]
- Dryden, G.W.; Lam, A.; Beatty, K.; Qazzaz, H.H.; McClain, C.J. A Pilot Study to Evaluate the Safety and Efficacy of an Oral Dose of (-)-Epigallocatechin-3-Gallate-Rich Polyphenon E in Patients with Mild to Moderate Ulcerative Colitis. Inflamm. Bowel Dis. 2013, 19, 1904–1912. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bañares, F.; Hinojosa, J.; Sánchez-Lombraña, J.L.; Navarro, E.; Martínez-Salmerón, J.F.; García-Pugés, A.; González-Huix, F.; Riera, J.; González-Lara, V.; Domínguez-Abascal, F.; et al. Randomized Clinical Trial of Plantago Ovata Seeds (Dietary Fiber) as Compared with Mesalamine in Maintaining Remission in Ulcerative Colitis. Spanish Group for the Study of Crohn’s Disease and Ulcerative Colitis (GETECCU). Am. J. Gastroenterol. 1999, 94, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Furrie, E.; Macfarlane, S.; Kennedy, A.; Cummings, J.H.; Walsh, S.V.; O’neil, D.A.; Macfarlane, G.T. Synbiotic Therapy (Bifidobacterium Longum/Synergy 1) Initiates Resolution of Inflammation in Patients with Active Ulcerative Colitis: A Randomised Controlled Pilot Trial. Gut 2005, 54, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, S.M.; Green, A.T.; Teare, J.P.; Jenkins, A.P.; Punchard, N.A.; Ainley, C.C.; Thompson, R.P. A Randomized Controlled Study of Evening Primrose Oil and Fish Oil in Ulcerative Colitis. Aliment. Pharmacol. Ther. 1993, 7, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Hanai, H.; Iida, T.; Takeuchi, K.; Watanabe, F.; Maruyama, Y.; Andoh, A.; Tsujikawa, T.; Fujiyama, Y.; Mitsuyama, K.; Sata, M.; et al. Curcumin Maintenance Therapy for Ulcerative Colitis: Randomized, Multicenter, Double-Blind, Placebo-Controlled Trial. Clin. Gastroenterol. Hepatol. 2006, 4, 1502–1506. [Google Scholar] [CrossRef] [PubMed]
- Irving, P.M.; Iqbal, T.; Nwokolo, C.; Subramanian, S.; Bloom, S.; Prasad, N.; Hart, A.; Murray, C.; Lindsay, J.O.; Taylor, A.; et al. A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, Pilot Study of Cannabidiol-Rich Botanical Extract in the Symptomatic Treatment of Ulcerative Colitis. Inflamm. Bowel Dis. 2018, 24, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Kedia, S.; Bhatia, V.; Thareja, S.; Garg, S.; Mouli, V.P.; Bopanna, S.; Tiwari, V.; Makharia, G.; Ahuja, V. Low Dose Oral Curcumin Is Not Effective in Induction of Remission in Mild to Moderate Ulcerative Colitis: Results from a Randomized Double Blind Placebo Controlled Trial. WJGPT 2017, 8, 147. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.; Salomon, N.; Wu, J.C.Y.; Kopylov, U.; Lahat, A.; Har-Noy, O.; Ching, J.Y.L.; Cheong, P.K.; Avidan, B.; Gamus, D.; et al. Curcumin in Combination with Mesalamine Induces Remission in Patients With Mild-to-Moderate Ulcerative Colitis in a Randomized Controlled Trial. Clin. Gastroenterol. Hepatol. 2015, 13, 1444–1449.e1. [Google Scholar] [CrossRef]
- Langhorst, J.; Varnhagen, I.; Schneider, S.B.; Albrecht, U.; Rueffer, A.; Stange, R.; Michalsen, A.; Dobos, G.J. Randomised Clinical Trial: A Herbal Preparation of Myrrh, Chamomile and Coffee Charcoal Compared with Mesalazine in Maintaining Remission in Ulcerative Colitis—A Double-Blind, Double-Dummy Study. Aliment. Pharmacol. Ther. 2013, 38, 490–500. [Google Scholar] [CrossRef]
- Masoodi, M.; Mahdiabadi, M.A.; Mokhtare, M.; Agah, S.; Kashani, A.H.F.; Rezadoost, A.M.; Sabzikarian, M.; Talebi, A.; Sahebkar, A. The Efficacy of Curcuminoids in Improvement of Ulcerative Colitis Symptoms and Patients’ Self-Reported Well-Being: A Randomized Double-Blind Controlled Trial. J. Cell Biochem. 2018, 119, 9552–9559. [Google Scholar] [CrossRef]
- Naftali, T.; Bar-Lev Schleider, L.; Dotan, I.; Lansky, E.P.; Sklerovsky Benjaminov, F.; Konikoff, F.M. Cannabis Induces a Clinical Response in Patients with Crohn’s Disease: A Prospective Placebo-Controlled Study. Clin. Gastroenterol. Hepatol. 2013, 11, 1276–1280.e1. [Google Scholar] [CrossRef]
- Naftali, T.; Mechulam, R.; Marii, A.; Gabay, G.; Stein, A.; Bronshtain, M.; Laish, I.; Benjaminov, F.; Konikoff, F.M. Low-Dose Cannabidiol Is Safe but Not Effective in the Treatment for Crohn’s Disease, a Randomized Controlled Trial. Dig. Dis. Sci. 2017, 62, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Naftali, T.; Bar-Lev Schleider, L.; Almog, S.; Meiri, D.; Konikoff, F.M. Oral CBD-Rich Cannabis Induces Clinical but Not Endoscopic Response in Patients with Crohn’s Disease, a Randomised Controlled Trial. J. Crohn’s Colitis 2021, 15, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Naftali, T.; Bar-Lev Schleider, L.; Scklerovsky Benjaminov, F.; Konikoff, F.M.; Matalon, S.T.; Ringel, Y. Cannabis Is Associated with Clinical but Not Endoscopic Remission in Ulcerative Colitis: A Randomized Controlled Trial. PLoS ONE 2021, 16, e0246871. [Google Scholar] [CrossRef]
- Rastegarpanah, M.; Malekzadeh, R.; Vahedi, H.; Mohammadi, M.; Elahi, E.; Chaharmahali, M.; Safarnavadeh, T.; Abdollahi, M. A Randomized, Double Blinded, Placebo-Controlled Clinical Trial of Silymarin in Ulcerative Colitis. Chin. J. Integr. Med. 2015, 21, 902–906. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, N.; Mansoori, A.; Shayesteh, A.; Hashemi, S.J. The Effect of Curcumin Supplementation on Clinical Outcomes and Inflammatory Markers in Patients with Ulcerative Colitis. Phytother. Res. 2020, 34, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Samsami-Kor, M.; Daryani, N.E.; Asl, P.R.; Hekmatdoost, A. Anti-Inflammatory Effects of Resveratrol in Patients with Ulcerative Colitis: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. Arch. Med. Res. 2015, 46, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Samsamikor, M.; Daryani, N.E.; Asl, P.R.; Hekmatdoost, A. Resveratrol Supplementation and Oxidative/Anti-Oxidative Status in Patients with Ulcerative Colitis: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. Arch. Med. Res. 2016, 47, 304–309. [Google Scholar] [CrossRef]
- Singla, V.; Pratap Mouli, V.; Garg, S.K.; Rai, T.; Choudhury, B.N.; Verma, P.; Deb, R.; Tiwari, V.; Rohatgi, S.; Dhingra, R.; et al. Induction with NCB-02 (Curcumin) Enema for Mild-to-Moderate Distal Ulcerative Colitis—A Randomized, Placebo-Controlled, Pilot Study. J. Crohn’s Colitis 2014, 8, 208–214. [Google Scholar] [CrossRef]
- Steed, H.; Macfarlane, G.T.; Blackett, K.L.; Bahrami, B.; Reynolds, N.; Walsh, S.V.; Cummings, J.H.; Macfarlane, S. Clinical Trial: The Microbiological and Immunological Effects of Synbiotic Consumption—A Randomized Double-Blind Placebo-Controlled Study in Active Crohn’s Disease. Aliment. Pharmacol. Ther. 2010, 32, 872–883. [Google Scholar] [CrossRef]
- Sugimoto, K.; Ikeya, K.; Bamba, S.; Andoh, A.; Yamasaki, H.; Mitsuyama, K.; Nasuno, M.; Tanaka, H.; Matsuura, A.; Kato, M.; et al. Highly Bioavailable Curcumin Derivative Ameliorates Crohn’s Disease Symptoms: A Randomized, Double-Blind, Multicenter Study. J. Crohn’s Colitis 2020, 14, 1693–1701. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, Y.; Xue, X.; Liu, J.; Li, Z.-S.; Yang, G.-Y.; Song, Y.; Pan, Y.; Ma, Y.; Hu, S.; et al. A Phase I Trial of Berberine in Chinese with Ulcerative Colitis. Cancer Prev. Res. 2020, 13, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Huber, R.; Ditfurth, A.V.; Amann, F.; Güthlin, C.; Rostock, M.; Trittler, R.; Kümmerer, K.; Merfort, I. Tormentil for Active Ulcerative Colitis: An Open-Label, Dose-Escalating Study. J. Clin. Gastroenterol. 2007, 41, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Hedin, C.R.; McCarthy, N.E.; Louis, P.; Farquharson, F.M.; McCartney, S.; Stagg, A.J.; Lindsay, J.O.; Whelan, K. Prebiotic Fructans Have Greater Impact on Luminal Microbiology and CD3+ T Cells in Healthy Siblings than Patients with Crohn’s Disease: A Pilot Study Investigating the Potential for Primary Prevention of Inflammatory Bowel Disease. Clin. Nutr. 2021, 40, 5009–5019. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, L.; Mwinyi, J.; Scharl, M.; Frei, P.; Zeitz, J.; Kullak-Ublick, G.A.; Vavricka, S.R.; Fried, M.; Weber, A.; Humpf, H.-U.; et al. Bilberry Ingestion Improves Disease Activity in Mild to Moderate Ulcerative Colitis—An Open Pilot Study. J. Crohn’s Colitis 2013, 7, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Suskind, D.L.; Wahbeh, G.; Burpee, T.; Cohen, M.; Christie, D.; Weber, W. Tolerability of Curcumin in Pediatric Inflammatory Bowel Disease: A Forced-Dose Titration Study. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Holt, P.R.; Katz, S.; Kirshoff, R. Curcumin Therapy in Inflammatory Bowel Disease: A Pilot Study. Dig. Dis. Sci. 2005, 50, 2191–2193. [Google Scholar] [CrossRef]
- Koláček, M.; Muchová, J.; Dvořáková, M.; Paduchová, Z.; Žitňanová, I.; Čierna, I.; Országhová, Z.; Székyová, D.; Jajcaiová-Zedníčková, N.; Kovács, L.; et al. Effect of Natural Polyphenols (Pycnogenol) on Oxidative Stress Markers in Children Suffering from Crohn’s Disease—A Pilot Study. Free Radic. Res. 2013, 47, 624–634. [Google Scholar] [CrossRef]
- Li, G.; Ren, J.; Wang, G.; Gu, G.; Hu, D.; Ren, H.; Hong, Z.; Wu, X.; Liu, S.; Li, J. T2 Enhances in Situ Level of Foxp3+ Regulatory Cells and Modulates Inflammatory Cytokines in Crohn’s Disease. Int. Immunopharmacol. 2014, 18, 244–248. [Google Scholar] [CrossRef]
- Kono, T.; Nomura, M.; Kasai, S.; Kohgo, Y. Effect of Ecabet Sodium Enema on Mildly to Moderately Active Ulcerative Proctosigmoiditis: An Open-Label Study. Am. J. Gastroenterol. 2001, 96, 793–797. [Google Scholar] [CrossRef]
- Lindsay, J.O.; Whelan, K.; Stagg, A.J.; Gobin, P.; Al-Hassi, H.O.; Rayment, N.; Kamm, M.A.; Knight, S.C.; Forbes, A. Clinical, Microbiological, and Immunological Effects of Fructo-Oligosaccharide in Patients with Crohn’s Disease. Gut 2006, 55, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Valcheva, R.; Koleva, P.; Martínez, I.; Walter, J.; Gänzle, M.G.; Dieleman, L.A. Inulin-Type Fructans Improve Active Ulcerative Colitis Associated with Microbiota Changes and Increased Short-Chain Fatty Acids Levels. Gut Microbes 2019, 10, 334–357. [Google Scholar] [CrossRef] [PubMed]
- Doeve, B.H.; Van De Meeberg, M.M.; Van Schaik, F.D.M.; Fidder, H.H. A Systematic Review with Meta-Analysis of the Efficacy of Cannabis and Cannabinoids for Inflammatory Bowel Disease: What Can We Learn from Randomized and Nonrandomized Studies? J. Clin. Gastroenterol. 2021, 55, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Goulart, R.D.A.; Barbalho, S.M.; Lima, V.M.; Souza, G.A.D.; Matias, J.N.; Araújo, A.C.; Rubira, C.J.; Buchaim, R.L.; Buchaim, D.V.; Carvalho, A.C.A.D.; et al. Effects of the Use of Curcumin on Ulcerative Colitis and Crohn’s Disease: A Systematic Review. J. Med. Food 2021, 24, 675–685. [Google Scholar] [CrossRef]
- Liu, F.; Li, D.; Wang, X.; Cui, Y.; Li, X. Polyphenols Intervention Is an Effective Strategy to Ameliorate Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Int. J. Food Sci. Nutr. 2021, 72, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xiao, D.; Burton-Freeman, B.M.; Edirisinghe, I. Chemical Changes of Bioactive Phytochemicals during Thermal Processing. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; p. B9780081005965030559. ISBN 978-0-08-100596-5. [Google Scholar]
- Rowland, I. Optimal Nutrition: Fibre and Phytochemicals. Proc. Nutr. Soc. 1999, 58, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Yanai, H.; Levine, A.; Hirsch, A.; Boneh, R.S.; Kopylov, U.; Eran, H.B.; Cohen, N.A.; Ron, Y.; Goren, I.; Leibovitzh, H.; et al. The Crohn’s Disease Exclusion Diet for Induction and Maintenance of Remission in Adults with Mild-to-Moderate Crohn’s Disease (CDED-AD): An Open-Label, Pilot, Randomised Trial. Lancet Gastroenterol. Hepatol. 2022, 7, 49–59. [Google Scholar] [CrossRef]
- Peng, Z.; Yi, J.; Liu, X. A Low-FODMAP Diet Provides Benefits for Functional Gastrointestinal Symptoms but Not for Improving Stool Consistency and Mucosal Inflammation in IBD: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 2072. [Google Scholar] [CrossRef]
- Fitzpatrick, J.A.; Melton, S.L.; Yao, C.K.; Gibson, P.R.; Halmos, E.P. Dietary Management of Adults with IBD—The Emerging Role of Dietary Therapy. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 652–669. [Google Scholar] [CrossRef]
- Sharma, R.; Padwad, Y. Plant-Polyphenols Based Second-Generation Synbiotics: Emerging Concepts, Challenges, and Opportunities. Nutrition 2020, 77, 110785. [Google Scholar] [CrossRef]
- Glassner, K.L.; Abraham, B.P.; Quigley, E.M.M. The Microbiome and Inflammatory Bowel Disease. J. Allergy Clin. Immunol. 2020, 145, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Willing, B.P.; Dicksved, J.; Halfvarson, J.; Andersson, A.F.; Lucio, M.; Zheng, Z.; Järnerot, G.; Tysk, C.; Jansson, J.K.; Engstrand, L. A Pyrosequencing Study in Twins Shows That Gastrointestinal Microbial Profiles Vary with Inflammatory Bowel Disease Phenotypes. Gastroenterology 2010, 139, 1844–1854.e1. [Google Scholar] [CrossRef] [PubMed]
- Aniwan, S.; Tremaine, W.J.; Raffals, L.E.; Kane, S.V.; Loftus, E.V. Antibiotic Use and New-Onset Inflammatory Bowel Disease in Olmsted County, Minnesota: A Population-Based Case-Control Study. J. Crohn’s Colitis 2018, 12, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Morgan, X.C.; Tickle, T.L.; Sokol, H.; Gevers, D.; Devaney, K.L.; Ward, D.V.; Reyes, J.A.; Shah, S.A.; LeLeiko, N.; Snapper, S.B.; et al. Dysfunction of the Intestinal Microbiome in Inflammatory Bowel Disease and Treatment. Genome Biol. 2012, 13, R79. [Google Scholar] [CrossRef] [PubMed]
- Atarashi, K.; Tanoue, T.; Shima, T.; Imaoka, A.; Kuwahara, T.; Momose, Y.; Cheng, G.; Yamasaki, S.; Saito, T.; Ohba, Y.; et al. Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species. Science 2011, 331, 337–341. [Google Scholar] [CrossRef]
- Eslick, S.; Thompson, C.; Berthon, B.; Wood, L. Short-Chain Fatty Acids as Anti-Inflammatory Agents in Overweight and Obesity: A Systematic Review and Meta-Analysis. Nutr. Rev. 2022, 80, 838–856. [Google Scholar] [CrossRef]
- Kabeerdoss, J.; Sankaran, V.; Pugazhendhi, S.; Ramakrishna, B.S. Clostridium Leptum Group Bacteria Abundance and Diversity in the Fecal Microbiota of Patients with Inflammatory Bowel Disease: A Case-Control Study in India. BMC Gastroenterol. 2013, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, P.; Wang, P.; Hu, X.; Chen, F. The Gut Microbiota: A Treasure for Human Health. Biotechnol. Adv. 2016, 34, 1210–1224. [Google Scholar] [CrossRef]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.-J.; Blugeon, S.; Bridonneau, C.; Furet, J.-P.; Corthier, G.; et al. Faecalibacterium Prausnitzii Is an Anti-Inflammatory Commensal Bacterium Identified by Gut Microbiota Analysis of Crohn Disease Patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef]
- Ardizzone, S.; Bianchi Porro, G. Biologic Therapy for Inflammatory Bowel Disease. Drugs 2005, 65, 2253–2286. [Google Scholar] [CrossRef]
- Dolan, K.T.; Chang, E.B. Diet, Gut Microbes, and the Pathogenesis of Inflammatory Bowel Diseases. Mol. Nutr. Food Res. 2017, 61, 1600129. [Google Scholar] [CrossRef]
- Hibi, T.; Ogata, H. Novel Pathophysiological Concepts of Inflammatory Bowel Disease. J. Gastroenterol. 2006, 41, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Kostovcikova, K.; Coufal, S.; Galanova, N.; Fajstova, A.; Hudcovic, T.; Kostovcik, M.; Prochazkova, P.; Jiraskova Zakostelska, Z.; Cermakova, M.; Sediva, B.; et al. Diet Rich in Animal Protein Promotes Pro-Inflammatory Macrophage Response and Exacerbates Colitis in Mice. Front. Immunol. 2019, 10, 919. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.-M.; Lewis, J.D.; Mayer, E.A.; Plevy, S.E.; Chuang, E.; Rappaport, S.M.; Croitoru, K.; Korzenik, J.R.; Krischer, J.; Hyams, J.S.; et al. Challenges in IBD Research: Environmental Triggers. Inflamm. Bowel Dis. 2019, 25, S13–S23. [Google Scholar] [CrossRef]
- Korzenik, J.R.; Podolsky, D.K. Evolving Knowledge and Therapy of Inflammatory Bowel Disease. Nat. Rev. Drug Discov. 2006, 5, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Ince, M.N.; Elliott, D.E. Immunologic and Molecular Mechanisms in Inflammatory Bowel Disease. Surg. Clin. N. Am. 2007, 87, 681–696. [Google Scholar] [CrossRef] [PubMed]
- Abraham, C.; Cho, J.H. Inflammatory Bowel Disease. N. Engl. J. Med. 2009, 361, 2066–2078. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, G.R.; Mohana, T.; Athesh, K.; Hillary, V.E.; Vasconcelos, A.B.S.; Farias De Franca, M.N.; Montalvão, M.M.; Ceasar, S.A.; Jothi, G.; Sridharan, G.; et al. Anti-Inflammatory Natural Products Modulate Interleukins and Their Related Signaling Markers in Inflammatory Bowel Disease: A Systematic Review. J. Pharm. Anal. 2023, 13, 1408–1428. [Google Scholar] [CrossRef]
- Moura, F.A.; De Andrade, K.Q.; Dos Santos, J.C.F.; Araújo, O.R.P.; Goulart, M.O.F. Antioxidant Therapy for Treatment of Inflammatory Bowel Disease: Does It Work? Redox Biol. 2015, 6, 617–639. [Google Scholar] [CrossRef]
- Goyette, P.; Labbé, C.; Trinh, T.T.; Xavier, R.J.; Rioux, J.D. Molecular Pathogenesis of Inflammatory Bowel Disease: Genotypes, Phenotypes and Personalized Medicine. Ann. Med. 2007, 39, 177–199. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Oteiza, P.I. Iron Toxicity and Antioxidant Nutrients. Toxicology 2002, 180, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Bergmark, E.; Calleman, C.J.; He, F.; Costa, L.G. Determination of Hemoglobin Adducts in Humans Occupationally Exposed to Acrylamide. Toxicol. Appl. Pharmacol. 1993, 120, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Deledda, A.; Annunziata, G.; Tenore, G.C.; Palmas, V.; Manzin, A.; Velluzzi, F. Diet-Derived Antioxidants and Their Role in Inflammation, Obesity and Gut Microbiota Modulation. Antioxidants 2021, 10, 708. [Google Scholar] [CrossRef] [PubMed]
- Saleh, H.A.; Yousef, M.H.; Abdelnaser, A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front. Immunol. 2021, 12, 606069. [Google Scholar] [CrossRef] [PubMed]
- Direito, R.; Barbalho, S.M.; Figueira, M.E.; Minniti, G.; de Carvalho, G.M.; de Oliveira Zanuso, B.; de Oliveira Dos Santos, A.R.; de Góes Corrêa, N.; Rodrigues, V.D.; de Alvares Goulart, R.; et al. Medicinal Plants, Phytochemicals and Regulation of the NLRP3 Inflammasome in Inflammatory Bowel Diseases: A Comprehensive Review. Metabolites 2023, 13, 728. [Google Scholar] [CrossRef] [PubMed]
- Hossen, I.; Hua, W.; Ting, L.; Mehmood, A.; Jingyi, S.; Duoxia, X.; Yanping, C.; Hongqing, W.; Zhipeng, G.; Kaiqi, Z.; et al. Phytochemicals and Inflammatory Bowel Disease: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1321–1345. [Google Scholar] [CrossRef] [PubMed]
- Somani, S.J.; Modi, K.P.; Majumdar, A.S.; Sadarani, B.N. Phytochemicals and Their Potential Usefulness in Inflammatory Bowel Disease. Phytother. Res. 2015, 29, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Riaz Rajoka, M.S.; Thirumdas, R.; Mehwish, H.M.; Umair, M.; Khurshid, M.; Hayat, H.F.; Phimolsiripol, Y.; Pallarés, N.; Martí-Quijal, F.J.; Barba, F.J. Role of Food Antioxidants in Modulating Gut Microbial Communities: Novel Understandings in Intestinal Oxidative Stress Damage and Their Impact on Host Health. Antioxidants 2021, 10, 1563. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Peng, P.; Ding, N.; Jia, W.; Huang, C.; Tang, Y. Oxidative Stress, Inflammation, Gut Dysbiosis: What Can Polyphenols Do in Inflammatory Bowel Disease? Antioxidants 2023, 12, 967. [Google Scholar] [CrossRef]
- Punchard, N.A.; Greenfield, S.M.; Thompson, R.P. Mechanism of Action of 5-Arninosalicylic Acid. Mediat. Inflamm. 1992, 1, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Creed, T.J.; Probert, C.S.J. Review Article: Steroid Resistance in Inflammatory Bowel Disease—Mechanisms and Therapeutic Strategies. Aliment. Pharmacol. Ther. 2007, 25, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Wang, S.; Li, J. Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Front. Med. 2021, 8, 765474. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Rutgeerts, P.; Feagan, B.G.; Reinisch, W.; Olson, A.; Johanns, J.; Lu, J.; Horgan, K.; Rachmilewitz, D.; Hanauer, S.B.; et al. Colectomy Rate Comparison after Treatment of Ulcerative Colitis with Placebo or Infliximab. Gastroenterology 2009, 137, 1250–1260. [Google Scholar] [CrossRef]
- M’Koma, A.E. Inflammatory Bowel Disease: Clinical Diagnosis and Surgical Treatment-Overview. Medicina 2022, 58, 567. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.-S.; Loshak, H. Biologics Versus Immunomodulators for the Treatment of Ulcerative Colitis: A Review of Comparative Clinical Effectiveness and Cost-Effectiveness; CADTH Rapid Response Reports; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2019.
- Kotla, N.G.; Rochev, Y. IBD Disease-Modifying Therapies: Insights from Emerging Therapeutics. Trends. Mol. Med. 2023, 29, 241–253. [Google Scholar] [CrossRef]
- Roediger, W.E. The Colonic Epithelium in Ulcerative Colitis: An Energy-Deficiency Disease? Lancet 1980, 2, 712–715. [Google Scholar] [CrossRef] [PubMed]
- Segain, J.P.; Raingeard de la Blétière, D.; Bourreille, A.; Leray, V.; Gervois, N.; Rosales, C.; Ferrier, L.; Bonnet, C.; Blottière, H.M.; Galmiche, J.P. Butyrate Inhibits Inflammatory Responses through NFkappaB Inhibition: Implications for Crohn’s Disease. Gut 2000, 47, 397–403. [Google Scholar] [CrossRef]
- McIntyre, A.; Gibson, P.R.; Young, G.P. Butyrate Production from Dietary Fibre and Protection against Large Bowel Cancer in a Rat Model. Gut 1993, 34, 386–391. [Google Scholar] [CrossRef]
- Facchin, S.; Vitulo, N.; Calgaro, M.; Buda, A.; Romualdi, C.; Pohl, D.; Perini, B.; Lorenzon, G.; Marinelli, C.; D’Incà, R.; et al. Microbiota Changes Induced by Microencapsulated Sodium Butyrate in Patients with Inflammatory Bowel Disease. Neurogastroenterol. Motil. 2020, 32, e13914. [Google Scholar] [CrossRef]
- Jamka, M.; Kokot, M.; Kaczmarek, N.; Bermagambetova, S.; Nowak, J.K.; Walkowiak, J. The Effect of Sodium Butyrate Enemas Compared with Placebo on Disease Activity, Endoscopic Scores, and Histological and Inflammatory Parameters in Inflammatory Bowel Diseases: A Systematic Review of Randomised Controlled Trials. Complement. Med. Res. 2021, 28, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, A.; Banasiuk, M.; Szczepanik, M.; Borys-Iwanicka, A.; Pytrus, T.; Walkowiak, J.; Banaszkiewicz, A. Sodium Butyrate Effectiveness in Children and Adolescents with Newly Diagnosed Inflammatory Bowel Diseases-Randomized Placebo-Controlled Multicenter Trial. Nutrients 2022, 14, 3283. [Google Scholar] [CrossRef] [PubMed]
- Nishida, T.; Miwa, H.; Shigematsu, A.; Yamamoto, M.; Iida, M.; Fujishima, M. Increased Arachidonic Acid Composition of Phospholipids in Colonic Mucosa from Patients with Active Ulcerative Colitis. Gut 1987, 28, 1002–1007. [Google Scholar] [CrossRef] [PubMed]
- Kirtland, S.J. Prostaglandin E1: A Review. Prostaglandins Leukot. Essent. Fat. Acids 1988, 32, 165–174. [Google Scholar] [CrossRef] [PubMed]
- González-Domínguez, Á.; Belmonte, T.; González-Domínguez, R. Childhood Obesity, Metabolic Syndrome, and Oxidative Stress: MicroRNAs Go on Stage. Rev. Endocr. Metab. Disord. 2023, 24, 1147–1164. [Google Scholar] [CrossRef] [PubMed]
- Boesch-Saadatmandi, C.; Loboda, A.; Wagner, A.E.; Stachurska, A.; Jozkowicz, A.; Dulak, J.; Döring, F.; Wolffram, S.; Rimbach, G. Effect of Quercetin and Its Metabolites Isorhamnetin and Quercetin-3-Glucuronide on Inflammatory Gene Expression: Role of miR-155. J. Nutr. Biochem. 2011, 22, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Papada, E.; Kaliora, A.C. Antioxidant and Anti-Inflammatory Properties of Mastiha: A Review of Preclinical and Clinical Studies. Antioxidants 2019, 8, 208. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, P.; Wu, X.; Liu, W.; Shen, X.; Lan, T.; Xu, S.; Peng, J.; Xie, X.; Huang, H. Berberine Attenuates Lipopolysaccharide-Induced Extracelluar Matrix Accumulation and Inflammation in Rat Mesangial Cells: Involvement of NF-κB Signaling Pathway. Mol. Cell Endocrinol. 2011, 331, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Vuddanda, P.R.; Chakraborty, S.; Singh, S. Berberine: A Potential Phytochemical with Multispectrum Therapeutic Activities. Expert Opin. Investig. Drugs 2010, 19, 1297–1307. [Google Scholar] [CrossRef]
- Wu, L.-H.; Xu, Z.-L.; Dong, D.; He, S.-A.; Yu, H. Protective Effect of Anthocyanins Extract from Blueberry on TNBS-Induced IBD Model of Mice. Evid. Based Complement. Altern. Med. 2011, 2011, 525462. [Google Scholar] [CrossRef]
- Osman, N.; Adawi, D.; Ahrné, S.; Jeppsson, B.; Molin, G. Probiotics and Blueberry Attenuate the Severity of Dextran Sulfate Sodium (DSS)-Induced Colitis. Dig. Dis. Sci. 2008, 53, 2464–2473. [Google Scholar] [CrossRef]
- Montrose, D.C.; Horelik, N.A.; Madigan, J.P.; Stoner, G.D.; Wang, L.-S.; Bruno, R.S.; Park, H.J.; Giardina, C.; Rosenberg, D.W. Anti-Inflammatory Effects of Freeze-Dried Black Raspberry Powder in Ulcerative Colitis. Carcinogenesis 2011, 32, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Balmus, I.M.; Ciobica, A.; Trifan, A.; Stanciu, C. The Implications of Oxidative Stress and Antioxidant Therapies in Inflammatory Bowel Disease: Clinical Aspects and Animal Models. Saudi J. Gastroenterol. 2016, 22, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Young Hong, M. Effects of Resveratrol on Inflammatory Bowel Disease: A Review. J. Nutr. Health Food Sci. 2014, 2, 1–6. [Google Scholar] [CrossRef]
- Yao, J.; Wang, J.-Y.; Liu, L.; Li, Y.-X.; Xun, A.-Y.; Zeng, W.-S.; Jia, C.-H.; Wei, X.-X.; Feng, J.-L.; Zhao, L.; et al. Anti-Oxidant Effects of Resveratrol on Mice with DSS-Induced Ulcerative Colitis. Arch. Med. Res. 2010, 41, 288–294. [Google Scholar] [CrossRef]
- Brasnyó, P.; Molnár, G.A.; Mohás, M.; Markó, L.; Laczy, B.; Cseh, J.; Mikolás, E.; Szijártó, I.A.; Mérei, A.; Halmai, R.; et al. Resveratrol Improves Insulin Sensitivity, Reduces Oxidative Stress and Activates the Akt Pathway in Type 2 Diabetic Patients. Br. J. Nutr. 2011, 106, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Akhtar, N.; Haqqi, T.M. Green Tea Polyphenol Epigallocatechin-3-Gallate: Inflammation and Arthritis. Life Sci. 2010, 86, 907–918. [Google Scholar] [CrossRef]
- Khan, N.; Mukhtar, H. Multitargeted Therapy of Cancer by Green Tea Polyphenols. Cancer Lett. 2008, 269, 269–280. [Google Scholar] [CrossRef]
- Grimm, T.; Chovanová, Z.; Muchová, J.; Sumegová, K.; Liptáková, A.; Duracková, Z.; Högger, P. Inhibition of NF-kappaB Activation and MMP-9 Secretion by Plasma of Human Volunteers after Ingestion of Maritime Pine Bark Extract (Pycnogenol). J. Inflamm. 2006, 3, 1. [Google Scholar] [CrossRef]
- Rohdewald, P. A Review of the French Maritime Pine Bark Extract (Pycnogenol), a Herbal Medication with a Diverse Clinical Pharmacology. Int. J. Clin. Pharmacol. Ther. 2002, 40, 158–168. [Google Scholar] [CrossRef]
- Schäfer, A.; Chovanová, Z.; Muchová, J.; Sumegová, K.; Liptáková, A.; Duracková, Z.; Högger, P. Inhibition of COX-1 and COX-2 Activity by Plasma of Human Volunteers after Ingestion of French Maritime Pine Bark Extract (Pycnogenol). Biomed. Pharmacother. 2006, 60, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Esmaily, H.; Hosseini-Tabatabaei, A.; Rahimian, R.; Khorasani, R.; Baeeri, M.; Barazesh-Morgani, A.; Yasa, N.; Khademi, Y.; Abdollahi, M. On the Benefits of Silymarin in Murine Colitis by Improving Balance of Destructive Cytokines and Reduction of Toxic Stress in the Bowel Cells. Open Life Sci. 2009, 4, 204–213. [Google Scholar] [CrossRef]
- Miroliaee, A.E.; Esmaily, H.; Vaziri-Bami, A.; Baeeri, M.; Shahverdi, A.R.; Abdollahi, M. Amelioration of Experimental Colitis by a Novel Nanoselenium-Silymarin Mixture. Toxicol. Mech. Methods 2011, 21, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Esmaily, H.; Vaziri-Bami, A.; Miroliaee, A.E.; Baeeri, M.; Abdollahi, M. The Correlation between NF-κB Inhibition and Disease Activity by Coadministration of Silibinin and Ursodeoxycholic Acid in Experimental Colitis. Fundam. Clin. Pharmacol. 2011, 25, 723–733. [Google Scholar] [CrossRef]
- Wei, X.; Gong, J.; Zhu, J.; Wang, P.; Li, N.; Zhu, W.; Li, J. The Suppressive Effect of Triptolide on Chronic Colitis and TNF-Alpha/TNFR2 Signal Pathway in Interleukin-10 Deficient Mice. Clin. Immunol. 2008, 129, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Shan, T.; Feng, A.; Li, Y.; Zhu, W.; Xie, Y.; Li, N.; Li, J. Triptolide Ameliorates Crohn’s Colitis Is Associated with Inhibition of TLRs/NF-κB Signaling Pathway. Fitoterapia 2011, 82, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, C.; Zhu, W.-M.; Xie, Y.; Qi, X.; Li, N.; Li, J.-S. Triptolide Ameliorates IL-10-Deficient Mice Colitis by Mechanisms Involving Suppression of IL-6/STAT3 Signaling Pathway and down-Regulation of IL-17. Mol. Immunol. 2010, 47, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Sun, P.-P.; Guo, H.-T.; Liu, Y.; Li, J.; He, X.-J.; Lu, A.-P. Safety Profiles of Tripterygium Wilfordii Hook F: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2016, 7, 402. [Google Scholar] [CrossRef]
- Ito, Y.; Sugawara, Y.; Takaiti, O.; Nakamura, S. Metabolic Fate of a New Anti-Ulcer Drug (+)-(1R,4aS,10aR)-1,2,3,4,4a,9,10,10a- Octahydro-1,4a-Dimethyl-7-(1-Methylethyl)-6-Sulfo-1- Phenanthrenecarboxylic Acid 6-Sodium Salt Pentahydrate (TA-2711). II. Distribution in the Rat Stomach. J. Pharmacobiodyn. 1991, 14, 547–554. [Google Scholar] [CrossRef]
- Kinoshita, M.; Kume, E.; Tamaki, H. Roles of Prostaglandins, Nitric Oxide and the Capsaicin-Sensitive Sensory Nerves in Gastroprotection Produced by Ecabet Sodium. J. Pharmacol. Exp. Ther. 1995, 275, 494–501. [Google Scholar]
- Kinoshita, M.; Tamaki, H. Possible Mechanism of Increase in Gastric Mucosal PGE2 and PGI2 Generation Induced by Ecabet Sodium, a Novel Gastroprotective Agent. Dig. Dis. Sci. 1997, 42, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, T.; Ishihara, K.; Hayashida, H.; Hiruma, H.; Saigenji, K.; Hotta, K. Effects of Ecabet Sodium, a Novel Gastroprotective Agent, on Mucin Metabolism in Rat Gastric Mucosa. Dig. Dis. Sci. 2000, 45, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis Sativa: A Comprehensive Ethnopharmacological Review of a Medicinal Plant with a Long History. J. Ethnopharmacol. 2018, 227, 300–315. [Google Scholar] [CrossRef]
- Patil, N.; Chandel, V.; Rana, A.; Jain, M.; Kaushik, P. Investigation of Cannabis Sativa Phytochemicals as Anti-Alzheimer’s Agents: An In Silico Study. Plants 2023, 12, 510. [Google Scholar] [CrossRef] [PubMed]
- Pesce, M.; D’Alessandro, A.; Borrelli, O.; Gigli, S.; Seguella, L.; Cuomo, R.; Esposito, G.; Sarnelli, G. Endocannabinoid-Related Compounds in Gastrointestinal Diseases. J. Cell Mol. Med. 2018, 22, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Couch, D.G.; Maudslay, H.; Doleman, B.; Lund, J.N.; O’Sullivan, S.E. The Use of Cannabinoids in Colitis: A Systematic Review and Meta-Analysis. Inflamm. Bowel Dis. 2018, 24, 680–697. [Google Scholar] [CrossRef] [PubMed]
- Marquéz, L.; Suárez, J.; Iglesias, M.; Bermudez-Silva, F.J.; Rodríguez de Fonseca, F.; Andreu, M. Ulcerative Colitis Induces Changes on the Expression of the Endocannabinoid System in the Human Colonic Tissue. PLoS ONE 2009, 4, e6893. [Google Scholar] [CrossRef]
- Macfarlane, G.T.; Cummings, J.H. Probiotics and Prebiotics: Can Regulating the Activities of Intestinal Bacteria Benefit Health? BMJ 1999, 318, 999–1003. [Google Scholar] [CrossRef]
- Steed, H.; Macfarlane, G.T.; Macfarlane, S. Prebiotics, Synbiotics and Inflammatory Bowel Disease. Mol. Nutr. Food Res. 2008, 52, 898–905. [Google Scholar] [CrossRef]
- Satoskar, R.R.; Shah, S.J.; Shenoy, S.G. Evaluation of Anti-Inflammatory Property of Curcumin (Diferuloyl Methane) in Patients with Postoperative Inflammation. Int. J. Clin. Pharmacol. Ther. Toxicol. 1986, 24, 651–654. [Google Scholar]
- Surh, Y.-J. Anti-Tumor Promoting Potential of Selected Spice Ingredients with Antioxidative and Anti-Inflammatory Activities: A Short Review. Food Chem. Toxicol. 2002, 40, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Toda, S.; Miyase, T.; Arichi, H.; Tanizawa, H.; Takino, Y. Natural Antioxidants. III. Antioxidative Components Isolated from Rhizome of Curcuma Longa L. Chem. Pharm. Bull. 1985, 33, 1725–1728. [Google Scholar] [CrossRef]
- Plummer, S.M.; Holloway, K.A.; Manson, M.M.; Munks, R.J.; Kaptein, A.; Farrow, S.; Howells, L. Inhibition of Cyclo-Oxygenase 2 Expression in Colon Cells by the Chemopreventive Agent Curcumin Involves Inhibition of NF-kappaB Activation via the NIK/IKK Signalling Complex. Oncogene 1999, 18, 6013–6020. [Google Scholar] [CrossRef]
- Sugimoto, K.; Hanai, H.; Tozawa, K.; Aoshi, T.; Uchijima, M.; Nagata, T.; Koide, Y. Curcumin Prevents and Ameliorates Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice. Gastroenterology 2002, 123, 1912–1922. [Google Scholar] [CrossRef]
- Salh, B.; Assi, K.; Templeman, V.; Parhar, K.; Owen, D.; Gómez-Muñoz, A.; Jacobson, K. Curcumin Attenuates DNB-Induced Murine Colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2003, 285, G235–G243. [Google Scholar] [CrossRef] [PubMed]
Author | Type of Study | Study Period | Year of Publication | Country | Reference | |
---|---|---|---|---|---|---|
1 | Amerikanou et al. | Multicenter RCT and RCT | n/a | 2021 | Greece, Italy, Serbia | [19] |
2 | Banerjee et al. | RCT | January 2016–March 2017 | 2021 | India | [20] |
3 | Benjamin et al. | Multicenter RCT | September 2006–April 2009 Duration 4 weeks | 2011 | UK | [21] |
4 | Bommelaer et al. | Multicenter RCT | October 2014–January 2018 | 2020 | France | [22] |
5 | Casellas et al. | RCT | n/a Duration of 4 weeks | 2007 | Spain | [23] |
6 | Dryden et al. | RCT | n/a Duration of 56 days | 2013 | USA | [24] |
7 | Fernández-Bañares et al. | Multicenter randomized controlled trial (RCT) | January 1993–May 1996 | 1999 | Spain | [25] |
8 | Furrie et al. | RCT | n/a Duration of 4 weeks | 2005 | UK | [26] |
9 | Greenfield et al. | RCT | n/a Duration of 9 months | 1993 | UK | [27] |
10 | Hanai et al. | Multicenter RCT | April 2004–July 2005 | 2006 | Japan | [28] |
11 | Irving et al. | RCT | n/a Duration of 12 weeks | 2018 | UK | [29] |
12 | Kedia et al. | RCT | January 2003–March 2005 Duration of 2 months | 2017 | India | [30] |
13 | Lang et al. | Multicenter RCT | July 2011–June 2014 | 2015 | Israel | [31] |
14 | Langhorst et al. | Multicenter RCT | June 2008–July 2010 Duration of 12 months | 2013 | Germany | [32] |
15 | Masoodi et al. | RCT | July 2017–September 2017 | 2018 | Iran | [33] |
16 | Naftali et al. | RCT (non-blinded) | September 2010–September 2011 Duration of 8 weeks | 2013 | Israel | [34] |
17 | Naftali et al. | RCT | 2011–2012 | 2017 | Israel | [35] |
18 | Naftali et al. (CD) | RCT | 2013–2018 | 2021 | Israel | [36] |
19 | Naftali et al. (UC) | RCT | n/a Duration of 10 weeks | 2021 | Israel | [37] |
20 | Rastegarpanah et al. | Multicenter RCT | September 2009–October 2010 Duration of 6 months | 2015 | Iran | [38] |
21 | Sadeghi et al. | RCT | January–September 2018 | 2020 | Iran | [39] |
22 | Samsami-kor et al. | RCT | n/a Duration of 6 weeks | 2015 | Iran | [40] |
23 | Samsamikor et al. | RCT | n/a Duration of 6 weeks | 2016 | Iran | [41] |
24 | Singla et al. | RCT | August 2008–July 2009 | 2014 | India | [42] |
25 | Steed et al. | RCT | January 2006–December 2008 Duration of 6 months | 2010 | UK | [43] |
26 | Sugimoto et al. | Multicenter RCT | April 2015–December 2017 | 2020 | Japan | [44] |
27 | Xu et al. | RCT | August 2016–October 2017 | 2020 | China | [45] |
28 | Huber et al. | Controlled cohort study | n/a Duration of 3 weeks | 2007 | Germany | [46] |
29 | Hedin et al. | Pilot cohort study | Duration of 3 weeks | 2021 | UK | [47] |
30 | Biedermann et al. | Prospective trial (not blinded or controlled) | March 2010–April 2011 | 2013 | Switzerland | [48] |
31 | Suskind et al. | Prospective pilot clinical trial | n/a | 2013 | USA | [49] |
32 | Holt et al. | Open pilot clinical trial | n/a Duration of 2 months | 2005 | USA | [50] |
33 | Koláček et al. | Prospective pilot study | n/a Duration of 14 days | 2013 | Slovakia | [51] |
34 | Li et al. | Prospective trial (not blinded or controlled) | n/a Duration of 3 months | 2014 | China | [52] |
35 | Kono et al. | Open-label clinical trial | n/a Duration of 2 weeks | 2001 | Japan | [53] |
36 | Lindsay et al. | Prospective clinical trial | n/a Duration of 4 weeks | 2006 | UK | [54] |
37 | Valcheva et al. | Pilot randomized trial | n/a Duration of 9 weeks | 2018 | Canada | [55] |
38 | Doeve et al. | Systematic Review and Meta-analysis | Not applicable | 2021 | Netherlands (Various) | [56] |
39 | Goulart et al. | Systematic Review | Not applicable | 2021 | Brazil (Various) | [57] |
40 | Liu et al. | Systematic Review and Meta-analysis | Not applicable | 2021 | China (Various) | [58] |
Author | Phytochemical or Extract | Preparation and Administration | Recruited Patients | Disease | Reference | |
---|---|---|---|---|---|---|
1 | Amerikanou et al. | Mastiha | MAST4HEALTH: Mastiha 0.35 g in capsules per os—2.1 g/day divided in 3 doses per os MASTIHA-IBD-GR: Mastiha tablets—2.8 g mastiha daily per os | MAST4HEALTH: 67 MASTIHA IBD-GR: 35 | Crohn’s disease (CD) or UC—remission or mild-to-moderate relapse | [19] |
2 | Banerjee et al. | Curcumin (IC) | Bioenhanced Curcumin (BEC) 50 mg capsules −100 mg oral BEC daily divided in 2 doses per os | 69 | UC—Active mild-to-moderate | [20] |
3 | Benjamin et al. | Oligofructose and Inulin (IC) | FOS 15 g/d as 7.5 mg sachets of Synergy1® given twice daily per os | 103 | CD—active | [21] |
4 | Bommelaer et al. | Curcumin (IC) | Curcumin capsules per os—3000 mg/day divided in 3 doses | 62 | CD—recent surgical resection, under thiopurines | [22] |
5 | Casellas et al. | Oligofructose and Inulin (IC) | Synergy1® 12 g divided in 3 doses daily per os | 19 | UC—mild to moderate | [23] |
6 | Dryden et al. | (-)-epigallocatechin-3-gallate (Polyphenon E) (IC) | Polyphenon E 200 mg capsules—200–400 mg/day divided in 2 doses per os | 19 | UC—Active mild-to-moderate | [24] |
7 | Fernández-Bañares et al. | Plantago ovata seeds (fiber) | Dried prepared seeds of Plantago ovata plant in 10 g sachets given twice daily per os | 105 | Ulcerative colitis (UC) in remission | [25] |
8 | Furrie et al. | Symbiotic of Bifidobacterium longum plus FOS (IC) | B. longum in gelatin capsule and sachet containing 6 g of Synergy1®, given twice daily per os | 18 | UC | [26] |
9 | Greenfield et al. | Super Evening primrose essential oil (vs olive oil and fish oil) | 250 mg capsules—2 capsules daily for one month followed by 6 capsules daily for 5 months per os | 43 | “Clinically stable” UC | [27] |
10 | Hanai et al. | Curcumin (IC) | Per os yellow medications—2 g curcumin divided in 2 doses daily per os | 89 | UC—“in quiescent state” | [28] |
11 | Irving et al. | CBD-rich botanical extract | 50 mg capsules—100–500 mg/day divided in 2 doses per os | 60 | UC—mild to moderate, refractory to 5-aminosalicylic acid | [29] |
12 | Kedia et al. | Curcumin (IC) | Curcumin capsules per os—450 mg/day divided in 3 doses | 62 | UC—mild to moderate | [30] |
13 | Lang et al. | Curcumin (IC) | Cur-Cure™, a 95% pure curcumin preparation in 500 mg capsules—3 g of curcumin divided in 2 doses daily per os | 50 | UC—Active mild-to-moderate | [31] |
14 | Langhorst et al. | Herbal preparation of myrrh, chamomile extract and coffee charcoal | Oral preparation of 100 mg myrrh, 70 mg chamomile extract and 50 mg coffee charcoal—12 tablets divided in 3 doses per os | 97 | UC—inactive | [32] |
15 | Masoodi et al. | Curcuminoids Nanomicelles (IC) | Curcuminoids Nanomicelles 80 mg capsules—240 mg/day divided in 3 doses per os | 56 | UC—Active mild-to-moderate | [33] |
16 | Naftali et al. | Cannabis | Cigarettes containing 11.5 mg of tetrahydrocannabinol (THC)—twice daily | 21 | CD—active disease | [34] |
17 | Naftali et al. | Cannabidiol (CBD) | 5 to 800 mg/day CBD in olive oil | 21 | CD | [35] |
18 | Naftali et al. (CD) | Cannabis indica ‘Avidekel’ oil | Cannabis oil containing CBD/THC 160/40 mg/mL—1–20 drops sublingual twice daily | 56 | CD | [36] |
19 | Naftali et al. (UC) | Cigarettes (Cannabis sativa var. Indica “Erez”) | Cigarettes containing 16% THC (80 mg THC), 0.5% CBG, 0.1% CBD | 32 | UC—mild to moderate | [37] |
20 | Rastegarpanah et al. | Silymarin (IC) | Silymarin 140 mg tablets per os once daily | 80 | UC—in remission | [38] |
21 | Sadeghi et al. | Curcumin (IC) | Curcumin capsules per os—1500 mg/day divided in 3 doses | 70 | UC—Active mild-to-moderate | [39] |
22 | Samsami-kor et al. | Resveratrol (IC) | Resveratrol supplements—500 mg trans-resveratrol capsules once daily per os | 50 | UC—Active mild-to-moderate | [40] |
23 | Samsamikor et al. | Resveratrol (IC) | Resveratrol supplements—500 mg trans-resveratrol capsules once daily per os | 56 | UC—Active mild-to-moderate | [41] |
24 | Singla et al. | Curcumin | NCB-02 (curcumin): standardized extract of Curcuma longa, given once daily as an enema containing 140 mg of NCB-02 dissolved in 20 mL of water | 45 | UC—Active mild-to-moderate | [42] |
25 | Steed et al. | Symbiotic of Bifidobacterium longum plus FOS (IC) | B. longum in gelatin capsule and sachet containing 6 g of Synergy1®, given twice daily per os | 35 | CD—active | [43] |
26 | Sugimoto et al. | Curcumin (IC) | Theracurmin®: high bioavailability synthesized curcumin derivative 180 mg capsules—360 mg/day divided in 2 doses per os | 30 | CD | [44] |
27 | Xu et al. | Berberine (IC) | >98% pure berberine hydrochloride in 100 mg tablets—300 mg three times daily per os | 18 | UC—in remission on mesalamine | [45] |
28 | Huber et al. | Tormentil (Extract from the rhizome of Tormentilla erecta L.) | 200 mg tormentil capsules–Escalating doses of 1200, 1800, 2400 and 3000 mg/day divided in 3 doses per os | 16 | UC—active disease | [46] |
29 | Hedin et al. | Oligofructose and Inulin (IC) | Fructo-oligosaccharides (FOS) 15 g/d as sachets of Synergy1® daily per os | 33 | CD—in remission | [47] |
30 | Biedermann et al. | Bilberry (Vaccinium myrtillus) | Standardized procedure used dried, sieved bilberries and concentrated bilberry juice in 40 g aluminum trays, 160 g divided in 4 doses daily per os | 24 | UC—current mild-to-moderate activity | [48] |
31 | Suskind et al. | Curcumin (IC) | Curcumin 500 mg capsules—1 g/day to 4 g/day divided in 2 doses per os | 11 | CD or UC—in remission or mild disease | [49] |
32 | Holt et al. | Curcumin (IC) | Curcumin 550 mg capsules—1100 mg/day to 1650 mg/day divided in 2 or 3 doses per os | 10 | CD or UC | [50] |
33 | Koláček et al. | Pycnogenol® (Polyphenols—Procyanidins) | French maritime pine (Pinus pinaster) bark extract Pycnogenol®—2 mg/kg/day in 1 dose capsules per os | 30 | CD—in remission | [51] |
34 | Li et al. | T2 (Extract of Tripterygium wilfordii Hook F) | Triptolide tablets—60 mg/day tablets per os | 20 | CD—active disease | [52] |
35 | Kono et al. | Ecabet sodium (salt derived from pine resin) (IC) | Ecabet sodium 1 g + 20 or 50 mL of tepid water—Two enemas daily | 7 | UC—mild-to-moderate active proctosigmoiditis | [53] |
36 | Lindsay et al. | Oligofructose (70%) and Inulin (30%) (IC) | FOS 15 g/d as sachets of Prebio 1® daily per os | 10 | CD—moderately active or ileocolonic disease | [54] |
37 | Valcheva et al. | Oligofructose and Inulin (IC) | FOS 7.5–15 g/d as 7.5 mg sachets of Synergy1® given once or twice daily per os | 31 | UC—active | [55] |
38 | Doeve et al. | Cannabis—Cannabinoids | Systematic review— Various preparations in each included study † | 146 | CD or UC | [56] |
39 | Goulart et al. | Curcumin | Systematic review— Various preparations in each included study † | 750 | CD or UC | [57] |
40 | Liu et al. | Polyphenols | Systematic review— Various preparations in each included study † | 639 | CD or UC | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantalos, G.; Vaou, N.; Papachristidou, S.; Stavropoulou, E.; Tsigalou, C.; Voidarou, C.; Bezirtzoglou, E. Antioxidant and Anti-Inflammatory Phytochemicals for the Treatment of Inflammatory Bowel Disease: A Systematic Review. Appl. Sci. 2024, 14, 2177. https://doi.org/10.3390/app14052177
Pantalos G, Vaou N, Papachristidou S, Stavropoulou E, Tsigalou C, Voidarou C, Bezirtzoglou E. Antioxidant and Anti-Inflammatory Phytochemicals for the Treatment of Inflammatory Bowel Disease: A Systematic Review. Applied Sciences. 2024; 14(5):2177. https://doi.org/10.3390/app14052177
Chicago/Turabian StylePantalos, George, Natalia Vaou, Smaragda Papachristidou, Elisavet Stavropoulou, Christina Tsigalou, Chrysa Voidarou, and Eugenia Bezirtzoglou. 2024. "Antioxidant and Anti-Inflammatory Phytochemicals for the Treatment of Inflammatory Bowel Disease: A Systematic Review" Applied Sciences 14, no. 5: 2177. https://doi.org/10.3390/app14052177
APA StylePantalos, G., Vaou, N., Papachristidou, S., Stavropoulou, E., Tsigalou, C., Voidarou, C., & Bezirtzoglou, E. (2024). Antioxidant and Anti-Inflammatory Phytochemicals for the Treatment of Inflammatory Bowel Disease: A Systematic Review. Applied Sciences, 14(5), 2177. https://doi.org/10.3390/app14052177