Quality and Safety of Dried Mushrooms Available at Retail Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Mushrooms
2.2. Microbiological Enumeration and Detection
2.3. Investigation of Presumptive Salmonella, Listeria, and B. cereus isolates by PCR
2.3.1. DNA Extraction
2.3.2. Confirmation of Salmonella and Listeria spp.
2.3.3. Characterization of Presumptive B. cereus by panC Typing and Screening of Toxin and Crystal Protein (cry) Genes
3. Results and Discussion
3.1. Microbiological Quality
3.2. Detection of Foodborne Pathogens
3.3. Labeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centre for the Promotion of Imports from Developing Countries (CBI). The European Market Potential for Dried Mushrooms. Available online: https://www.cbi.eu/market-information/processed-fruit-vegetables-edible-nuts/dried-mushrooms/market-potential (accessed on 5 January 2024).
- Xu, Y.; Tian, Y.; Ma, R.; Liu, Q.; Zhang, J. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chem. 2016, 197, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Pu, Y.Y.; Sun, D.W. Recent advances in quality preservation of postharvest mushrooms (Agaricus bisporus): A review. Trends Food Sci. Technol. 2018, 78, 72–82. [Google Scholar] [CrossRef]
- Liu, S.; Roopesh, M.S.; Tang, J.; Wu, Q.; Qin, W. Recent development in low-moisture foods: Microbial safety and thermal process. Food Res. Int. 2022, 155, 111072. [Google Scholar] [CrossRef] [PubMed]
- Ezekiel, C.N.; Sulyok, M.; Frisvad, J.C.; Somorin, Y.M.; Warth, B.; Houbraken, J.; Samson, R.A.; Krska, R.; Odebode, A.C. Fungal and mycotoxin assessment of dried edible mushroom in Nigeria. Int. J. Food Microbiol. 2013, 162, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Nartea, T.J.; Pao, S.; Li, H.; Jordan, K.L.; Xu, Y.; Stein, R.A.; Sismour, E.N. Evaluation of microbial loads on dried and fresh shiitake mushrooms (Lentinula edodes) as obtained from internet and local retail markets, respectively. Food Saf. 2016, 4, 45–51. [Google Scholar] [CrossRef]
- Ajis, A.H.; Chong, L.J.; Tan, Y.S.; Chai, L.C. Microbial food safety assessment of dried edible mushrooms. J. Consumer Prot. Food Saf. 2017, 12, 265–269. [Google Scholar] [CrossRef]
- Messelhäusser, U.; Frenzel, E.; Blöchinger, C.; Zucker, R.; Kämpf, P.; Ehling-Schulz, M. Emetic Bacillus cereus are more volatile than thought: Recent foodborne outbreaks and prevalence studies in Bavaria (2007–2013). Biomed. Res. Int. 2014, 2014, 465603. [Google Scholar] [CrossRef]
- Centres for Disease, Control and Prevention (CDC). Food Safety Alert. Available online: https://www.cdc.gov/salmonella/stanley-09-20/index.html (accessed on 23 June 2023).
- Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES) Speisepilze—Vielseitig Einsetzbar und Intensiv Kontrolliert. Available online: https://www.laves.niedersachsen.de/startseite/lebensmittel/lebensmittelgruppen/pilze_pilzerzeugnisse/speisepilze-intensiv-kontrolliert-fur-einen-sicheren-herbstgenuss-73863.html (accessed on 19 June 2023).
- Rapid Alert System for Food and Feed (RASFF). Available online: https://ec.europa.eu/food/safety/rasff_en (accessed on 25 November 2023).
- Venturini, M.E.; Reyes, J.E.; Rivera, C.S.; Oria, R.; Blanco, D. Microbiological quality and safety of fresh cultivated and wild mushrooms commercialized in Spain. Food Microbiol. 2011, 28, 1492–1498. [Google Scholar] [CrossRef]
- Chen, M.; Cheng, J.; Wu, Q.; Zhang, J.; Chen, Y.; Zeng, H.; Ye, Q.; Wu, S.; Cai, S.; Ding, Y. Prevalence, potential virulence, and genetic diversity of Listeria monocytogenes isolates from edible mushrooms in Chinese markets. Front Microbiol. 2018, 9, 1711. [Google Scholar] [CrossRef]
- Centres for Disease, Control and Prevention (CDC). Food Safety Alert. Available online: https://www.cdc.gov/listeria/outbreaks/enoki-11-22/index.html (accessed on 23 November 2023).
- Ly, V.; Parreira, V.R.; Farber, J.M. Current understanding and perspectives on Listeria monocytogenes in low-moisture foods. Curr. Opin. Food Sci. 2019, 26, 18–24. [Google Scholar] [CrossRef]
- Taylor, M.H.; Zhu, M.J. Control of Listeria monocytogenes in low-moisture foods. Trends Food Sci. Technol. 2021, 116, 802–814. [Google Scholar] [CrossRef]
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. OJEU. 22 November 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32011R1169 (accessed on 12 January 2024).
- ISO 6887-4:2017; Microbiology of the Food Chain Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination. Part 4: Specific Rules for the Preparation of Miscellaneous Products. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 7218:2007/Amd.1:2013; Microbiology of Food and Animal Feeding Stuffs—General Requirements and Guidance for Microbiological Examinations. International Organization for Standardization: Geneva, Switzerland, 2013.
- German Society for Hygiene and Microbiology (DGHM). Richt- und Warnwerte für Trockenpilze. Available online: https://www.dghm-richt-warnwerte.de/de/richt-und-warnwert-entwurf-/dghm-6-3-trockenpilze/351187574 (accessed on 13 January 2023).
- Walsh, P.S.; Metzger, D.A.; Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 1991, 10, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Rahn, K.; De Grandis, S.A.; Clarke, R.C.; McEwen, S.A.; Galan, J.E.; Ginocchio, C.; Curtiss, R.; Gyles, C. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell Prob. 1992, 6, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Bubert, A.; Hein, I.; Rauch, M.; Lehner, A.; Yoon, B.; Goebel, W.; Wagner, M. Detection and differentiation of Listeria spp. by a single reaction based on multiplex PCR. Appl. Environ. Microbiol. 1999, 65, 4688–4692. [Google Scholar] [CrossRef] [PubMed]
- Guinebretière, M.H.; Thompson, F.L.; Sorokin, A.; Normand, P.; Dawyndt, P.; Ehling-Schulz, M.; Svensson, B.; Sanchis, V.; Nguyen-The, C.; Heyndrickx, M.; et al. Ecological diversification in the Bacillus cereus group. Environ. Microbiol. 2008, 10, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Guinebretière, M.H.; Velge, P.; Couvert, O.; Carlin, F.; Debuyser, M.L.; Nguyen-The, C. Ability of Bacillus cereus group strains to cause food poisoning varies according to phylogenetic affiliation (groups I to VII) rather than species affiliation. J. Clin. Microbiol. 2010, 48, 3388–3391. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, E.; Raab, C.; Brugger, K.; Ehling-Schulz, M.; Wagner, M.; Stessl, B. Performance Testing of Bacillus cereus chromogenic agar media for improved detection in milk and other food samples. Foods 2022, 11, 288. [Google Scholar] [CrossRef]
- Dzieciol, M.; Fricker, M.; Wagner, M.; Hein, I.; Ehling-Schulz, M. A novel diagnostic real-time PCR assay for quantification and differentiation of emetic and non-emetic Bacillus cereus. Food Control 2013, 32, 176–185. [Google Scholar] [CrossRef]
- Wei, S.; Chelliah, R.; Park, B.J.; Kim, S.H.; Forghani, F.; Cho Min, S.; Park, D.S.; Jin, Y.G.; Oh, D.H. Differentiation of Bacillus thuringiensis from Bacillus cereus group using a unique marker based on real-time PCR. Front. Microbiol. 2019, 10, 883. [Google Scholar] [CrossRef]
- Bak, K.H.; Bauer, S.; Rattner, J.; Wagner, M.; Ludewig, M. Nutritional properties, microbial and sensory quality, and formation of biogenic amines in wild-grown mushrooms (Cantharellus cibarius & Boletus edulis) from Austrian local markets. Food Chem. Adv. 2023, 2, 100193. [Google Scholar]
- Rossouw, W.; Korsten, L. Cultivable microbiome of fresh white button mushrooms. Lett. Appl. Microbiol. 2017, 64, 164–170. [Google Scholar] [CrossRef]
- Kragh, M.L.; Obari, L.; Caindec, A.M.; Jensen, H.A.; Hansen, L.T. Survival of Listeria monocytogenes, Bacillus cereus and Salmonella Typhimurium on sliced mushrooms during drying in a household food dehydrator. Food Control 2022, 134, 108715. [Google Scholar] [CrossRef]
- Yang, W.; Wang, L.; Hu, Q.; Pei, F.; Mugambi, M.A. Identification of bacterial composition in freeze-dried Agaricus bisporus during storage and the resultant odor deterioration. Front. Microbiol. 2019, 10, 349. [Google Scholar] [CrossRef]
- Kortei, N.K.; Odamtten, G.T.; Appiah, V.; Obodai, M.; Adu-Gyamfi, A.; Annan, T.; Akonor, P.T.; Annan, S.N.Y.; Acquah, S.A.; Armah, J.O.; et al. Microbiological quality assessment of gamma irradiated fresh and dried mushrooms (Pleurotus ostreatus) and determination of D10 values of Bacillus cereus in storage packs. Eur. J. Biotechnol. Biosci. 2014, 2, 28–34. [Google Scholar]
- Liu, C.; Yu, P.; Yu, S.; Wang, J.; Guo, H.; Zhang, Y.; Zhang, J.; Liao, X.; Li, C.; Wu, S.; et al. Assessment and molecular characterization of Bacillus cereus isolated from edible fungi in China. BMC Microbiol. 2020, 20, 310. [Google Scholar] [CrossRef] [PubMed]
- De Bock, T.; Zhao, X.; Jacxsens, L.; Devlieghere, F.; Rajkovic, A.; Spanoghe, P.; Höfte, M.; Uyttendaele, M. Evaluation of B. thuringiensis-based biopesticides in the primary production of fresh produce as a food safety hazard and risk. Food Control 2021, 130, 108390. [Google Scholar] [CrossRef]
- Jessberger, N.; Krey, V.M.; Rademacher, C.; Böhm, M.E.; Mohr, A.K. From genome to toxicity: A combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus. Front. Microbiol. 2015, 6, 560. [Google Scholar]
- EFSA Panel on Biological Hazards (BIOHAZ). Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J. 2016, 14, e04524. [Google Scholar]
- Glasset, B.; Herbin, S.; Guillier, L.; Cadel-Six, S.; Vignaud, M.L.; Grout, J.; Pairaud, S.; Michel, V.; Hennekinne, J.A.; Ramarao, N.; et al. Bacillus cereus-induced food-borne outbreaks in France, 2007 to 2014: Epidemiology and genetic characterisation. Eurosurveillance 2016, 21, 30413. [Google Scholar] [CrossRef]
- Alp, D.; Bulantekin, Ö. The microbiological quality of various foods dried by applying different drying methods: A review. Eur. Food Res. Technol. 2021, 247, 1333–1343. [Google Scholar] [CrossRef]
- Fay, M.L.; Salazar, J.K.; Chavda, N.J.; Patil, G.R.; Ingram, D.T. Survival kinetics of Listeria monocytogenes and Salmonella enterica on dehydrated enoki and wood ear mushrooms during long-term storage. Food Microbiol. 2023, 114, 104304. [Google Scholar] [CrossRef] [PubMed]
- Salazar, J.K.; Fay, M.L.; Khouja, B.A.; Chavda, N.J.; Patil, G.R.; Ingram, D.T. Effect of dehydration on the inactivation of Listeria monocytogenes and Salmonella enterica on enoki and wood ear mushrooms. Front. Microbiol. 2023, 14, 1257053. [Google Scholar] [CrossRef] [PubMed]
- Apati, G.P.; Furlan, S.A.; Laurindo, J.B. Drying and rehydration of oyster mushroom. Braz. Arch. Biol. Technol. 2010, 53, 945–952. [Google Scholar] [CrossRef]
- Hassan, F.R.; Medany, G.M. Effect of pretreatments and drying temperatures on the quality of dried Pleurotus mushroom spp. Egypt. J. Agric. Res. 2014, 92, 1009–1023. [Google Scholar] [CrossRef]
- Latpate, R.; Immanuel, G.; Jondhale, A. Rehydration properties of freeze and tray dried button mushrooms (Agaricus bisporus). Pharma Innov. J. 2022, 11, 374–378. [Google Scholar]
- Codex Alimentarius Austriaticus (Österreichisches Lebensmittelbuch) (2014) Anforderungen an Pilze und Pilzerzeugnisse-BMG-75210/0025-II/B/13/2014. Available online: https://www.lebensmittelbuch.at/lebensmittelbuch/b-27-pilze-und-pilzerzeugnisse/2-anforderungen-an-pilze-und-pilzerzeugnisse.html (accessed on 9 January 2023).
- Zhang, H.; Yamamoto, E.; Murphy, J.; Locas, A. Microbiological safety of ready-to-eat fresh-cut fruits and vegetables sold on the Canadian retail market. Int. J. Food Microbiol. 2020, 335, 108855. [Google Scholar] [CrossRef]
Classification A–E | Mushroom Species F | Samples (%) G |
---|---|---|
Agaricales A | total 25 (41.0) | |
Shiitake (Lentinula edodes) | 18 (29.5) | |
Portobello (Agaricus bisporus) | 3 (4.9) | |
Oyster mushroom (Pleurotus ostreatus) | 2 (3.3) | |
Poplar fieldcap mushroom (Cyclocybe cylindracea) | 1 (1.6) | |
Mixed mushroom species with Shiitake and Oyster | 1 (1.6) | |
Agaricomycotina species without gills B | total 13 (21.3) | |
Auriculariales | Wood ear (Auricularia auricula-judae) | 10 (16.4) |
Tremellomycetes | Jelly mushroom (Tremella fuciformis) | 2 (3.3) |
Polyporales | Maitake (Grifola frondosa) | 1 (1.6) |
Cantharellales C | total 10 (16.4) | |
Chanterelle (Cantharellus cibarius) | 6 (9.8) | |
Horn of plenty (Craterellus cornucopioides) | 2 (3.3) | |
Mixed mushroom species with Cantharellales | 2 (3.3) | |
Boletales D | total 10 (16.4) | |
Porcini (Boletus edules) | 9 (14.8) | |
Mixed mushroom species with Porcini | 1 (1.6) | |
Pezizomycotina E | total 3 (4.9) | |
Morel (Morchella spp.) | ||
TOTAL | total 61 (100) |
Classification (Groups) | n | Average Microbiological Counts | Number (Percentage) of Samples above the Limits | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AMC | EB/ C | Yeasts | Molds | BC | AMC D | EB D | Yeasts D | Molds D | BC D | ||
>6.0 | >4.0 | >4.0 | >3.0 | >2.0 | |||||||
Agaricales | 25 | 3.4 ± 1.0 A (2.0–5.6) B | 0.5 ± 0.5/1 (0.3–2.6) | 1.2 ± 0.5 (1.0–2.8) | 1.3 ± 0.6 (1.0–2.9) | 0.7 ± 0.5 (0.3–1.9) | 0 | 0 | 0 | 0 | 0 |
Agaricomycotina E | 13 | 4.0 ± 1.1 (1.0–5.2) | 1.8 ± 1.4/5 (0.3–4.6) | 1.6 ± 1.2 (1.0–4.6) | 1.6 ± 0.6 (1.0–2.8) | 1.4 ± 0.9 (0.3–2.9) | 0 | 1 (7.7%) | 1 (7.7%) | 0 | 3 (23.1%) |
Cantharellales | 10 | 5.0 ± 1.4 (3.1–6.6) | 2.0 ± 2.5/2 (0.3–6.2) | 2.5 ± 1.3 (1.0–4.5) | 1.9 ± 1.1 (1.0–4.3) | 1.8 ± 0.7 (0.3–2.7) | 4 (40.0%) | 3 (30.0%) | 2 (20.0%) | 1 (10.0%) | 5 (50.0%) |
Boletales | 10 | 3.5 ± 0.6 (2.7–4.7) | 1.6 ± 1.6/1 (0.3–4.4) | 1.6 ± 1.0 (1.0–4.0) | 1.5 ± 0.7 (1.0–2.9) | 1.5 ± 1.0 (0.3–3.4) | 0 | 1 (10.0%) | 0 | 0 | 2 (20.0%) |
Pezizomycotina | 3 | 4.2 ± 0.8 (3.0–5.0) | 2.6 ± 1.7 (0.3–4.3) | 1.6 ± 0.8 (1.0–2.8) | 2.4 ± 0.1 (2.3–2.5) | 0.9 ± 0.9 (0.3–2.2) | 0 | 1 (33.3%) | 0 | 0 | 1 (33.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludewig, M.; Rattner, J.; Künz, J.J.; Wagner, M.; Stessl, B. Quality and Safety of Dried Mushrooms Available at Retail Level. Appl. Sci. 2024, 14, 2208. https://doi.org/10.3390/app14052208
Ludewig M, Rattner J, Künz JJ, Wagner M, Stessl B. Quality and Safety of Dried Mushrooms Available at Retail Level. Applied Sciences. 2024; 14(5):2208. https://doi.org/10.3390/app14052208
Chicago/Turabian StyleLudewig, Martina, Julia Rattner, Johannes J. Künz, Martin Wagner, and Beatrix Stessl. 2024. "Quality and Safety of Dried Mushrooms Available at Retail Level" Applied Sciences 14, no. 5: 2208. https://doi.org/10.3390/app14052208
APA StyleLudewig, M., Rattner, J., Künz, J. J., Wagner, M., & Stessl, B. (2024). Quality and Safety of Dried Mushrooms Available at Retail Level. Applied Sciences, 14(5), 2208. https://doi.org/10.3390/app14052208