Wireless Strain Gauge for Monitoring Bituminous Pavements
Abstract
:1. Introduction
2. Electronic Design of the Sensor
3. Installation of the Sensor in the Pavement Surface Layer
- The surface of the test body where the gauges will be glued is grounded and a groove is made on the edge of the cylinder for the passage of the cables (Figure 4a);
- A layer of hot bitumen is applied to fill the gaps. In order to perfect the surface condition, an epoxy resin is applied and then sanded (Figure 4b);
- The gauges are glued using a glue intended for this purpose (Figure 4c). At this point, the thermal compensation resistors and the Wheatstone bridge are wired;
- A PVC (polyvinyl chloride) strapping and a protective paste against humidity is affixed (Figure 4d).
4. Validation of Measurement Process
4.1. Diametral Compression of a PVC Test Body Instrumented with One Strain Gauge
4.2. Diametral Compression of a PVC Test Body Instrumented with Two Perpendicular Gauges
4.3. Indoor Experiment on Instrumented Pavement Core with Two Parallel Gauges
4.4. Outdoor Test with Real Load Condition and Comparison with Numerical Result
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swett, L.; Mallick, R.; Humphrey, D. A study of temperature and traffic load related response in different layers in an instrumented flexible pavement. J. Pavement Eng. 2008, 9, 303–316. [Google Scholar] [CrossRef]
- Al-Qadi, I.L.; Loulizi, A.; Elseifi, M.; Lahouar, S. The Virginia Smart Road: The Impact of Pavement Instrumentation on Understranding Pavement Performance. Asph. Paving Technol. Assoc. Asph. Paving-Technol. Proc. Tech. Sess. 2004, 73, 427–465. [Google Scholar]
- Xue, W.; Wang, L.; Wang, D.; Druta, C. Pavement Health Monitoring System Based on an Embedded Sensing Network. J. Mater. Civ. Eng. 2014, 26, 04014072. [Google Scholar] [CrossRef]
- Maadani, O.; Abd El Halim, A.; Mostafa, N. Instrumentation for Monitoring Pavement Performance in Cold Regions. J. Cold Reg. Eng. 2015, 29, 04014017. [Google Scholar] [CrossRef]
- Mostafa Elseifi, A.; Louay Mohammad, N.; Bill King, W.; Zhang, Z. Assessment stress and strain instrumentation in Accelerated pavement testing. Int. J. Pavement Res. Technol. 2012, 5, 121–127. [Google Scholar]
- Ai, C.; Rahman, A.; Xiao, C.; Yang, E.; Qiu, Y. Analysis of measured strain response of asphalt pavements and relevant prediction models. Int. J. Pavement Eng. 2017, 8, 1089–1097. [Google Scholar] [CrossRef]
- Gaborit, P.; Sauzéat, C.; Di Benedetto, H.; Pouget, S.; Olard, F.; Claude, A.; Monnet, A.J.; Audin, R.M. Investigation of highway pavements using in-situ strain sensors. Int. Conf. Transp. Infrastruct 2013, 28, 331–337. [Google Scholar] [CrossRef]
- Duong, N.S.; Blanc, J.; Hornych, P.; Bouveret, B.; Carroget, J.; Lefeuvre, Y. Continuous strain monitoring of an instrumented pavement section. Int. J. Pavement Eng. 2019, 20, 1435–1450. [Google Scholar] [CrossRef]
- Pouteau, B.; Mazé, M.; Mai, T. SMARTVIA: La route intelligente... RGRA 2012, 901, 32–39. (In French) [Google Scholar]
- Oubahdou, Y.; Reynaud, P.; Petit, C.; Millien, A.; Dopeux, J.; Metrope, M.; Picoux, B.; Gerbaud, C.; Tautou, R. Full Scale Testing with the Mobile Load Simulator: Advanced Measurements Related to Pavement Behavior and Surface Layer Damage. In Proceedings of the 6th APT Conference, Nantes, France, 18 August 2020. [Google Scholar]
- Grellet, D.; Doré, G.; Bilodeau, J.P. Comparative study on the impact of wide base tires and dual tires on the strains occurring within flexible pavements asphalt concrete surface course. Can. J. Civ. Eng. 2012, 39, 526–535. [Google Scholar] [CrossRef]
- Cho, S.; Yun, C.; Lynch, J.P.; Zimmerman, A.T.; Spencer Jr, B.F.; Nagayama, T. Smart wireless sensor technology for structural health monitoring of civil structures. Int. J. Steel Struct. 2008, 8, 267–275. [Google Scholar]
- Tairab, A.M.; Alaeldin, M.; Wang, H.; Hao, D.; Azam, A.; Ahmed, A.; Zhang, Z. A hybrid multimodal energy harvester for self-powered wireless sensors in the railway. Energy Sustain. Dev. 2022, 68, 150–169. [Google Scholar] [CrossRef]
- Zanelli, F.; Debattisti, N.; Mauri, M.; Argentino, A.; Belloli, M. Development and Field Validation of Wireless Sensors for Railway Bridge Modal Identification. Appl. Sci. 2023, 13, 3620. [Google Scholar] [CrossRef]
- Bennet, R.; Hayes-Gill, B.; Crowe, J.A.; Armitage, R.; Rodgers, D.; Hendroff, A. Wireless monitoring of highways. In Proceedings of the SPIE Conference Smart Systems for Bridges, Structures, and Highways, Newport Beach, CA, USA, 18 May 1999; Volume 3671, pp. 173–182. [Google Scholar] [CrossRef]
- Tanner, N.A.; Farrar, C.R.; Sohn, H. Structural health monitoring using wireless sensing systems with embedded processing. In Proceedings of the SPIE conféRence of NDE For Health Monitoring and Diagnostics, San Diego, CA, USA, 18 June 2002. [Google Scholar] [CrossRef]
- Pei, Q.; Qi, P.; Lu, Y.; Qin, L. Development and Verification of Wireless Vibration Sensors. Buildings 2023, 13, 1648. [Google Scholar] [CrossRef]
- Prabatama, N.A.; Hornych, P.; Mariani, S.; Laheurte, J.M. Development of a Zigbee-Based Wireless Sensor Network of MEMS Accelerometers for Pavement Monitoring. Eng. Proc. 2023, 58, 29. [Google Scholar] [CrossRef]
- Sundaram, B.A.; Ravisankar, K.; Senthil, R.; Parivalla, S. Wireless sensors for structural health monitoring and damage detection techniques. Curr. Sci. 2013, 104, 1496–1505. [Google Scholar]
- Yun, C.B.; Min, J. Smart sensing, monitoring, and damage detection for civil infrastructures. KSCE J. Civ. Eng. 2011, 15, 1–14. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, C.; Lei, Q. The method of intelligent wireless sensor to improve the water permeability of permeable asphalt concrete pavement. IET Netw. 2022, 82, 1–12. [Google Scholar] [CrossRef]
- Bajwa, R.; Rajagopal, R.; Varaiya, P.; Kavaler, R. In-pavement wireless sensor network for vehicle classification. In Proceedings of the 10th International Conference on Information Processing in Sensor Networks, Chicago, IL, USA, 12–14 April 2011. [Google Scholar]
- Knaian, A.N. A Wireless Sensor Network for Smart Roadbeds and Intelligent Transportation Systems. Ph.D. Thesis, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA, USA, 2000. [Google Scholar]
- Di Graziano, A.; Marchetta, V.; Cafiso, S. Structural health monitoring of asphalt pavements using smart sensor networks: A comprehensive review. J. Traffic Transp. Eng. 2020, 7, 639–651. [Google Scholar] [CrossRef]
- Wang, L.; Xue, W.; Druta, C.; Wang, D. Integration of Structural Health Monitoring and Asset Management; Virginia Tech Transportation Institute, Center for Smart Infrastructure and Sensing Technology: Blacksburg, VA, USA, 2012. [Google Scholar]
- Alavi, A.H.; Hasni, H.; Lajnef, N.; Chatti, K.; Faridazar, F. Damage detection using self-powered wireless sensor data: An evolutionary approach. Measurement 2016, 82, 254–283. [Google Scholar] [CrossRef]
- Xiao, J.; Zou, X.; Xu, W. ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement. Sensors 2017, 17, 2207. [Google Scholar] [CrossRef] [PubMed]
- Alavi, A.H.; Hasni, H.; Lajnef, N.; Chatti, K. Continuous Health Monitoring of Pavement Systems Using Smart Sensing Technology. Constr. Build. Mater. 2016, 114, 719–736. [Google Scholar] [CrossRef]
- Lajnef, N.; Rhimi, M.; Chatti, K.; Mhamdi, L.; Faridazar, F. Toward an Integrated Smart Sensing System and Data Interpretation Techniques for Pavement Fatigue Monitoring. Comput. Aided Civ. Infrastruct. Eng. 2011, 26, 513–523. [Google Scholar] [CrossRef]
- Rhimi, M.; Lajnef, N.; Chatti, K.; Faridazar, F. A self-powered sensing system for continuous fatigue monitoring of in-service pavements. Int. J. Pavement Res. Technol. 2012, 5, 303–310. [Google Scholar]
- Available online: https://docs.micro-measurements.com/?id=13752 (accessed on 2 February 2024).
- Freire, J.L.F. Experimental Mechanics—Electrical Resistance Strain Gages. Encyclopedia of Life Support Systems, Chapters—Physical Sciences, Engineering and Technology Online Resources. Available online: https://www.eolss.net/Sample-chapters/C05/E6-194-07.pdf (accessed on 2 February 2024).
- Manyo, E.Y.; Reynaud, P.; Picoux, B.; Tautou, R.; Nelias, D.; Allou, F.; Petit, C. Towards fast modelling of the tire-pavement contact. Eur. J. Environ. Civ. Eng. 2019, 25, 2396–2412. [Google Scholar] [CrossRef]
- Grellet, D.; Doré, G.; Bilodeau, J.P. Effect of tire type on strains occurring in asphalt concrete layers. In Proceedings of the 11th International Conference on Asphalt Pavements, Nagoya, Japan, 5 August 2010. [Google Scholar]
Real Strain (µm/m) | Rg (Ohm) | Measured Strain (µm/m) | Rel. Deviation (%) |
---|---|---|---|
−200 | 119.95 | −200.03 | 0.02 |
−100 | 119.97 | −98.81 | 1.19 |
−50 | 119.99 | −50.61 | 1.22 |
0 | 120.00 | Indefinite | ∞ |
50 | 120.01 | 50.61 | 1.22 |
100 | 120.03 | 101.22 | 1.22 |
200 | 120.05 | 200.03 | 0.02 |
300 | 120.08 | 301.25 | 0.42 |
400 | 120.10 | 400.06 | 0.02 |
500 | 120.13 | 501.28 | 1.28 |
600 | 120.15 | 600.09 | 0.02 |
700 | 120.18 | 701.31 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gillot, C.; Picoux, B.; Reynaud, P.; Cardoso da Silva, D.; Rakotovao-Ravahatra, N.; Feix, N.; Petit, C. Wireless Strain Gauge for Monitoring Bituminous Pavements. Appl. Sci. 2024, 14, 2245. https://doi.org/10.3390/app14062245
Gillot C, Picoux B, Reynaud P, Cardoso da Silva D, Rakotovao-Ravahatra N, Feix N, Petit C. Wireless Strain Gauge for Monitoring Bituminous Pavements. Applied Sciences. 2024; 14(6):2245. https://doi.org/10.3390/app14062245
Chicago/Turabian StyleGillot, Camille, Benoit Picoux, Philippe Reynaud, Debora Cardoso da Silva, Ndrianary Rakotovao-Ravahatra, Noël Feix, and Christophe Petit. 2024. "Wireless Strain Gauge for Monitoring Bituminous Pavements" Applied Sciences 14, no. 6: 2245. https://doi.org/10.3390/app14062245
APA StyleGillot, C., Picoux, B., Reynaud, P., Cardoso da Silva, D., Rakotovao-Ravahatra, N., Feix, N., & Petit, C. (2024). Wireless Strain Gauge for Monitoring Bituminous Pavements. Applied Sciences, 14(6), 2245. https://doi.org/10.3390/app14062245