Designing and Developing an Advanced Drone-Based Pollution Surveillance System for River Waterways, Streams, and Canals Using Machine Learning Algorithms: Case Study in Shatt al-Arab, South East Iraq
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Design
2.2. Related Work
2.3. Methodology
2.3.1. Data Collection
2.3.2. Data Preprocessing
2.4. Detecting River Pollution through Machine Learning
2.4.1. Interface of the System
2.4.2. Feature Extraction
2.4.3. Model Selection—Algorithm Selection for Multi-Pollutant Detection
2.4.4. Model Training
2.4.5. Model Testing
2.4.6. Deployment
2.4.7. Continuous Improvement
3. Results
3.1. Image Dataset
- Oil spills: Images capturing the telltale signs of oil spills in water bodies, characterized by distinctive color patterns and textures.
- Wastewater contamination: Scenes depicting the presence of discolored and contaminated water resulting from wastewater discharge.
- River debris: Visual evidence of floating debris and garbage in river segments, endangering aquatic ecosystems.
3.2. Model Performance Evaluation
3.2.1. Evaluation Metrics
3.2.2. Performance Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Code | River/Canal | Coordinates for the Initial Capture Location | River Length, (km) | Type of Pollution |
---|---|---|---|---|
1 | Shatt al-Arab | 30°31′41.8″ N, 47°50′25.9″ E | 200 | Industrial waste, sewage, oil spills |
2 | Al-Ashar Canal | 30°30′36.3″ N, 47°49′45.1″ E | 5 | Agricultural runoff, wastewater discharge |
3 | Muwafaqiya Canal | 30°30′42.2″ N, 47°47′05.3″ E | 3.5 | Agricultural runoff, sewage |
4 | Shatt Al-Basrah | 30°26′11.0″ N, 47°45′46.7″ E | 100 | Agricultural runoff, industrial waste |
5 | Alkhora Canal | 30°29′54.8″ N, 47°50′10.7″ E | 5 | Industrial waste, sewage, agricultural runoff |
6 | Abu Al-Khaseeb | 30°26′47.1″ N, 48°01′04.6″ E | 10 | Agricultural runoff, industrial waste |
7 | Al-Saraje River | 30°29′01.3″ N, 47°51′11.1″ E | 4 | Oil spills, industrial waste, sewage |
8 | Mhaigran River | 30°28′10.4″ N, 47°52′49.3″ E | 4 | Oil spills, industrial waste, sewage |
9 | Al Asmaee Canal | 30°30′28.7″ N, 47°47′10.0″ E | 7.8 | Agricultural runoff, wastewater discharge |
10 | Alkhandak River | 30°30′42.8″ N, 47°49′26.9″ E | 3 | Agricultural runoff, wastewater discharge |
11 | Al-Salhia Canal | 30°30′38.0″ N, 47°51′58.0″ E | 24.7 | Agricultural runoff, wastewater discharge |
12 | Qarmat Ali Canal | 30°34′43.5″ N, 47°44′21.7″ E | 20 | Agricultural runoff, wastewater discharge |
TOTAL | 387 |
Code | Captured Area | Altitude (m) | Period (Month, Year) | No. of Images | Weather Conditions | Drone Type | Min. |
---|---|---|---|---|---|---|---|
1 | Shatt al-Arab | 10–50 | November 2022 May 2023 | 160 | Sunny, clear skies | DJI Mini 3 | 180 |
2 | Al-Ashar Canal | 10–50 | November 2022 May 2023 | 90 | Partly cloudy | DJI Mini 3 | 100 |
3 | Muwafaqiya Canal | 10–50 | November 2022 May 2023 | 100 | Partly cloudy | DJI Mini 3 | 100 |
4 | Shatt Al-Basrah | 10–70 | November 2022 May 2023 | 93 | Partly cloudy | DJI Mini 3 | 100 |
5 | Alkhora Canal | 10–60 | November 2022 May 2023 | 50 | Partly cloudy | DJI Mini 3 | 80 |
6 | Abu Al-Khaseeb | 10–50 | November 2022 May 2023 | 65 | Partly cloudy | DJI Mavic Air 2 | 120 |
7 | Al-Saraje River | 10–50 | November 2022 | 50 | Sunny, clear skies | DJI Mavic Air 2 | 100 |
8 | Mhaigran River | 10–50 | November 2022 May 2023 | 59 | Sunny, clear skies | DJI Mavic Air 2 | 50 |
9 | Al Asmaee Canal | 10–50 | November 2022 May 2023 | 91 | Sunny, clear skies | DJI Mavic Air 2 | 90 |
10 | Alkhandak River | 10–70 | November 2022 May 2023 | 93 | Sunny, clear skies | DJI Mavic Air 2 | 60 |
11 | Al-Salhia Canal | 10–40 | November 2022 May 2023 | 60 | Sunny, clear skies | DJI Mavic Air 2 | 40 |
12 | Qarmat Ali Canal | 10–70 | November 2022 May 2023 | 90 | Sunny, clear skies | DJI Mavic Air 2 | 80 |
TOTAL | 1001 | 1090 |
References
- Monge-Ganuzas, M.; Cearreta, A.; García-Artola, A. Coastal Management in the Basque Coast: A Case Study of Dredging and Dumping Operations Along the Oka Estuary. In The Spanish Coastal Systems; Morales, J., Ed.; Springer: Cham, Switzerland, 2019; pp. 729–744. [Google Scholar]
- Ruiz, I.M.; Barurko, O.; Epelde, I.; Liria, P.; Rubió, A.; Mader, J.; Delpey, M. Monitoring Floating Riverine Pollution by Advanced Technology. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020. EGU2020-22613. [Google Scholar] [CrossRef]
- van Emmerik, T.; Schwarz, A. Plastic Debris in Rivers. Wiley Interdiscip. Rev. Water 2020, 7, 1398. [Google Scholar] [CrossRef]
- Almuktar, S.; Hamdan, A.N.A.; Scholz, M. Assessment of the Effluents of Basra City Main Water Treatment Plants for Drinking and Irrigation Purposes. Water 2020, 12, 3334. [Google Scholar] [CrossRef]
- Alhello, M.A.; Al-Khuzie, D.K.; Saleh, S.M.; Alhello, A.; Alsaad, H.; Hassan, W.F. Heavy Metals Indicies in Shatt Al-Arab River, Basrah Province, Iraq. Sediments. Poll. Res 2020, 39, S14–S19. [Google Scholar]
- van Lieshout, C.; van Oeveren, K.; van Emmerik, T.; Postma, E. Automated River Plastic Monitoring using Deep Learning and Cameras. Earth Space Sci. 2020, 7, 960. [Google Scholar] [CrossRef]
- Papakonstantinou, A.; Batsaris, M.; Spondylidis, S.; Topouzelis, K. A Citizen Science Unmanned Aerial System Data Acquisition Protocol and Deep Learning Techniques for the Automatic Detection and Mapping of Marine Litter Concentrations in the Coastal Zone. Drones 2021, 5, 6. [Google Scholar] [CrossRef]
- Maharjan, N.; Miyazaki, H.; Pati, B.M.; Dailey, M.N.; Shrestha, S.; Nakamura, T. Detection of River Plastic using UAV Sensor Data and Deep Learning. Remote Sens. 2022, 14, 3049. [Google Scholar] [CrossRef]
- Water Quality in Iraq-Fanack Water. Available online: https://water.fanack.com/iraq/water-quality-in-iraq/ (accessed on 27 December 2023).
- Lebreton, L.C.M.; van der Zwet, J.; Damsteeg, J.-W.; Slat, B.; Andrady, A.; Reisser, J. River Plastic Emissions to the World’s Oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.; Krauth, T.; Wagner, S. Export of Plastic Debris by Rivers into the Sea. Environ. Sci. Technol. 2017, 51, 12246–12253. [Google Scholar] [CrossRef] [PubMed]
- van Emmerik, T.; Mellink, Y.; Hauk, R.; Waldschläger, K.; Schreyers, L. Rivers as Plastic Reservoirs. Front. Water 2022, 3, 212. [Google Scholar] [CrossRef]
- Wu, C.-H.; Hsieh, J.-W.; Wang, C.-Y.; Ho, C.-H. Marine Pollution Detection based on Deep Learning and Optical Flow. In Proceedings of the 2020 International Computer Symposium (ICS), Tainan, Taiwan, 17–19 December 2020; pp. 376–381. [Google Scholar]
- Wang, J.; Shi, T.; Yu, D.; Teng, D.; Ge, X.; Zhang, Z.; Yang, X.; Wang, H.; Wu, G. Ensemble Machine-Learning-Based Framework for Estimating Total Nitrogen Concentration in Water using Drone-Borne Hyperspectral Imagery of Emergent Plants: A Case Study in an Arid Oasis, NW China. Environ. Pollut. 2020, 266, 115412. [Google Scholar] [CrossRef] [PubMed]
- Geraeds, M.; van Emmerik, T.; de Vries, R.; bin Ab Razak, M.S. Riverine Plastic Litter Monitoring using Unmanned Aerial Vehicles (UAVs). Remote Sens. 2019, 11, 2045. [Google Scholar] [CrossRef]
- Scikit-Learn 1.4.1 Documentation. Available online: https://scikit-learn.org/stable/user_guide.html (accessed on 5 December 2023).
- Al-Ruzouq, R.; Gibril, M.B.A.; Shanableh, A.; Kais, A.; Hamed, O.; Al-Mansoori, S.; Khalil, M.A. Sensors, Features, and Machine Learning for Oil Spill Detection and Monitoring: A Review. Remote Sens. 2020, 12, 3338. [Google Scholar] [CrossRef]
- De Kerf, T.; Gladines, J.; Sels, S.; Vanlanduit, S. Oil Spill Detection Using Machine Learning and Infrared Images. Remote Sens. 2020, 12, 4090. [Google Scholar] [CrossRef]
- Understanding Color Spaces and Color Space Conversion-MATLAB & Simulink. Available online: https://www.mathworks.com/help/images/understanding-color-spaces-and-color-space-conversion.html (accessed on 10 November 2023).
- Chatterjee, S. What is Feature Extraction? Feature Extraction in Image Processing|Great Learning. Great Learning Blog: Free Resources What Matters to Shape Your Career! Available online: https://www.mygreatlearning.com/blog/feature-extraction-in-image-processing/ (accessed on 12 November 2023).
- Hamilton, D. kNN vs. SVM: A Comparison of Algorithms. US Forest Service Research and Development. Available online: https://www.fs.usda.gov/research/treesearch/62328 (accessed on 14 November 2023).
- Wu, C.H.; Tzeng, G.H.; Lin, R.H. A Novel Hybrid Genetic Algorithm for Kernel Function and Parameter Optimization in Support Vector Regression. Expert Syst. Appl. 2009, 36, 4725–4735. [Google Scholar] [CrossRef]
- Bzdok, D.; Krzywinski, M.; Altman, N. Machine Learning: Supervised Methods. Nat. Methods 2018, 15, 5. [Google Scholar] [CrossRef]
- Moosaei, H.; Bazikar, F.; Hladík, M. Universum Parametric ν-Support Vector Regression for Binary Classification Problems with its Applications. Ann. Oper. Res. 2023, 1–45. [Google Scholar] [CrossRef]
- Al-Hameed, S.; Benaissa, M.; Christensen, H.; Mirheidari, B.; Blackburn, D.; Reuber, M. A New Diagnostic Approach for the Identification of Patients with Neurodegenerative Cognitive Complaints. PLoS ONE 2019, 14, e0217388. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.C.; Guido, S. Introduction to Machine Learning with Python: A Guide for Data Scientists; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2016. [Google Scholar]
- Liu, J.; Huang, Q.; Ulishney, C.; Dumitrescu, C.E. Machine Learning Assisted Prediction of Exhaust Gas Temperature of a Heavy-Duty Natural Gas Spark Ignition Engine. Appl. Energy 2021, 300, 1–12. [Google Scholar] [CrossRef]
- Liu, J.; Ulishney, C.; Dumitrescu, C.E. Random Forest Machine Learning Model for Predicting Combustion Feedback Information of a Natural Gas Spark Ignition Engine. J. Energy Resour. Technol. 2021, 143, 1–7. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Q.; Ulishney, C.; Dumitrescu, C.E. Comparison of Random Forest and Neural Network in Modeling the Performance and Emissions of a Natural Gas Spark Ignition Engine. J. Energy Resour. Technol. 2022, 144, 1–12. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
Model | Class | Accuracy | Precision | Recall | F1-Score | AUC |
---|---|---|---|---|---|---|
SVM | Oil spill | 0.92 | 0.91 | 0.93 | 0.92 | 0.96 |
Wastewater | 0.88 | 0.86 | 0.89 | 0.87 | 0.90 | |
Debris | 0.94 | 0.95 | 0.93 | 0.94 | 0.97 | |
k-NN | Oil spill | 0.85 | 0.84 | 0.87 | 0.85 | 0.88 |
Wastewater | 0.89 | 0.88 | 0.90 | 0.89 | 0.92 | |
Debris | 0.86 | 0.87 | 0.85 | 0.86 | 0.89 | |
RF | Oil spill | 0.94 | 0.93 | 0.95 | 0.94 | 0.97 |
Wastewater | 0.92 | 0.91 | 0.93 | 0.92 | 0.95 | |
Debris | 0.95 | 0.94 | 0.96 | 0.95 | 0.98 |
Model | Class | True Negative (TN) | False Positive (FP) | False Negative (FN) | True Positive (TP) |
---|---|---|---|---|---|
SVM | Oil spill | 7 | 5 | 58 | 280 |
Wastewater | 1 | 8 | 33 | 308 | |
Debris | 1 | 4 | 13 | 332 | |
k-NN | Oil spill | 15 | 5 | 80 | 250 |
Wastewater | 7 | 2 | 58 | 283 | |
Debris | 4 | 5 | 68 | 273 | |
RF | Oil spill | 1 | 2 | 47 | 300 |
Wastewater | 2 | 3 | 40 | 305 | |
Debris | 1 | 1 | 14 | 334 |
Model | Class | Sensitivity | Specificity |
---|---|---|---|
SVM | Wastewater | 0.903 | 0.111 |
SVM | Debris | 0.962 | 0.200 |
k-NN | Debris | 0.801 | 0.444 |
RF | Oil spill | 0.864 | 0.333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Battbootti, M.J.H.; Marin, I.; Al-Hameed, S.; Popa, R.-C.; Petrescu, I.; Boiangiu, C.-A.; Goga, N. Designing and Developing an Advanced Drone-Based Pollution Surveillance System for River Waterways, Streams, and Canals Using Machine Learning Algorithms: Case Study in Shatt al-Arab, South East Iraq. Appl. Sci. 2024, 14, 2382. https://doi.org/10.3390/app14062382
Al-Battbootti MJH, Marin I, Al-Hameed S, Popa R-C, Petrescu I, Boiangiu C-A, Goga N. Designing and Developing an Advanced Drone-Based Pollution Surveillance System for River Waterways, Streams, and Canals Using Machine Learning Algorithms: Case Study in Shatt al-Arab, South East Iraq. Applied Sciences. 2024; 14(6):2382. https://doi.org/10.3390/app14062382
Chicago/Turabian StyleAl-Battbootti, Myssar Jabbar Hammood, Iuliana Marin, Sabah Al-Hameed, Ramona-Cristina Popa, Ionel Petrescu, Costin-Anton Boiangiu, and Nicolae Goga. 2024. "Designing and Developing an Advanced Drone-Based Pollution Surveillance System for River Waterways, Streams, and Canals Using Machine Learning Algorithms: Case Study in Shatt al-Arab, South East Iraq" Applied Sciences 14, no. 6: 2382. https://doi.org/10.3390/app14062382
APA StyleAl-Battbootti, M. J. H., Marin, I., Al-Hameed, S., Popa, R.-C., Petrescu, I., Boiangiu, C.-A., & Goga, N. (2024). Designing and Developing an Advanced Drone-Based Pollution Surveillance System for River Waterways, Streams, and Canals Using Machine Learning Algorithms: Case Study in Shatt al-Arab, South East Iraq. Applied Sciences, 14(6), 2382. https://doi.org/10.3390/app14062382