Dissolved Organic Matter Behaviour by Conventional Treatments of a Drinking Water Plant: Controlling Its Changes with EEM-PARAFAC
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Description of the Working Environment: The DWTP of Turin
2.2. Sampling and Measurements
2.3. FI, BIX, and HIX Calculation
2.4. EEM-PARAFAC Model
3. Results and Discussion
3.1. UVA and NPOC Measurements
3.2. Fluorescence Results
3.2.1. Fluorescence, Biological, and Humification Indexes
3.2.2. PARAFAC Model
3.2.3. DOM Characterisation
3.2.4. Effect of Water Treatments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leenheer, J.A.; Croué, J.P. Characterizing Aquatic Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 18A–26A. [Google Scholar] [CrossRef]
- Mostofa, K.M.G.; Liu, C.; Mottaleb, M.A.; Wan, G.; Ogawa, H.; Vione, D.; Yoshioka, T.; Wu, F. Dissolved Organic Matter in Natural Waters. In Biogeochemistry; Mostofa, K.M.G., Yoshioka, T., Mottaleb, A., Vione, D., Eds.; Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2013; Volume 179, pp. 1–137. ISBN 978-3-642-32222-8. [Google Scholar]
- Miklos, D.B.; Wang, W.L.; Linden, K.G.; Drewes, J.E.; Hübner, U. Comparison of UV-AOPs (UV/H2O2, UV/PDS and UV/Chlorine) for TOrC Removal from Municipal Wastewater Effluent and Optical Surrogate Model Evaluation. Chem. Eng. J. 2019, 362, 537–547. [Google Scholar] [CrossRef]
- Osman, R.M.; Hodaifa, G. An Overview of Anaerobic Membrane Bioreactors: Current Developments, Fouling Problems, and Future Prospects. J. Environ. Chem. Eng. 2023, 11, 111482. [Google Scholar] [CrossRef]
- Stein, N.; Sharon-Gojman, R.; Mauter, M.S.; Bernstein, R.; Herzberg, M. Fouling of Reverse Osmosis Membrane with Effluent Organic Matter: Componential Role of Hydrophobicity. ACS ES T Water 2023, 3, 2491–2501. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Zhang, W.; Yu, S.; Wang, X.; Gao, N. New Advances in Fluorescence Excitation-Emission Matrix Spectroscopy for the Characterization of Dissolved Organic Matter in Drinking Water Treatment: A Review. Chem. Eng. J. 2020, 381, 122676. [Google Scholar] [CrossRef]
- Sgroi, M.; Anumol, T.; Roccaro, P.; Vagliasindi, F.G.A.; Snyder, S.A. Modeling Emerging Contaminants Breakthrough in Packed Bed Adsorption Columns by UV Absorbance and Fluorescing Components of Dissolved Organic Matter. Water Res. 2018, 145, 667–677. [Google Scholar] [CrossRef]
- Sururi, M.R.; Dirgawati, M.; Notodarmojo, S.; Roosmini, D.; Putra, P.S.; Rahman, A.D.; Wiguna, C.C. Chromophoric Dissolved Organic Compounds in Urban Watershed and Conventional Water Treatment Process: Evidence from Fluorescence Spectroscopy and PARAFAC. Environ. Sci. Pollut. Res. 2023, 30, 37248–37262. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Hu, E.; Sun, C.; Li, M.; Gao, L.; Fan, L. Using Fluorescence Index (FI) of Dissolved Organic Matter (DOM) to Identify Non-Point Source Pollution: The Difference in FI between Soil Extracts and Wastewater Reveals the Principle. Sci. Total Environ. 2023, 862, 160848. [Google Scholar] [CrossRef]
- Zhang, B.; Shan, C.; Hao, Z.; Liu, J.; Wu, B.; Pan, B. Transformation of Dissolved Organic Matter during Full-Scale Treatment of Integrated Chemical Wastewater: Molecular Composition Correlated with Spectral Indexes and Acute Toxicity. Water Res. 2019, 157, 472–482. [Google Scholar] [CrossRef]
- Ferguson, T.; Bernicky, A.; Kozin, I.; Loock, H.-P. HPLC-Detector Based on Hadamard-Transform Fluorescence Excitation-Emission-Matrix Spectroscopy. Anal. Chem. 2021, 93, 8116–8121. [Google Scholar] [CrossRef]
- Yang, L.; Hur, J. Critical Evaluation of Spectroscopic Indices for Organic Matter Source Tracing via End Member Mixing Analysis Based on Two Contrasting Sources. Water Res. 2014, 59, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Coble, P.G. Characterization of Marine and Terrestrial DOM in Seawater Using Excitation-Emission Matrix Spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Peleato, N.M.; Legge, R.L.; Andrews, R.C. Neural Networks for Dimensionality Reduction of Fluorescence Spectra and Prediction of Drinking Water Disinfection By-Products. Water Res. 2018, 136, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.R.; Stedmon, C.A.; Graeber, D.; Bro, R. Fluorescence Spectroscopy and Multi-Way Techniques. PARAFAC. Anal. Methods 2013, 5, 6557. [Google Scholar] [CrossRef]
- Sciscenko, I.; Arques, A.; Micó, P.; Mora, M.; García-Ballesteros, S. Emerging Applications of EEM-PARAFAC for Water Treatment: A Concise Review. Chem. Eng. J. Adv. 2022, 10, 100286. [Google Scholar] [CrossRef]
- Yang, L.; Hur, J.; Zhuang, W. Occurrence and Behaviors of Fluorescence EEM-PARAFAC Components in Drinking Water and Wastewater Treatment Systems and Their Applications: A Review. Environ. Sci. Pollut. Res. 2015, 22, 6500–6510. [Google Scholar] [CrossRef] [PubMed]
- Wünsch, U.J.; Murphy, K. A Simple Method to Isolate Fluorescence Spectra from Small Dissolved Organic Matter Datasets. Water Res. 2021, 19, 116730. [Google Scholar] [CrossRef]
- Nurhayati, M.; You, Y.; Park, J.; Lee, B.J.; Kang, H.G.; Lee, S. Artificial Neural Network Implementation for Dissolved Organic Carbon Quantification Using Fluorescence Intensity as a Predictor in Wastewater Treatment Plants. Chemosphere 2023, 335, 139032. [Google Scholar] [CrossRef]
- Wells, M.J.M.; Funk, D.; Mullins, G.A.; Bell, K.Y. Application of a Fluorescence EEM-PARAFAC Model for Direct and Indirect Potable Water Reuse Monitoring: Multi-Stage Ozone–Biofiltration without Reverse Osmosis at Gwinnett County, Georgia, USA. Sci. Total Environ. 2023, 886, 163937. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Peleato, N.M.; Legge, R.L.; Andrews, R.C. Towards Real-Time Detection of Wastewater in Surface Waters Using Fluorescence Spectroscopy. J. Environ. Sci. 2019, 86, 195–202. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, S.; Yang, S.; He, H.; He, X.; Li, C.; Feng, Y.; Xu, B.; Tang, Y. Using Machine Learning to Trace the Pollution Sources of Disinfection By-Products Precursors Compared to Receptor Models. Sci. Total Environ. 2024, 914, 169671. [Google Scholar] [CrossRef]
- Cuss, C.W.; McConnell, S.M.; Guéguen, C. Combining Parallel Factor Analysis and Machine Learning for the Classification of Dissolved Organic Matter According to Source Using Fluorescence Signatures. Chemosphere 2016, 155, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Paradina-Fernández, L.; Wünsch, U.; Bro, R.; Murphy, K. Direct Measurement of Organic Micropollutants in Water and Wastewater Using Fluorescence Spectroscopy. ACS ES T Water 2023, 3, 3905–3915. [Google Scholar] [CrossRef]
- Sciscenko, I.; García-Negueroles, P.; Amat, A.M.; Oller, I.; Escudero-Oñate, C.; Ferrando-Climent, L.; Arques, A. Use of Fluorescence Spectroscopy and Chemometrics to Visualise Fluoroquinolones Photodegradation Major Trends: A Confirmation Study with Mass Spectrometry. Molecules 2023, 28, 777. [Google Scholar] [CrossRef]
- Sciscenko, I.; Mora, M.; Micó, P.; Escudero-Oñate, C.; Oller, I.; Arques, A. EEM-PARAFAC as a Convenient Methodology to Study Fluorescent Emerging Pollutants Degradation: (Fluoro)Quinolones Oxidation in Different Water Matrices. Sci. Total Environ. 2022, 852, 158338. [Google Scholar] [CrossRef] [PubMed]
- Sciscenko, I.; Garcia-Ballesteros, S.; Sabater, C.; Castillo, M.A.; Escudero-Oñate, C.; Oller, I.; Arques, A. Monitoring Photolysis and (Solar Photo)-Fenton of Enrofloxacin by a Methodology Involving EEM-PARAFAC and Bioassays: Role of PH and Water Matrix. Sci. Total Environ. 2020, 719, 137331. [Google Scholar] [CrossRef]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Material and Aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Zsolnay, A.; Baigar, E.; Jimenez, M.; Steinweg, B.; Saccomandi, F. Differentiating with Fluorescence Spectroscopy the Sources of Dissolved Organic Matter in Soils Subjected to Drying. Chemosphere 1999, 38, 45–50. [Google Scholar] [CrossRef]
- Micó, P.; García-Ballesteros, S.; Mora, M.; Vicente, R.; Amat, A.M.; Arques, A. EEMlab: A Graphical User-Friendly Interface for Fluorimetry Experiments Based on the DrEEM Toolbox. Chemom. Intell. Lab. Syst. 2019, 188, 6–13. [Google Scholar] [CrossRef]
- Lawaetz, A.J.; Stedmon, C.A. Fluorescence Intensity Calibration Using the Raman Scatter Peak of Water. Appl. Spectrosc. 2009, 63, 936–940. [Google Scholar] [CrossRef]
- Sciscenko, I.; Thị Mỹ Hắng, H.; Escudero-Oñate, C.; Oller, I.; Arques, A. Fluorescence Spectroscopy and Chemometrics: A Simple and Easy Way for the Monitoring of Fluoroquinolone Mixture Degradation. ACS Omega 2021, 6, 4663–4671. [Google Scholar] [CrossRef]
- Bro, R.; Kiers, H.A.L. A New Efficient Method for Determining the Number of Components in PARAFAC Models. J. Chemom. 2003, 17, 274–286. [Google Scholar] [CrossRef]
- Henderson, R.K.; Baker, A.; Murphy, K.R.; Hambly, A.; Stuetz, R.M.; Khan, S.J. Fluorescence as a Potential Monitoring Tool for Recycled Water Systems: A Review. Water Res. 2009, 43, 863–881. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.R.; Hambly, A.; Singh, S.; Henderson, R.K.; Baker, A.; Stuetz, R.; Khan, S.J. Organic Matter Fluorescence in Municipal Water Recycling Schemes: Toward a Unified PARAFAC Model. Environ. Sci. Technol. 2011, 45, 2909–2916. [Google Scholar] [CrossRef]
- Fox, B.G.; Thorn, R.M.S.; Anesio, A.M.; Reynolds, D.M. The in Situ Bacterial Production of Fluorescent Organic Matter; an Investigation at a Species Level. Water Res. 2017, 125, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Nowicki, S.; Lapworth, D.J.; Ward, J.S.T.; Thomson, P.; Charles, K. Tryptophan-like Fluorescence as a Measure of Microbial Contamination Risk in Groundwater. Sci. Total Environ. 2019, 646, 782–791. [Google Scholar] [CrossRef]
- Yang, L.; Shin, H.S.; Hur, J. Estimating the Concentration and Biodegradability of Organic Matter in 22 Wastewater Treatment Plants Using Fluorescence Excitation Emission Matrices and Parallel Factor Analysis. Sensors 2014, 14, 1771–1786. [Google Scholar] [CrossRef]
- Shutova, Y.; Baker, A.; Bridgeman, J.; Henderson, R.K. Spectroscopic Characterisation of Dissolved Organic Matter Changes in Drinking Water Treatment: From PARAFAC Analysis to Online Monitoring Wavelengths. Water Res. 2014, 54, 159–169. [Google Scholar] [CrossRef]
- Gao, K.; Yang, H.; Liu, H.; Dong, B. Alleviating Ultrafiltration Membrane Fouling Caused by Effluent Organic Matter Using Pre-Ozonation: A Perspective of EEM and Molecular Weight Distribution. Membranes 2023, 13, 452. [Google Scholar] [CrossRef]
- Deborde, M.; von Gunten, U. Reactions of Chlorine with Inorganic and Organic Compounds during Water Treatment-Kinetics and Mechanisms: A Critical Review. Water Res. 2008, 42, 13–51. [Google Scholar] [CrossRef] [PubMed]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment—A Critical Review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
Number of Components | CORCONDIA (%) |
---|---|
2 | 92.5 |
3 | 98.0 |
4 | 11.7 |
Site | Measured EEM | Modelled EEM | Residual |
---|---|---|---|
D | |||
E | |||
F | |||
G | |||
H | |||
L | |||
M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sciscenko, I.; Binetti, R.; Escudero-Oñate, C.; Oller, I.; Arques, A. Dissolved Organic Matter Behaviour by Conventional Treatments of a Drinking Water Plant: Controlling Its Changes with EEM-PARAFAC. Appl. Sci. 2024, 14, 2462. https://doi.org/10.3390/app14062462
Sciscenko I, Binetti R, Escudero-Oñate C, Oller I, Arques A. Dissolved Organic Matter Behaviour by Conventional Treatments of a Drinking Water Plant: Controlling Its Changes with EEM-PARAFAC. Applied Sciences. 2024; 14(6):2462. https://doi.org/10.3390/app14062462
Chicago/Turabian StyleSciscenko, Iván, Rita Binetti, Carlos Escudero-Oñate, Isabel Oller, and Antonio Arques. 2024. "Dissolved Organic Matter Behaviour by Conventional Treatments of a Drinking Water Plant: Controlling Its Changes with EEM-PARAFAC" Applied Sciences 14, no. 6: 2462. https://doi.org/10.3390/app14062462
APA StyleSciscenko, I., Binetti, R., Escudero-Oñate, C., Oller, I., & Arques, A. (2024). Dissolved Organic Matter Behaviour by Conventional Treatments of a Drinking Water Plant: Controlling Its Changes with EEM-PARAFAC. Applied Sciences, 14(6), 2462. https://doi.org/10.3390/app14062462