Estimation of Chemical Compounds in Selected Italian and French Wines Produced through Organic and Conventional Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Materials
2.3. Wine Origin and Selection Criterias
2.3.1. Organic Wines
- Cabernet Sauvignon (France) comes from the large area of the Pays D’oc IGP appellation (IGP—Indication Géographique Protégée), which is located in the geographical region of Languedoc-Roussillon in Southern France. It is a harvest vintage from 2019.
- Cabernet Sauvignon (Italy) comes from the Italian appellation Venezia DOC (DOC—Denominazione di Origine Controllata), which is located in the geographical area of the province of Treviso (north-eastern part of Italy). It is a harvest vintage from 2016.
- Merlot (France) comes from a large area of the Pays D’oc IGP appellation (IGP—Indication Géographique Protégée), which is located in the geographical region of Languedoc-Roussillon in Southern France. It is a harvest vintage from 2017.
- Merlot (Italy) comes from the Italian appellation Trevenezie IGT (IGT—Indicazione Geografica Tipica), which is also present in the province of Treviso. It is a harvest vintage from 2020.
- Syrah (France) comes from a large area of the Pays D’oc IGP appellation (IGP—Indication Géographique Protégée), which is located in the geographical region of Languedoc-Roussillon in Southern France. It is a harvest vintage from 2017.
- Syrah (Italy) comes from the Sicilia DOC appellation (DOC—Denominazione di Origine Controllata) and guarantees that the grapes used to produce the wine come from the island of Sicily.
2.3.2. Conventional Wines
- Cabernet Sauvignon (France) comes from the large area of the Pays D’oc IGP appellation (IGP—Indication Géographique Protégée), which is located in the geographical region of Languedoc-Roussillon in Southern France. It is a harvest vintage from 2019.
- Cabernet Sauvignon (Italy) comes from the Italian appellation Trevenezie IGT (IGT—Indicazione Geografica Tipica), which is also present in the province of Treviso. It is a harvest vintage from 2020.
- Merlot (France) comes from a large area of the Pays D’oc IGP appellation (IGP—Indication Géographique Protégée), which is located in the geographical region of Languedoc-Roussillon in Southern France. It is a harvest vintage from 2019.
- Merlot (Italy) comes from the Italian appellation Trevenezie IGT (IGT—Indicazione Geografica Tipica), which is also present in the province of Treviso. It is a harvest vintage from 2019.
- Syrah (France) comes from the large area of the Pays D’oc IGP appellation (IGP—Indication Géographique Protégée), which is located in the geographical region of Languedoc-Roussillon in Southern France. It is a harvest vintage from 2020.
- Syrah (Italy) comes from the Terre Siciliane IGP appellation (Indicazione Geografica Protetta). It is a harvest vintage from 2021 (Figure S1).
2.4. Dry Matter Analysis
2.5. Total Polyphenol Analysis
2.6. Total Flavonoid Analysis
2.7. Total Anthocyanin Analysis
2.8. Total Organic Acid Analysis
2.9. Identification of Polyphenols by HPLC
2.10. Identification of Individual Anthocyanins by HPLC
2.11. Identification of Individual Organic Acids and Alcohols by HPLC
2.12. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marsit, S.; Dequin, S. Diversity and adaptive evolution of Saccharomyces wine yeast: A review. FEMS Yeast Res. 2015, 15, fov067. [Google Scholar] [CrossRef]
- Kokoszko, M.; Rzeźnicka, Z. Wino, ciemierzyca i mirra albo o lekarzach i ich pacjentach. Analiza fragmentu V księgi De Materia Medica Dioskurydesa. Przegl. Nauk. Hist. 2019, 18, 5–37. [Google Scholar] [CrossRef]
- Swami, S.B.; Thakor, N.J.; Divate, A.D. Fruit wine production: A review. J. Food Res. Technol. 2014, 2, 93–100. [Google Scholar]
- Pretorius, I.S. Tasting the terroir of wine yeast innovation. FEMS Yeast Res. 2020, 20, foz084. [Google Scholar] [CrossRef] [PubMed]
- Belessi, C.-E.; Chalvantzi, I.; Marmaras, I.; Nisiotou, A. The effect of vine variety and vintage on wine yeast community structure of grapes and ferments. J. Appl. Microbiol. 2022, 132, 3672–3684. [Google Scholar] [CrossRef] [PubMed]
- European Parliament. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007; European Parliament: Strasbourg, France, 2018.
- Frost, S.C.; Sanchez, J.M.; Merrell, C.; Larsen, R.; Heymann, H.; Harbertson, J.H. Sensory evaluation of syrah and cabernet sauvignon wines: Effects of harvest maturity and prefermentation soluble solids. Am. J. Enol. Vitic. 2021, 72, 36–45. [Google Scholar] [CrossRef]
- Stavridou, K.; Soufleros, E.H.; Bouloumpasi, E.; Dagkli, V. The phenolic potential of wines from french grape varieties Cabernet Sauvignon, Merlot and Syrah cultivated in the region of Thessaloniki (Northern Greece) and its evolution during aging. Food Sci. Nutr. 2016, 7, 122–137. [Google Scholar] [CrossRef]
- Gil-Muñoz, R.; Moreno-Pérez, A.; Vila-López, R.; Fernández-Fernández, J.I.; Martínez-Cutillas, A.; Gómez-Plaza, E. Influence of low temperature prefermentative techniques on chromatic and phenolic characteristics of Syrah and Cabernet Sauvignon wines. Eur. Food Res. Technol. 2009, 228, 777–788. [Google Scholar] [CrossRef]
- Giovinazzo, G.; Grieco, F. Functional properties of grape and wine polyphenols. Plant Foods Hum. Nutr. 2015, 70, 454–462. [Google Scholar] [CrossRef]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martínez, P.; Medina-Remón, A.; Lamuela-Raventós, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef]
- Xanthopoulou, M.N.; Fragopoulou, E.; Kalathara, K.; Nomikos, T.; Karantonis, H.C.; Antonopoulou, S. Antioxidant and anti-inflammatory activity of red and white wine extracts. Food Chem. 2010, 120, 665–672. [Google Scholar] [CrossRef]
- Comuzzo, P.; Battistutta, F.; Vendrame, M.; Páez, M.S.; Luisi, G.; Zironi, R. Antioxidant properties of different products and additives in white wine. Food Chem. 2015, 168, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Mudnic, I.; Modun, D.; Rastija, V.; Vukovic, J.; Brizic, I.; Katalinic, V.; Kozina, B.; Medic-Saric, M.; Boban, M. Antioxidative and vasodilatory effects of phenolic acids in wine. Food Chem. 2010, 119, 1205–1210. [Google Scholar] [CrossRef]
- Lucena, A.P.S.; Nascimento, R.J.B.; Maciel, J.A.C.; Tavares, J.X.; Barbosa-Filho, J.M.; Oliveira, E.J. Antioxidant activity and phenolics content of selected Brazilian wines. J. Food Comp. Anal. 2010, 23, 30–36. [Google Scholar] [CrossRef]
- Bimpilas, A.; Tsimogiannis, D.; Balta-Brouma, K.; Lymperopoulou, T.; Oreopoulou, V. Evolution of phenolic compounds and metal content of wine during alcoholic fermentation and storage. Food Chem. 2015, 178, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Hermosín-Gutiérrez, I.; Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E. Flavonol profiles for grape and wine. In Progress in Authentication of Food and Wine; ACS: Washington, DC, USA, 2011; Volume 8, pp. 113–129. [Google Scholar]
- Kazimierczak, R.; Hallmann, E.; Rusaczonek, A.; Rembiałkowska, M. Polyphenols, tannins and caffeine content and antioxidant activity of green teas coming from organic and non-organic production. Renew. Agric. Food Syst. 2015, 30, 263–269. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Carrillo, C.; Rembiałkowska, E. Influence of variety and production system on selected chemical parameters of beetroot juices prepared from seven beetroot varieties. J. Food Nutr. Res. 2019, 58, 214–224. [Google Scholar]
- Mulero, J.; Pardo, F.; Zafrilla, P. Antioxidant activity and phenolic composition of organic and conventional grapes and wines. J. Food Compos. Anal. 2010, 23, 569–574. [Google Scholar] [CrossRef]
- Yıldırıma, H.K.; Altındışli, A. Changes of phenolic acids during aging of organic wines. Int. J. Food Prop. 2014, 18, 1038–1045. [Google Scholar] [CrossRef]
- Dani, C.; Oliboni, L.S.; Vanderlinde, R.; Bonatto, D.; Salvador, M.; Henrique, J.A.P. Phenolic content and antioxidant activities of white and purple juices manufactured with organically- or conventionally-produced grapes. Food Chem. Toxicol. 2007, 45, 2574–2580. [Google Scholar] [CrossRef]
- Gąstoł, M.; Domagała-Świątkiewicz, I.; Krośniak, M. Organic versus conventional—A comparative study on quality and nutritional value of fruit and vegetable juices. Biol. Agric. Hortic. 2011, 27, 310–319. [Google Scholar] [CrossRef]
- Valavanidis, A.; Vlachogianni, T.; Psomas, A.; Zovoili, A.; Siati, V. Polyphenolic profile and antioxidant activity of five apple cultivars grown under organic and conventional agricultural practices. Int. J. Food Sci. Technol. 2009, 44, 1167–1175. [Google Scholar] [CrossRef]
- Ponder, A.; Hallmann, E. The nutritional value and vitamin C content of different raspberry cultivars from organic and conventional production. J. Food Compos. Anal. 2020, 87, 103429. [Google Scholar] [CrossRef]
- Hallmann, E.; Rozpara, E.; Słowianek, M.; Leszczyńska, J. The effect of organic and conventional farm management on the allergenic potency and bioactive compounds status of apricots (Prunus armeniaca L.). Food Chem. 2019, 279, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Nagy-Gasztonyi, M.; Sass-Kiss, Á.; Tömösközi-Farkas, R.; Bánáti, D.; Daood, H.G. Liquid chromatographic analysis of phenolic compounds in organically and conventionally grown varieties of sour cherries. Chroma 2010, 71, 99–102. [Google Scholar] [CrossRef]
- PN-EN 14346:2011; Fruit and Vegetable Preserves. Sample Preparation and Physicochemical Test Methods. Determination of Dry Matter Content by Gravimetric Method. PSC: Warsaw, Poland, 2011.
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar]
- Toiu, A.; Vlase, L.; Vodnar, D.C.; Gheldiu, A.-M.; Oniga, I. Solidago graminifolia L. Salisb. (Asteraceae) as a valuable source of bioactive polyphenols: HPLC profile, in vitro antioxidant and antimicrobial potential. Molecules 2019, 24, 2666. [Google Scholar] [CrossRef]
- Fuleki, T.; Francis, F.J. Quantitative methods for anthocyanins. Extraction and determination of total anthocyanin in cranberries. J. Food Sci. 1968, 33, 72–77. [Google Scholar] [CrossRef]
- PN-A-75101-04:1990/Az1:2002; Fruit and Vegetable Products. Preparation of Samples and Methods of Physicochemical Analysis. Determination of Total Acidity. PSC: Warsaw, Poland, 2002.
- Głowacka, A.; Rozpara, E.; Hallmann, E. The dynamic of polyphenols concentrations in organic and conventional sour cherry fruits: Results of a 4-year field study. Molecules 2020, 25, 3729. [Google Scholar] [CrossRef]
- Dóka, O.; Ficzek, G.; Bicanic, D.; Spruijt, R.; Luterotti, S.; Tóth, M.; Buijnsters, J.G.; Vegvari, G. Direct phytochemical techniques for rapid quantification of total anthocyanins content in sour cherry cultivars. Talanta 2011, 84, 341–346. [Google Scholar] [CrossRef]
- Xie, R.; Tu, M.; Wu, Y.; Adhikari, S. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate. Bioresour. Technol. 2011, 102, 4938–4942. [Google Scholar] [CrossRef] [PubMed]
- Bunea, C.I.; Pop, N.; Babeş, A.C.; Matea, C.; Dulf, F.V.; Bunea, A. Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems. Chem. Cent. J. 2012, 6, 66. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, C.; Wilches-Pérez, D.; Hallmann, E.; Kazimierczak, R.; Rembiałkowska, E. Organic versus conventional beetroot. Bioactive compounds and antioxidant properties. LWT-Food Sci Technol. 2019, 116, 108552. [Google Scholar] [CrossRef]
- Dordevic, D.; Kalcakova, L.; Zackova, A.; Ćavar Zeljković, S.; Dordevic, S.; Tremlova, B. Comparison of Conventional and Organic Wines Produced in Kutnohorsk Region (Czech Republic). Fermentation 2023, 9, 832. [Google Scholar] [CrossRef]
- Dutra MD, C.P.; Rodrigues, L.L.; de Oliveira, D.; Pereira, G.E.; dos Santos Lima, M. Integrated analyses of phenolic compounds and minerals of Brazilian organic and conventional grape juices and wines: Validation of a method for determination of Cu, Fe and Mn. Food Chem. 2018, 269, 157–165. [Google Scholar] [CrossRef]
- Landrault, N.; Poucheret, P.; Ravel, P.; Gasc, F.; Cros, G.; Teissedre, P.-L. Antioxidant capacities and phenolics levels of french wines from different varieties and vintages. J. Agric. Food Chem. 2001, 49, 3341–3348. [Google Scholar] [CrossRef]
- Hasanaliyeva, G.; Chatzidimitrou, E.; Wang, J.; Baranski, M.; Volakakis, N.; Pakos, P.; Seal, C.; Rosa, E.A.S.; Markellou, E.; Iversen, P.O.; et al. Effect of organic and conventional production methods on fruit yield and nutritional quality parameters in three traditional certain grape varieties: Results from a farm survey. Foods 2021, 10, 476. [Google Scholar] [CrossRef] [PubMed]
- Parpinello, G.P.; Ricci, A.; Rombolà, A.D.; Nigro, G.; Versari, A. Comparison of Sangiovese wines obtained from stabilized organic and biodynamic vineyard management systems. Food Chem. 2019, 283, 499–507. [Google Scholar] [CrossRef]
- Tassoni, A.; Tango, N.; Ferri, M. Comparison of biogenic amine and polyphenol profiles of grape berries and wines obtained following conventional, organic and biodynamic agricultural and oenological practices. Food Chem. 2013, 139, 405–413. [Google Scholar] [CrossRef]
- Vian, M.A.; Tomao, V.; Coulomb, P.O.; Lacombe, J.M.; Dangles, O. Comparison of the anthocyanin composition during ripening of Syrah grapes grown using organic or conventional agricultural practices. J. Agric. Food Chem. 2006, 54, 5230–5235. [Google Scholar] [CrossRef]
- Parpinello, G.P.; Rombolà, A.D.; Simoni, M.; Versari, A. Chemical and sensory characterisation of Sangiovese red wines: Comparison between biodynamic and organic management. Food Chem. 2015, 167, 145–152. [Google Scholar] [CrossRef]
- Harbertson, J.H.; Hodgins, R.E.; Thurston, L.N.; Schaffer, L.J.; Reid, M.S.; Landon, J.L.; Ross, C.F.; Adams, D.O. Variability of tannin concentration in red wines. Am. J. Enol. Vitic. 2008, 59, 210–214. [Google Scholar] [CrossRef]
- Villamor, R.R.; Harbertson, J.H.; Ross, C.F. Influence of tannin concentration, storage temperature, and time on chemical and sensory properties of Cabernet Sauvignon and Merlot wines. Am. J. Enol. Vitic. 2009, 60, 442–449. [Google Scholar] [CrossRef]
- Romero-Cascales, I.; Ortega-Regules, A.; López-Roca, J.M.; Fernández-Fernández, J.I.; Gómez-Plaza, E. Differences in anthocyanin extractability from grapes to wines according to variety. Am. J. Enol. Vitic. 2005, 56, 212–219. [Google Scholar] [CrossRef]
- Lasanta, W.C.C.; Cejudo, C.; Gómez, J.; Caro, I. Influence of prefermentative cold maceration on the chemical and sensory properties of red wines produced in warm climates. Processes 2023, 11, 374. [Google Scholar] [CrossRef]
- Casassa, L.F.; Bolcato, E.A.; Sari, S.E. Chemical, chromatic, and sensory attributes of 6 red wines produced with prefermentative cold soak. Food Chem. 2015, 174, 110–118. [Google Scholar] [CrossRef]
Experimental Combination/Groups of Compounds | Organic Wines | Conventional Wines | p-Value | ||||
---|---|---|---|---|---|---|---|
Cabernet | Merlot | Syrah | Cabernet | Merlot | Syrah | ||
total organic acids | 665.1 ± 13.9 a | 630.3 ± 2.7 a | 577.9 ± 5.1 b | 558.0 ± 5.2 b | 412.8 ± 1.8 c | 247.9 ± 5.1 d | 0.0001 |
total polyphenols | 383.1 ± 2.4 c | 460.3 ± 6.6 b | 559.6 ± 7.0 a | 430.3 ± 4.7 b | 459.9 ± 0.8 b | 590.2 ± 2.5 a | 0.0280 |
total flavonoids | 251.1 ± 2.2 c | 327.3 ± 1.5 b | 432.5 ± 4.1 a | 252.8 ± 2.9 c | 254.4 ± 3.3 c | 352.9 ± 3.0 b | 0.0001 |
total anthocyanins | 154.5 ± 1.7 c | 250.5 ± 2.5 a | 298.3 ± 1.3 a | 189.3 ± 1.7 b | 189.2 ± 1.8 b | 259.8 ± 2.6 a | <0.0001 |
dry matter | 2.30 ± 0.01 a | 2.31 ± 0.09 a | 2.14 ± 0.06 b | 2.22 ± 0.02 ab | 1.91 ± 0.05 b | 2.35 ± 0.03 a | 0.017 |
Experimental Combination/Groups of Compounds | Organic wines | Conventional wines | Cabernet | Merlot | Syrah | p-value (organic and conventional) | p-value (kind of wine) |
total organic acids | 624.4 ± 15.5 a | 406.2 ± 51.8 b | 611.5 ± 26.0 a | 521.5 ± 54.4 b | 412.9 ± 82.6 c | <0.0001 | <0.0001 |
total polyphenols | 467.7 ± 29.7 b | 493.5 ± 28.4 a | 406.7 ± 11.5 b | 460.1 ± 3.3 b | 574.9 ± 8.5 a | 0.0029 | <0.0001 |
total flavonoids | 337.1 ± 30.3 a | 286.7 ± 19.2 b | 252.2 ± 1.9 b | 290.9 ± 18.3 b | 392.7 ± 20.1 a | <0.0001 | <0.0001 |
total anthocyanins | 234.4 ± 24.4 a | 212.8 ± 13.6 b | 171.9 ± 8.3 b | 219.9 ± 15.4 a | 279.1 ± 9.7 a | 0.0001 | <0.0001 |
dry matter | 2.25 ± 0.05 a | 2.16 ± 0.08 a | 2.26 ± 0.02 a | 2.11 ± 0.11 a | 2.25 ± 0.06 a | N.S. | N.S. |
Experimental Combination/Groups of Compounds | Organic Wines | Conventional Wines | |||||
---|---|---|---|---|---|---|---|
Cabernet | Merlot | Syrah | Cabernet | Merlot | Syrach | p-Value | |
total organic acids | 516.6 ± 3.0 a | 147.9 ± 1.6 c | 395.9 ± 3.7 b | 182.0 ± 2.4 c | 186.2 ± 3.7 c | 585.4 ± 3.5 a | <0.0001 |
total polyphenols | 490.1 ± 0.3 a | 391.1 ± 2.5 b | 403.8 ± 1.5 a | 436.7 ± 2.1 a | 385.8 ± 7.9 c | 389.1 ± 1.8 c | 0.0075 |
total flavonoids | 358.4 ± 0.9 a | 334.5 ± 5.0 a | 298.4 ± 1.3 ab | 256.7 ± 0.3 b | 251.0 ± 4.2 b | 243.4 ± 2.6 b | 0.004 |
total anthocyanins | 249.8 ± 0.8 a | 260.3 ± 2.5 a | 254.0 ± 3.8 a | 180.6 ± 1.5 a | 177.4 ± 1.8 a | 188.5 ± 2.2 a | N.S. |
dry matter | 2.14 ± 0.03 a | 2.44 ± 0.03 a | 2.98 ± 0.01 a | 2.66 ± 0.01 a | 2.62 ± 0.03 a | 2.45 ± 0.05 a | N.S. |
Experimental Combination/Groups of Compounds | Organic wines | Conventional wines | Cabernet | Merlot | Syrah | p-value (organic and conventional) | p-value (cultivar) |
total organic acids | 353.5 ± 62.7 a | 317.8 ± 77.3 b | 349.3 ± 78.9 b | 167.0 ± 9.8 c | 490.6 ± 47.4 a | 0.0001 | <0.0001 |
total polyphenols | 428.3 ± 18.0 a | 403.8 ± 9.9 b | 463.4 ± 12.7 a | 388.4 ± 4.4 b | 396.4 ± 3.9 b | 0.0011 | <0.0001 |
total flavonoids | 330.5 ± 10.2 a | 250.4 ± 2.8 b | 307.6 ± 24.0 a | 292.8 ± 21.1 b | 270.9 ± 13.8 b | <0.0001 | 0.0003 |
total anthocyanins | 254.7 ± 2.3 a | 182.2 ± 2.2 b | 215.2 ± 16.3 a | 218.9 ± 20.8 a | 221.3 ± 16.5 a | <0.0001 | N.S. |
dry matter | 2.52 ± 0.14 a | 2.58 ± 0.04 a | 2.40 ± 0.13 b | 2.53 ± 0.05 b | 2.71 ± 0.14 a | 0.043 | 0.0008 |
Experimental Combination/Compounds | Organic Wines | Conventional Wines | Cabernet | Merlot | Syrah | p-Value (Production) | p-Value (Kind of Wine) |
---|---|---|---|---|---|---|---|
ethanol | 11.9 ± 0.9 b | 12.9 ± 0.5 a | 12.9 ± 0.8 a | 11.5 ± 1.3 b | 12.9 ± 0.3 a | 0.0025 | 0.002 |
tartaric | 196.2 ± 4.5 a | 193.4 ± 14.9 a | 205.6 ± 6.2 a | 211.9 ± 10.1 a | 166.9 ± 10.5 b | N.S. | 0.017 |
succinic | 148.9 ± 3.7 a | 117.5 ± 24.4 a | 158.2 ± 7.1 a | 147.1 ± 15.6 a | 94.3 ± 26.1 b | N.S. | 0.035 |
lactic | 160.7 ± 16.7 a | 85.0 ± 25.0 b | 168.6 ± 24.2 a | 114.2 ± 23.6 a | 85.8 ± 33.0 a | 0.031 | N.S. |
acetic | 48.9 ± 5.8 a | 27.5 ± 11.3 a | 46.3 ± 7.8 a | 47.6 ± 12.7 a | 20.7 ± 10.4 a | N.S. | N.S. |
gallic | 23.1 ± 3.6 a | 25.6 ± 3.4 a | 24.6 ± 5.5 a | 23.2 ± 3.0 a | 25.2 ± 4.2 a | N.S. | N.S. |
chlorogenic | 72.5 ± 4.1 b | 115.5 ± 7.9 a | 80.7 ± 8.0 b | 97.7 ± 5.5 a | 103.7 ± 19.0 a | <0.0001 | 0.0001 |
caffeic | 14.4 ± 0.8 b | 27.4 ± 4.0 a | 22.2 ± 4.7 a | 13.7 ± 0.3 b | 26.8 ± 5.0 b | <0.0001 | 0.0001 |
p-coumaric | 9.3 ± 1.3 a | 8.3 ± 0.7 b | 5.6 ± 0.3 c | 11.2 ± 0.5 a | 9.5 ± 0.7 b | 0.027 | <0.0001 |
catechin | 1.6 ± 0.02 a | 1.5 ± 0.01 b | 1.6 ± 0.05 a | 1.6 ± 0.05 a | 1.5 ± 0.02 b | <0.0001 | 0.0001 |
epigallocatechin | 1.6 ± 0.1 b | 2.0 ± 0.6 a | 2.9 ± 0.5 a | 1.7 ± 0.1 b | 0.8 ± 0.2 c | 0.0015 | <0.0001 |
epigallocatechin gallate | 2.6 ± 0.5 a | 2.1 ± 0.5 b | 3.9 ± 0.1 a | 2.2 ± 0.4 b | 0.9 ± 0.1 c | 0.0013 | <0.0001 |
quercetin-3-O-rutinoside | 0.2 ± 0.03 a | 0.1 ± 0.04 b | 0.2 ± 0.03 a | 0.2 ± 0.06 a | 0.1 ± 0.03 b | <0.0001 | 0.0017 |
kaempferol-3-O-glucoside | 0.7 ± 0.10 a | 0.7 ± 0.10 a | 0.8 ± 0.14 a | 0.8 ± 0.11 a | 0.5 ± 0.02 b | N.S. | <0.0001 |
quercetin | 0.9 ± 0.06 a | 1.0 ± 0.05 b | 0.9 ± 0.01 b | 1.0 ± 0.08 a | 1.1 ± 0.01 a | 0.0001 | <0.0001 |
kaempferol | 1.0 ± 0.01 b | 1.1 ± 0.04 a | 1.1 ± 0.01 a | 1.1 ± 0.06 a | 1.0 ± 0.01 b | <0.0001 | <0.0001 |
malvidin-3-O-glucoside | 89.3 ± 9.8 a | 68.9 ± 3.6 b | 66.2 ± 1.9 b | 68.9 ± 3.3 b | 102.1 ± 10.4 a | <0.0001 | <0.0001 |
petunin-3-O-glucoside | 15.8 ± 0.7 b | 21.6 ± 4.5 a | 15.7 ± 0.9 b | 15.2 ± 0.7 b | 25.3 ± 5.9 a | <0.0001 | <0.0001 |
peonidin-3-O-glucoside | 5.7 ± 1.7 a | 4.8 ± 1.4 b | 2.8 ± 0.1 b | 2.4 ± 0.1 b | 10.6 ± 0.5 a | <0.0001 | <0.0001 |
Experimental Combination/Compounds | Organic Wines | Conventional Wines | p-Value | ||||
---|---|---|---|---|---|---|---|
Cabernet | Merlot | Syrah | Cabernet | Merlot | Syrah | ||
ethanol | 14.4 ± 0.1 a | 8.91 ± 0.1 c | 12.5 ± 0.1 b | 11.4 ± 0.1 bc | 14.1 ± 0.1 a | 13.4 ± 0.1 ab | <0.0001 |
tartaric acid | 195.3 ± 0.3 a | 205.5 ± 0.1 a | 187.7 ± 0.2 a | 215.9 ± 0.1 a | 218.3 ± 0.1 a | 146.1 ± 0.1 a | N.S. |
succinic acid | 150.3 ± 3.9 a | 150.2 ± 8.8 a | 146.1 ± 3.2 ab | 166.1 ± 5.8 a | 144.1 ± 17.1 b | 42.4 ± 1.2 c | 0.047 |
lactic acid | 202.9 ± 6.0 a | 128.2 ± 5.9 a | 151.1 ± 6.9 a | 134.3 ± 10.1 a | 100.3 ± 30.4 a | 20.5 ± 0.1 a | N.S. |
acetic acid | 47.2 ± 30.3 a | 61.4 ± 6.0 a | 38.3 ± 9.0 a | 45.5 ± 15.6 a | 33.9 ± 44.6 a | 3.1 ± 0.1 a | N.S. |
gallic acid | 35.0 ± 6.1 a | 17.3 ± 2.2 b | 17.0 ± 9.0 b | 14.3 ± 14.4 c | 29.1 ± 21.3 a | 33.5 ± 0.1 a | 0.0002 |
chlorogenic acid | 65.2 ± 3.4 c | 86.7 ± 0.4 bc | 65.7 ± 11.1 c | 96.1 ± 0.1 b | 108.7 ± 0.2 a | 141.7 ± 1.1 a | <0.0001 |
caffeic acid | 12.9 ± 1.7 c | 13.3 ± 0.1 c | 16.9 ± 1.0 b | 31.5 ± 3.5 a | 14.1 ± 0.8 bc | 36.6 ± 0.2 a | 0.0004 |
p-coumaric acid | 5.0 ± 0.3 c | 12.1 ± 0.2 a | 10.7 ± 0.4 a | 6.3 ± 1.5 b | 10.4 ± 0.4 a | 8.3 ± 1.1 b | 0.0071 |
catechin | 1.7 ± 0.1 a | 1.7 ± 0.3 a | 1.6 ± 0.8 b | 1.5 ± 0.1 b | 1.5 ± 0.3 b | 1.5 ± 0.1 b | <0.0001 |
epigallocatechin | 2.0 ± 0.1 b | 1.5 ± 0.1 c | 1.3 ± 0.6 c | 3.8 ± 0.1 a | 1.9 ± 0.1 b | 0.3 ± 0.1 d | <0.0001 |
epigallocatechin gallate | 3.8 ± 0.1 a | 3.1 ± 0.1 a | 0.8 ± 0.1 d | 3.9 ± 0.1 a | 1.4 ± 0.2 b | 1.0 ± 0.1 c | 0.0001 |
quercetin-3-O-rutinoside | 0.1 ± 0.01 b | 0.3 ± 0.01 a | 0.2 ± 0.01 b | 0.3 ± 0.01 a | 0.1 ± 0.01 b | 0.1 ± 0.01 b | <0.0001 |
kaempferol-3-O-glucoside | 0.5 ± 0.01 b | 1.0 ± 0.02 a | 0.6 ± 0.02 b | 1.1 ± 0.01 a | 0.6 ± 0.01 b | 0.5 ± 0.01 b | <0.0001 |
quercetin | 0.9 ± 0.02 b | 0.7 ± 0.01 b | 1.2 ± 0.01 a | 0.8 ± 0.02 b | 1.1 ± 0.02 a | 1.1 ± 0.02 a | <0.0001 |
kaempferol | 1.1 ± 0.01 a | 1.0 ± 0.01 b | 1.0 ± 0.01 b | 1.1 ± 0.01 b | 1.2 ± 0.02 a | 0.1 ± 0.01 c | <0.0001 |
malvidin-3-O-glucoside | 69.7 ± 1.6 b | 75.2 ± 1.9 b | 122.9 ± 0.4 a | 62.8 ± 0.4 b | 62.6 ± 0.2 b | 81.3 ± 0.3 a | 0.0001 |
petunin-3-O-glucoside | 17.5 ± 0.1 b | 16.6 ± 0.1 b | 13.5 ± 0.1 c | 14.0 ± 0.1 c | 13.8 ± 0.1 c | 37.1 ± 0.1 a | <0.0001 |
peonidin-3-O-glucoside | 2.9 ± 0.1 c | 2.7 ± 0.1 c | 11.6 ± 0.1 a | 2.6 ± 0.1 c | 2.2 ± 0.1 c | 9.5 ± 0.1 b | <0.0001 |
Experimental Combination/Compounds | Organic Wines | Conventional Wines | Cabernet | Merlot | Syrah | p-Value (Production) | p-Value (Kind of Wine) |
---|---|---|---|---|---|---|---|
ethanol | 12.6 ± 1.2 a | 12.6 ± 0.6 a | 11.8 ± 1.2 b | 11.2 ± 0.4 b | 14.8 ± 0.9 a | N.S. | 0.0002 |
tartaric acid | 146.5 ± 27.8 a | 141.7 ± 25.9 a | 130.8 ± 17.2 b | 82.4 ± 7.3 c | 219.2 ± 22.3 a | N.S. | 0.0043 |
succinic acid | 87.3 ± 26.1 a | 79.3 ± 23.1 a | 87.5 ± 20.2 a | 29.7 ± 0.8 a | 132.7 ± 31.8 a | N.S. | N.S. |
lactic acid | 76.5 ± 23.6 a | 53.9 ± 24.8 a | 65.0 ± 27.2 a | 18.5 ± 4.1 a | 112.0 ± 29.4 a | N.S. | N.S. |
acetic acid | 21.5 ± 5.9 a | 18.7 ± 4.3 a | 16.8 ± 5.8 a | 3.0 ± 0.1 a | 40.5 ± 11.7 a | N.S. | N.S. |
gallic acid | 24.8 ± 4.2 b | 37.3 ± 5.3 a | 36.6 ± 2.3 a | 21.8 ± 1.0 b | 34.7 ± 5.7 a | 0.002 | 0.0047 |
chlorogenic acid | 56.6 ± 2.5 b | 76.6 ± 1.9 a | 69.2 ± 5.7 a | 63.3 ± 7.3 a | 67.3 ± 2.6 a | 0.0001 | N.S. |
caffeic acid | 14.5 ± 0.8 b | 26.0 ± 2.2 a | 22.9 ± 4.3 a | 22.3 ± 2.8 a | 15.6 ± 1.6 b | <0.0001 | 0.0009 |
p-coumaric acid | 8.9 ± 1.7 b | 11.0 ± 1.4 a | 12.9 ± 0.5 a | 9.2 ± 2.7 b | 7.7 ± 0.7 c | <0.0001 | <0.0001 |
catechin | 1.6 ± 0.01 a | 1.6 ± 0.02 a | 1.6 ± 0.03 a | 1.6 ± 0.01 a | 1.6 ± 0.01 a | N.S. | N.S. |
epigallocatechin | 1.0 ± 0.2 a | 0.9 ± 0.1 a | 1.3 ± 0.1 a | 0.7 ± 0.2 b | 0.8 ± 0.1 b | N.S. | 0.0005 |
epigallocatechin gallate | 3.2 ± 0.7 a | 2.4 ± 0.7 b | 4.2 ± 0.3 a | 1.0 ± 0.1 c | 3.1 ± 1.0 b | <0.0001 | <0.0001 |
quercetin-3-O-rutinoside | 0.3 ± 0.03 a | 0.3 ± 0.09 b | 0.4 ± 0.10 a | 0.3 ± 0.2 a | 0.2 ± 0.07 b | 0.0515 | 0.0001 |
kaempferol-3-O-glucoside | 0.5 ± 0.03 a | 0.5 ± 0.03 a | 0.4 ± 0.01 c | 0.6 ± 0.02 a | 0.5 ± 0.02 b | N.S. | 0.0013 |
quercetin | 0.8 ± 0.01 b | 0.9 ± 0.03 a | 0.9 ± 0.01 a | 0.9 ± 0.05 a | 0.8 ± 0.01 b | <0.0001 | <0.0001 |
kaempferol | 1.0 ± 0.02 a | 1.0 ± 0.01 a | 1.1 ± 0.02 a | 1.0 ± 0.01 a | 1.0 ± 0.01 a | N.S. | N.S. |
malvidin-3-O-glucoside | 76.3 ± 5.9 a | 56.5 ± 2.0 b | 79.4 ± 8.5 a | 62.9 ± 3.3 b | 56.9 ± 3.2 c | <0.0001 | <0.0001 |
petunin-3-O-glucoside | 23.1 ± 2.1 a | 12.6 ± 0.2 b | 16.4 ± 1.6 b | 21.1 ± 4.6 a | 16.1 ± 1.7 b | <0.0001 | <0.0001 |
peonidin-3-O-glucoside | 4.3 ± 0.4 a | 3.3 ± 0.4 b | 2.7 ± 0.1 c | 4.9 ± 0.2 a | 3.7 ± 0.6 b | 0.0008 | 0.0001 |
Experimental Combination/Compounds | Organic Wines | Conventional Wines | p-Value | ||||
---|---|---|---|---|---|---|---|
Cabernet | Merlot | Syrach | Cabernet | Merlot | Syrach | ||
ethanol | 9.3 ± 0.3 c | 11.9 ± 0.1 bc | 16.5 ± 0.5 a | 14.2 ± 0.2 a | 10.5 ± 0.3 c | 13.2 ± 0.1 b | 0.0001 |
tartaric acid | 164.8 ± 5.4 a | 67.8 ± 0.2 a | 206.9 ± 42.8 a | 96.8 ± 0.4 a | 96.9 ± 0.5 a | 231.4 ± 3.6 a | N.S. |
succinic acid | 126.9 ± 5.4 a | 28.2 ± 0.5 a | 106.8 ± 27.8 a | 48.2 ± 0.1 a | 31.1 ± 0.1 a | 158.5 ± 5.8 a | N.S. |
lactic acid | 118.0 ± 14.9 a | 26.6 ± 0.3 a | 84.8 ± 21.6 a | 12.0 ± 0.1 a | 10.3 ± 0.1 a | 139.3 ± 7.9 a | N.S. |
acetic acid | 30.0 ± 14.4 a | 3.1 ± 0.1 a | 31.3 ± 9.4 a | 3.6 ± 0.1 a | 2.8 ± 0.01 a | 49.7 ± 7.1 a | N.S. |
gallic acid | 37.8 ± 4.3 b | 21.0 ± 1.9 c | 15.5 ± 0.3 d | 35.4 ± 0.1 b | 22.6 ± 0.1 c | 54.0 ± 1.6 a | 0.0008 |
chlorogenic acid | 58.4 ± 2.1 c | 48.8 ± 1.5 c | 62.5 ± 0.1 b | 79.9 ± 3.4 a | 77.7 ± 1.3 a | 72.0 ± 1.8 a | 0.036 |
caffeic acid | 14.4 ± 1.1 b | 16.7 ± 0.1 b | 12.4 ± 0.1 b | 31.4 ± 1.3 a | 27.9 ± 0.6 a | 18.7 ± 0.4 b | 0.0077 |
p-coumaric acid | 13.8 ± 0.1 a | 3.8 ± 0.2 e | 9.1 ± 0.1 c | 12.0 ± 0.1 b | 14.7 ± 0.2 a | 6.4 ± 0.1 d | <0.0001 |
catechin | 1.6 ± 0.01 a | 1.6 ± 0.01 a | 1.6 ± 0.01 a | 1.5 ± 0.01 a | 1.6 ± 0.01 a | 1.6 ± 0.01 a | N.S. |
epigallocatechin | 1.5 ± 0.03 a | 0.4 ± 0.03 c | 1.0 ± 0.02 b | 1.1 ± 0.09 b | 1.1 ± 0.05 b | 0.5 ± 0.07 c | 0.0006 |
epigallocatechin gallate | 3.6 ± 0.01 b | 0.8 ± 002 d | 5.2 ± 0.07 a | 4.9 ± 0.01 a | 1.2 ± 0.06 c | 1.0 ± 0.14 c | <0.0001 |
quercetin-3-O-rutinoside | 0.2 ± 0.01 b | 0.3 ± 0.02 b | 0.3 ± 0.01 b | 0.6 ± 0.02 a | 0.3 ± 0.01 b | 0.1 ± 0.01 b | <0.0001 |
kaempferol-3-O-glucoside | 0.5 ± 0.01 a | 0.6 ± 0.02 a | 0.5 ± 0.01 a | 0.4 ± 0.01 a | 0.6 ± 0.02 a | 0.6 ± 0.02 a | N.S. |
quercetin | 0.8 ± 0.01 a | 0.8 ± 0.01 a | 0.9 ± 0.01 a | 0.9 ± 0.01 a | 1.0 ± 0.01 a | 0.8 ± 0.01 a | N.S. |
kaempferol | 1.1 ± 0.01 a | 1.0 ± 0.01 a | 1.0 ± 0.01 a | 1.0 ± 0.01 a | 1.0 ± 0.01 a | 1.1 ± 0.01 a | N.S. |
malvidin-3-O-glicoside | 96.3 ± 0.4 a | 69.4 ± 0.5 b | 63.3 ± 0.1 b | 62.4 ± 0.1 b | 56.4 ± 0.1 c | 50.6 ± 0.1 c | <0.0001 |
petunin-3-O-glucoside | 19.6 ± 0.1 b | 30.2 ± 0.2 a | 19.6 ± 0.1 b | 13.3 ± 0.1 c | 12.0 ± 0.1 c | 12.7 ± 0.1 c | <0.0001 |
peonidin-3-O-glucoside | 2.8 ± 0.1 b | 5.1 ± 0.1 a | 4.9 ± 0.2 a | 2.6 ± 0.1 b | 4.6 ± 0.1 a | 2.6 ± 0.1 b | 0.0034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponder, A.; Frąckowiak, M.; Kruk, M.; Hallmann, E. Estimation of Chemical Compounds in Selected Italian and French Wines Produced through Organic and Conventional Methods. Appl. Sci. 2024, 14, 2466. https://doi.org/10.3390/app14062466
Ponder A, Frąckowiak M, Kruk M, Hallmann E. Estimation of Chemical Compounds in Selected Italian and French Wines Produced through Organic and Conventional Methods. Applied Sciences. 2024; 14(6):2466. https://doi.org/10.3390/app14062466
Chicago/Turabian StylePonder, Alicja, Maciej Frąckowiak, Marcin Kruk, and Ewelina Hallmann. 2024. "Estimation of Chemical Compounds in Selected Italian and French Wines Produced through Organic and Conventional Methods" Applied Sciences 14, no. 6: 2466. https://doi.org/10.3390/app14062466
APA StylePonder, A., Frąckowiak, M., Kruk, M., & Hallmann, E. (2024). Estimation of Chemical Compounds in Selected Italian and French Wines Produced through Organic and Conventional Methods. Applied Sciences, 14(6), 2466. https://doi.org/10.3390/app14062466