A New Discovery of Cu Mineralization in the North Qaidam, Tibet via Log-Ratio, Robust Factor Analysis, and Spectrum–Area Modeling
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Analysis
4. Methodology
4.1. Log-Ratio Approach
4.2. Robust Factor Analysis (RFA)
4.3. Spectrum–Area (S-A) Model
4.4. Extraction of Combination Anomalies Based on Factor Load
5. Results and Discussion
5.1. Geochemical Anomalies Identified by Statistical Methods
5.1.1. Single Geochemical Element Anomaly Analysis by Statistical Methods
5.1.2. Mineralization-Related Multi Elements Anomaly Analysis Using Statistical Methods
5.2. Geochemical Anomalies Identified by the S-A Method
5.3. Comparison between the Statistical and S-A Methods
5.4. Potential Exploration Targets and Their Verification
6. Conclusions
- (1)
- The RFA method applied to log-ratio-transformed regional stream sediment-sampling geochemical data accurately identified associations between mineralization-related elements, such as Au, Ag, Pb, Sb, Hg, Cu, Zn, and Co.
- (2)
- The use of the S-A model on a single element or the component factor derived from RFA effectively reduced the anomaly area in high anomaly fields and highlighted weak anomalies in low background areas, surpassing the statistical Mean + 2SD method. The anomaly maps generated by the S-A model demonstrated good ore potential, with verification identifying numerous Cu ore bodies within the anomalous regions.
- (3)
- The combination of the Cu, Zn, and Co combinatorial elements anomaly map, field geological exploration, and regional geological structure revealed the presence of Cu ore bodies and Cu mineralization in the targeted area. Notably, the Lüliangshan and Luofengpo areas exhibited Au ore bodies primarily occurring in NW-striking ductile fractures, which were oriented along the NW–SE direction and showed a high coincidence of Cu and Co anomalies.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lima, A.; De Vivo, B.; Cicchella, D.; Cortini, M.; Albanese, S. Multifractal IDW interpolation and fractal filtering method in environmental studies: An application on regional stream sediments of (Italy), Campania region. Appl. Geochem. 2003, 18, 1853–1865. [Google Scholar] [CrossRef]
- Deecke, V.B.; Nykaenen, M.; Foote, A.D.; Janik, V.M. Vocal behaviour and feeding ecology of killer whales Orcinus orca around Shetland, UK. Aquat. Biol. 2011, 13, 79–99. [Google Scholar] [CrossRef]
- Jiang, X.J.; Chen, X.; Gao, S.B.; Zheng, Y.Y.; Ren, H.; Han, D.H.; Yan, C.C.; Jiang, J.S. The New Discovery of Ag-Pb-Zn Mineralization via Modern Portable Analytical Technology and Stream Sediment Data Processing Methods in Dajiacuo Area, Western Tibet (China). J. Earth Sci. 2020, 31, 668–682. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Hale, M. A catchment basin approach to the analysis of reconnaissance geochemical-geological data from Albay Province, Philippines. J. Geochem. Explor. 1997, 60, 157–171. [Google Scholar] [CrossRef]
- Cheng, Q.M. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol. Rev. 2007, 32, 314–324. [Google Scholar] [CrossRef]
- Yousefi, N.; Gudarzi, M.M.; Zheng, Q.B.; Lin, X.Y.; Kim, J.K. Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: Mechanical properties and moisture permeability. Compos. Part A 2013, 49, 42–50. [Google Scholar] [CrossRef]
- Chen, X.; Xu, R.K.; Zheng, Y.Y.; Jiang, X.J.; Du, W.Y. Identifying potential Au-Pb-Ag mineralization in SE Shuangkoushan, North Qaidam, Western China: Combined log-ratio approach and singularity mapping. J. Geochem. Explor. 2018, 189, 109–121. [Google Scholar] [CrossRef]
- Hawkes, H.E.; Webb, J.S. Geochemistry in Mineral Exploration. Soil Sci. 1963, 95, 283. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory data analysis. J. Am. Stat. Assoc. 1977, 73, 885–887. [Google Scholar] [CrossRef]
- Zuo, R.G.; Wang, J.; Chen, G.X.; Yang, M.G. Identification of weak anomalies: A multifractal perspective. J. Geochem. Explor. 2015, 148, 12–24. [Google Scholar] [CrossRef]
- Zuo, R.G.; Carranza, E.J.M.; Wang, J. Spatial analysis and visualization of exploration geochemical data. Earth-Sci. Rev. 2016, 158, 9–18. [Google Scholar] [CrossRef]
- Zhao, J.N.; Chen, S.Y.; Zuo, R.G. Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China. J. Geochem. Explor. 2016, 164, 54–64. [Google Scholar] [CrossRef]
- Stanley, C.R.; Sinclair, A.J. Comparison of Probability Plots and the Gap Statistic in the Selection of Thresholds for Exploration Geochemistry Data. J. Geochem. Explor. 1989, 32, 355–357. [Google Scholar] [CrossRef]
- Cheng, Q.M. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. J. Geochem. Explor. 2012, 122, 55–70. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Kreuzer, P.O. Application of the tectono-geochemistry method to mineral prospectivity mapping: A case study of the Gaosong tin-polymetallic deposit, Gejiu district, SW China. Ore Geol. Rev. 2015, 71, 719–734. [Google Scholar] [CrossRef]
- Zheng, S.L.; Jiang, X.J.; Gao, S.B. Spatial Overlay Analysis of Geochemical Singularity Index α-Value of Porphyry Cu Deposit in Gangdese Metallogenic Belt, Tibet, Western China. Appl. Sci. 2023, 13, 10123. [Google Scholar] [CrossRef]
- Bai, J.; Porwal, A.; Hart, C.; Ford, A.; Yu, L. Mapping geochemical singularity using multifractal analysis: Application to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China. J. Geochem. Explor. 2010, 104, 1–11. [Google Scholar] [CrossRef]
- Agterberg, F.P. Multifractals and geostatistics. J. Geochem. Explor. 2012, 122, 113–122. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, Q.M.; Xia, Q.L.; Wang, X.Q. Application of singularity analysis for mineral potential identification using geochemical data—A case study: Nanling W–Sn–Mo polymetallic metallogenic belt, South China. J. Geochem. Explor. 2013, 134, 61–72. [Google Scholar] [CrossRef]
- Wang, W.L.; Zhao, J.; Cheng, Q.M. Application of singularity index mapping technique to gravity/magnetic data analysis in southeastern Yunnan mineral district, China. J. Appl. Geophys. 2013, 92, 39–49. [Google Scholar] [CrossRef]
- Zuo, R.G.; Xia, Q.L.; Wang, H.C. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Appl. Geochem. 2013, 28, 202–211. [Google Scholar] [CrossRef]
- Zuo, R.G.; Xia, Q.L.; Zhang, D.J. A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas. Appl. Geochem. 2013, 33, 165–172. [Google Scholar] [CrossRef]
- Bonham-Carter, G. Geographic Information Systems for Geoscientists: Modelling with GIS; Pergamon: Oxford, UK, 1994; p. 398. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P. Normal and lognormal data distribution in geochemistry: Death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ. Geol. 2000, 39, 1001–1014. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K.; Reimann, C.; Garrett, R. Robust factor analysis for compositional data. Comput. Geosci. 2009, 35, 1854–1861. [Google Scholar] [CrossRef]
- Filzmoser, P.; Todorov, V. An Object-Oriented Framework for Robust Multivariate Analysis. J. Stat. Softw. 2009, 32, 1–47. [Google Scholar] [CrossRef]
- Piepel, G.F. The Statistical Analysis of Compositional Data. Technometrics 1988, 30, 120–121. [Google Scholar] [CrossRef]
- Buccianti, A. Frequency Distributions of Geochemical Data, Scaling Laws, and Properties of Compositions. Pure Appl. Geophys. 2014, 172, 1851–1863. [Google Scholar] [CrossRef]
- Buccianti, A.; Grunsky, E. Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes? J. Geochem. Explor. 2015, 141, 1–5. [Google Scholar] [CrossRef]
- Song, S.G.; Su, L.; Li, X.H.; Zhang, G.B.; Niu, Y.L.; Zhang, L.F. Tracing the 850-Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China. Precambrian Res. 2010, 183, 805–816. [Google Scholar] [CrossRef]
- Xu, G.D. The Genesis Study of Shuangkoushan Lead-Zinc Deposit, Qinghai Province. Master’s Thesis, China University of Geosciences, Wuhan, China, 2012. (In Chinese). [Google Scholar]
- González, M.T.; Wu, S.M.; Huber, R.; Van Der Molen, S.; Schönenberger, C.; Calame, M. Electrical Conductance of Molecular Junctions by a Robust Statistical Analysis. Nano Lett. 2006, 6, 2238–2242. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.J.; Mu, X.; Ren, T.X. Geochemical mapping in China. J. Geochem. Explor. 1997, 60, 99–113. [Google Scholar] [CrossRef]
- Xie, X.J.; Wang, X.Q.; Zhang, Q.; Zhou, G.H.; Cheng, H.X.; Liu, D.W.; Cheng, Z.Z.; Xu, S.F. Multi-scale geochemical mapping in China. Geochemistry 2008, 8, 333–341. [Google Scholar] [CrossRef]
- Xu, R.K.; Zheng, Y.Y.; Zhou, B.; Wu, L.; Zhu, H.Y.; Zhang, Y.; Ma, C.; Lu, D. The Metallogenic Regularity and Inspiration Prospecting of Copper Lead-Zinc Deposit Associated with Orogenic in the Lüliangshan Area Northern Margin of Qaidam Basin. Northwestern Geol. 2012, 45, 192–201. (In Chinese) [Google Scholar] [CrossRef]
- Chen, X. Metallogenic Conditions of Eclogite-Type Rutile Deposit from the North Qaidam UHP Metamorphic Belt and Their Implications for Mineral Exploration. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2020. (In Chinese). [Google Scholar] [CrossRef]
- Sandstrm, H.; Reeder, S.; Bartha, A.; Birke, M.; Berge, F.; Davidsen, B.; Grimstvedt, A.; Hagel-Brunnstr, M.M.; Kantor, W.; Kallio, E. Sample preparation and analysis. Geochem. Atlas Eur. Part 2005, 1–14. [Google Scholar]
- Egozcue, J.J.; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barceló-Vidal, C. Isometric logratio transformations for compositional data analysis. Math. Geol. 2003, 35, 279–300. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. J. Geochem. Explor. 2011, 110, 167–185. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K.; Reimann, C. Univariate statistical analysis of environmental (compositional) data: Problems and possibilities. Sci. Total Environ. 2009, 407, 6100–6108. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, W.L.; Dong, L.H.; Yang, W.Z.; Cheng, Q.M. Application of geochemical anomaly identification methods in mapping of intermediate and felsic igneous rocks in eastern Tianshan, China. J. Geochem. Explor. 2012, 122, 81–89. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K.; Reimann, C. Principal component analysis for compositional data with outliers. Environmetrics 2009, 20, 621–632. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K. Correlation Analysis for Compositional Data. Math. Geosci. 2009, 41, 905. [Google Scholar] [CrossRef]
- Aitchison, J. The Statistical Analysis of Compositional Data. J. R. Statist. Soc. B 1982, 44, 139–177. [Google Scholar] [CrossRef]
- Afzal, P.; Alghalandis, Y.F.; Khakzad, A.; Moarefvand, P.; Omran, N.R. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J. Geochem. Explor. 2011, 108, 220–232. [Google Scholar] [CrossRef]
- Filzmoser, P.; Hron, K. Outlier Detection for Compositional Data Using Robust Methods. Math. Geosci. 2008, 40, 233–248. [Google Scholar] [CrossRef]
- Zuo, R.G. Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China. J. Geochem. Explor. 2014, 139, 170–176. [Google Scholar] [CrossRef]
- Pison, G.; Rousseeuw, P.J.; Filzmoser, P.; Croux, C. Robust factor analysis. J. Multivar. Anal. 2003, 84, 145–172. [Google Scholar] [CrossRef]
- Templ, M.; Hron, K.; Filzmoser, P. robCompositions: Robust Estimation for Compositional Data. Biosci. Biotechnol. Biochem. 2017, 70, 1875–1881. [Google Scholar] [CrossRef]
- Turcotte, D.L. (Ed.) Fractals and Chaos in Geology and Geophysics: Fragmentation, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997; p. 414. [Google Scholar]
- Cheng, Q.M. Spatial and scaling modelling for geochemical anomaly separation. J. Geochem. Explor. 1999, 65, 175–194. [Google Scholar] [CrossRef]
- Zuo, R.G. Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Appl. Geochem. 2011, 26, S271–S273. [Google Scholar] [CrossRef]
- Cheng, Q.; Xia, Q.; Li, W.; Zhang, S.; Chen, Z.; Zuo, R.G.; Wang, W. Density/area power-law models for separating multi-scale anomalies of ore and toxic elements in stream sediments in Gejiu mineral district, Yunnan Province, China. Biogeosciences 2010, 7, 3019–3025. [Google Scholar] [CrossRef]
- Cheng, Q.M. Multifractal and geostatistic methods forcharacterizing local structure and singularityproperties of exploration geochemical anomalies. Earth Sci. (J. China Univ. Geosci.) 2001, 26, 161–166. (In Chinese) [Google Scholar]
- Cheng, Q.M. Interpolation by means of multiftractal, kriging and moving average techniques. In Proceedings of the GAC/MAC Meeting of GeoCanada2000, Calgary, AB, Alberta, 29 May 2000. [Google Scholar]
- Zuo, R.G. Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component analysis and spectrum-area fractal modeling in the Gangdese Belt, Tibet (China). J Geochem Explor. 2011, 111, 13–22. [Google Scholar] [CrossRef]
- Cheng, Q.M. A New Model for Quantifying Anisotropic Scale Invariance and for Decomposition of Mixing Patterns. Math. Geol. 2004, 36, 345–360. [Google Scholar] [CrossRef]
- Qiuming, C.; Agterberg, F.P.; Ballantyne, S.B. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor. 1994, 51, 109–130. [Google Scholar] [CrossRef]
- Cheng, Q.M. Multifractal distribution of eigenvalues and eigenvectors from 2D multiplicative cascade multifractal fields. Math. Geol. 2005, 37, 915–927. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS; Elsevier: Amsterdam, The Netherlands, 2008; p. 368. [Google Scholar]
- Cheng, Q.M.; Agterberg, F.P. Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Comput Geosci. 2009, 35, 234–244. [Google Scholar] [CrossRef]
- Pang, B.; Wu, S.; Yu, Z.Z.; Fan, L.Y.; Li, J.B.; Zheng, L.; Chen, H.; Li, X.X.; Shi, G.W. Rapid Exploration Using pXRF Combined with Geological Connotation Method (GCM): A Case Study of the Nuocang Cu Polymetallic District, Tibet. Minerals 2022, 12, 514. [Google Scholar] [CrossRef]
Element | Min | Max | Mean | Median | Standard Deviation | Skewness | Kurtosis | Coefficient of Variation |
---|---|---|---|---|---|---|---|---|
Au | 0 | 498 | 1.3 | 1 | 0.7 | 41.1 | 2207 | 0.57 |
Ag | 0.02 | 0.08 | 0.04 | 0.04 | 0.01 | 61.42 | 4250 | 0.33 |
Cu | 2.6 | 83.4 | 26.3 | 19.3 | 19 | 6.2 | 78 | 0.73 |
Pb | 4.8 | 39.8 | 22.3 | 21.6 | 5.7 | 24.2 | 788 | 0.26 |
Zn | 1.7 | 124.9 | 47.5 | 46.2 | 25.7 | 24.2 | 788 | 0.54 |
Cr | 2.5 | 497.4 | 115 | 65.9 | 126.8 | 9.3 | 132 | 1.1 |
Ni | 1.8 | 181.9 | 46.5 | 29.4 | 45.1 | 6.8 | 61 | 0.97 |
Co | 1.3 | 46.8 | 15.1 | 11.3 | 10.5 | 2.2 | 12 | 0.7 |
W | 0.21 | 4.36 | 1.47 | 1.19 | 0.96 | 23.94 | 755 | 0.65 |
Mo | 0.01 | 2.16 | 0.67 | 0.54 | 0.49 | 21.85 | 664 | 0.74 |
Cd | 0.01 | 0.23 | 0.092 | 0.08 | 0.05 | 16.55 | 518 | 0.5 |
As | 0.64 | 14.85 | 5.37 | 4.45 | 3.15 | 16.2 | 394 | 0.59 |
Sb | 0.1 | 1.05 | 0.42 | 0.37 | 0.21 | 8.51 | 122 | 0.49 |
Hg | 0 | 0.03 | 0.01 | 0.01 | 0 | 34.63 | 1557 | 0.3 |
Bi | 0.01 | 0.92 | 0.25 | 0.18 | 0.22 | 23.07 | 935 | 0.87 |
Element | Au | Ag | Cu | Pb | Zn | Cr | Ni | Co | W | Mo | Cd | As | Sb | Hg | Bi |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Calculated value | 2.7 | 0.064 | 64.3 | 33.8 | 99 | 368.7 | 136.6 | 36.2 | 3.38 | 1.66 | 0.184 | 11.66 | 0.84 | 0.02 | 0.69 |
Applied value | 2.7 | 0.065 | 65.0 | 34 | 100 | 370 | 137 | 36 | 3.38 | 1.66 | 0.18 | 12 | 0.84 | 0.02 | 0.70 |
Type | Ag | As | Au | Cu | Cd | Pb | Sb | Zn | Ni | Co | Cr | W | Mo | Hg | Bi |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | 0.73 | 0.10 | 0.38 | 0.25 | 0.01 | 0.76 | 0.25 | 0.31 | 0.46 | 0.29 | 0.37 | 0.16 | 0.29 | 0.75 | 0.06 |
F2 | 0.14 | 0.38 | 0.02 | 0.71 | 0.02 | 0.35 | 0.17 | 0.51 | 0.23 | 0.77 | 0.09 | 0.48 | 0.36 | 0.13 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Wang, J.; Jiao, H.; Xu, R.; Yin, Y.; Fang, C.; Chen, X. A New Discovery of Cu Mineralization in the North Qaidam, Tibet via Log-Ratio, Robust Factor Analysis, and Spectrum–Area Modeling. Appl. Sci. 2024, 14, 2597. https://doi.org/10.3390/app14062597
Zheng S, Wang J, Jiao H, Xu R, Yin Y, Fang C, Chen X. A New Discovery of Cu Mineralization in the North Qaidam, Tibet via Log-Ratio, Robust Factor Analysis, and Spectrum–Area Modeling. Applied Sciences. 2024; 14(6):2597. https://doi.org/10.3390/app14062597
Chicago/Turabian StyleZheng, Shunli, Jinshou Wang, Haiwei Jiao, Rongke Xu, Yueming Yin, Changtan Fang, and Xin Chen. 2024. "A New Discovery of Cu Mineralization in the North Qaidam, Tibet via Log-Ratio, Robust Factor Analysis, and Spectrum–Area Modeling" Applied Sciences 14, no. 6: 2597. https://doi.org/10.3390/app14062597
APA StyleZheng, S., Wang, J., Jiao, H., Xu, R., Yin, Y., Fang, C., & Chen, X. (2024). A New Discovery of Cu Mineralization in the North Qaidam, Tibet via Log-Ratio, Robust Factor Analysis, and Spectrum–Area Modeling. Applied Sciences, 14(6), 2597. https://doi.org/10.3390/app14062597