A Sensor Drift Compensation Method with a Masked Autoencoder Module
Abstract
:1. Introduction
- We propose a training method for deep learning models that estimate gas concentrations by concatenating a prompt which contains sensor drift information with input sensor data. By training the model with the prompt, the model is robust to sensor drift without fine-tuning.
- We utilize a masked-autoencoder-based CFE for the effective feature extraction of sensor drift information. The experimental results demonstrate that the deep learning model using a CFE outperforms the control group, indicating that the CFE can effectively generate prompts containing sensor drift information.
2. Materials and Methods
2.1. Dataset
2.2. Overall Concept
2.3. Proposed Method
3. Experiment and Results
3.1. Experiment Setting
3.2. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CFE | Calibration Feature Encoder |
MLP | Multi Layer Perceptron |
PLS | Partial Least Square |
RMSE | Root Mean Squared Error |
SD | Standard Deviation |
References
- Pareek, V.; Chaudhury, S.; Singh, S. Handling non-stationarity in E-nose design: A review. Sens. Rev. 2021, 42, 39–61. [Google Scholar] [CrossRef]
- Karakaya, D.; Ulucan, O.; Turkan, M. Electronic nose and its applications: A survey. Int. J. Autom. Comput. 2020, 17, 179–209. [Google Scholar] [CrossRef]
- Połap, D.; Srivastava, G.; Jaszcz, A. Energy consumption prediction model for smart homes via decentralized federated learning with LSTM. IEEE Trans. Consum. Electron. 2023, 1. [Google Scholar] [CrossRef]
- Haugen, J.E.; Tomic, O.; Kvaal, K. A calibration method for handling the temporal drift of solid state gas-sensors. Anal. Chim. Acta 2000, 407, 23–39. [Google Scholar] [CrossRef]
- Rudnitskaya, A. Calibration update and drift correction for electronic noses and tongues. Front. Chem. 2018, 6, 433. [Google Scholar] [CrossRef] [PubMed]
- Laref, R.; Losson, E.; Sava, A.; Adjallah, K.; Siadat, M. A comparison between SVM and PLS for E-nose based gas concentration monitoring. In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 19–22 February 2018; IEEE: New York, NY, USA, 2018; pp. 1335–1339. [Google Scholar]
- Ye, Z.; Liu, Y.; Li, Q. Recent progress in smart electronic nose technologies enabled with machine learning methods. Sensors 2021, 21, 7620. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.D.; Park, J.H.; Nam, H.; Chang, D.E. Deep neural networks for gas concentration estimation and the effect of hyperparameter optimization on the estimation performance. In Proceedings of the 2022 22nd International Conference on Control, Automation and Systems (ICCAS), Busan, Republic Korea, 27 November–1 December 2022; IEEE: New York, NY, USA, 2022; pp. 15–19. [Google Scholar]
- Caterini, A.L.; Chang, D.E. Deep Neural Networks in a Mathematical Framework; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Wang, X.; Zhao, W.; Ma, R.; Zhuo, J.; Zeng, Y.; Wu, P.; Chu, J. A novel high accuracy fast gas detection algorithm based on multi-task learning. Measurement 2024, 228, 114383. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; He, Z.; Liu, J.; Deng, P.; Zhou, X. Anti-drift in E-nose: A subspace projection approach with drift reduction. Sens. Actuators Chem. 2017, 253, 407–417. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Chou, T.I.; Chiu, S.W.; Tang, K.T. A concentration-based drift calibration transfer learning method for gas sensor array data. IEEE Sens. Lett. 2020, 4, 7003704. [Google Scholar] [CrossRef]
- Pareek, V.; Chaudhury, S.; Singh, S. Hybrid 3DCNN-RBM network for gas mixture concentration estimation with sensor array. IEEE Sens. J. 2021, 21, 24263–24273. [Google Scholar] [CrossRef]
- Pareek, V.; Chaudhury, S. Deep learning-based gas identification and quantification with auto-tuning of hyper-parameters. Soft Comput. 2021, 25, 14155–14170. [Google Scholar] [CrossRef]
- Feng, L.; Dai, H.; Song, X.; Liu, J.; Mei, X. Gas identification with drift counteraction for electronic noses using augmented convolutional neural network. Sens. Actuators Chem. 2022, 351, 130986. [Google Scholar] [CrossRef]
- Ma, Z.; Luo, G.; Qin, K.; Wang, N.; Niu, W. Online sensor drift compensation for E-nose systems using domain adaptation and extreme learning machine. Sensors 2018, 18, 742. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, D.; Chen, Y.; Wu, M.; Yang, T.; Cao, J. Online drift compensation by adaptive active learning on mixed kernel for electronic noses. Sens. Actuators Chem. 2020, 316, 128065. [Google Scholar] [CrossRef]
- Se, H.; Song, K.; Sun, C.; Jiang, J.; Liu, H.; Wang, B.; Wang, X.; Zhang, W.; Liu, J. Online drift compensation framework based on active learning for gas classification and concentration prediction. Sens. Actuators Chem. 2024, 398, 134716. [Google Scholar] [CrossRef]
- Petroni, F.; Rocktäschel, T.; Lewis, P.; Bakhtin, A.; Wu, Y.; Miller, A.H.; Riedel, S. Language models as knowledge bases? arXiv 2019, arXiv:1909.01066. [Google Scholar]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 5485–5551. [Google Scholar]
- Schick, T.; Schütze, H. Exploiting cloze questions for few shot text classification and natural language inference. arXiv 2020, arXiv:2001.07676. [Google Scholar]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Shin, T.; Razeghi, Y.; Logan IV, R.L.; Wallace, E.; Singh, S. Autoprompt: Eliciting knowledge from language models with automatically generated prompts. arXiv 2020, arXiv:2010.15980. [Google Scholar]
- Gao, T.; Fisch, A.; Chen, D. Making pre-trained language models better few-shot learners. arXiv 2020, arXiv:2012.15723. [Google Scholar]
- Liu, X.; Ji, K.; Fu, Y.; Tam, W.; Du, Z.; Yang, Z.; Tang, J. P-tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Dublin, Ireland, 22–27 May 2022; pp. 61–68. [Google Scholar]
- Liu, X.; Zheng, Y.; Du, Z.; Ding, M.; Qian, Y.; Yang, Z.; Tang, J. GPT understands, too. AI Open 2023, in press. [Google Scholar] [CrossRef]
- Vergara, A.; Vembu, S.; Ayhan, T.; Ryan, M.A.; Homer, M.L.; Huerta, R. Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators Chem. 2012, 166, 320–329. [Google Scholar] [CrossRef]
- Lu, S.; Guo, J.; Liu, S.; Yang, B.; Liu, M.; Yin, L.; Zheng, W. An improved algorithm of drift compensation for olfactory sensors. Appl. Sci. 2022, 12, 9529. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, D. Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans. Instrum. Meas. 2014, 64, 1790–1801. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, Y.; Zhang, Y.; Liu, J.; Xu, M.; Ma, C.; Jia, P. An Adversarial Network Used for Drift Correction in Electronic Nose. Available online: https://ssrn.com/abstract=4725735 (accessed on 19 March 2024).
- Clifford, P.; Tuma, D. Characteristics of semiconductor gas sensors I. Steady state gas response. Sens. Actuators 1982, 3, 233–254. [Google Scholar] [CrossRef]
- Sinha, S.; Bhardwaj, R.; Sahu, N.; Ahuja, H.; Sharma, R.; Mukhiya, R. Temperature and temporal drift compensation for Al2O3-gate ISFET-based pH sensor using machine learning techniques. Microelectron. J. 2020, 97, 104710. [Google Scholar] [CrossRef]
- He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16000–16009. [Google Scholar]
- Zhang, S.; Wang, B.; Li, X.; Chen, H. Research and application of improved gas concentration prediction model based on grey theory and BP neural network in digital mine. Procedia CIRP 2016, 56, 471–475. [Google Scholar] [CrossRef]
- AlOmar, M.K.; Hameed, M.M.; AlSaadi, M.A. Multi hours ahead prediction of surface ozone gas concentration: Robust artificial intelligence approach. Atmos. Pollut. Res. 2020, 11, 1572–1587. [Google Scholar] [CrossRef]
- Hulland, J. Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strateg. Manag. J. 1999, 20, 195–204. [Google Scholar] [CrossRef]
- Wold, S.; Trygg, J.; Berglund, A.; Antti, H. Some recent developments in PLS modeling. Chemom. Intell. Lab. Syst. 2001, 58, 131–150. [Google Scholar] [CrossRef]
- Mateos-Aparicio, G. Partial least squares (PLS) methods: Origins, evolution, and application to social sciences. Commun. Stat.-Theory Methods 2011, 40, 2305–2317. [Google Scholar] [CrossRef]
Batch ID Months ID | Number of Samples | |||||
---|---|---|---|---|---|---|
Ethanol | Ethylene | Ammonia | Acetaldehyde | Acetone | Toluene | |
Batch 1 (Months 1–2) | 90 | 98 | 83 | 30 | 70 | 74 |
Batch 2 (Months 3–10) | 164 | 334 | 100 | 109 | 532 | 5 |
Batch 3 (Months 11–13) | 365 | 490 | 216 | 240 | 275 | 0 |
Batch 4 (Months 14–15) | 64 | 43 | 12 | 30 | 12 | 0 |
Batch 5 (Months 16) | 28 | 40 | 20 | 46 | 63 | 0 |
Batch 6 (Months 17–20) | 514 | 574 | 110 | 29 | 606 | 467 |
Batch 7 (Months 21) | 649 | 662 | 360 | 744 | 630 | 568 |
Batch 8 (Months 22–23) | 30 | 30 | 40 | 33 | 143 | 18 |
Batch 9 (Months 24–30) | 61 | 55 | 100 | 75 | 78 | 101 |
Batch 10 (Months 36) | 600 | 600 | 600 | 600 | 600 | 600 |
Model | Number of Parameters | |||||
---|---|---|---|---|---|---|
Ethanol | Ethylene | Ammonia | Acetaldehyde | Acetone | Toluene | |
MLP-normal | 18,465 | 18,465 | 18,465 | 18,465 | 18,465 | 18,465 |
MLP-PLS | 19,425 | 19,457 | 18,689 | 19,489 | 19,361 | 20,353 |
MLP-encoder () | 18,747 | 18,747 | 18,747 | 18,747 | 18,747 | 18,747 |
MLP-encoder () | 18,788 | 18,788 | 18,788 | 18,788 | 18,788 | 18,788 |
MLP-encoder () | 18,829 | 18,829 | 18,829 | 18,829 | 18,829 | 18,829 |
0–20 Months | 21–23 Months | 24–36 Months | ||||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
MLP | 21.12 | 15.14 | 62.4 | 45.47 | 107.9 | 44.71 |
PLS | 23.1 | 20.51 | 48.55 | 17.19 | 97.83 | 37.89 |
MLP-PLS | 18.09 | 14.08 | 64.43 | 44.76 | 105.5 | 43.09 |
MLP-AE () | 8.4 | 7.64 | 7.89 | 3.77 | 21.52 | 17.39 |
MLP-AE () | 4.63 | 2.12 | 5.79 | 1.73 | 10.04 | 6.14 |
MLP-AE () | 7.77 | 8.76 | 7.84 | 7.33 | 10.22 | 8.27 |
MLP-CFE () | 8.26 | 4.66 | 8.6 | 4.22 | 15.17 | 8.35 |
MLP-CFE () | 3.73 | 1.65 | 7.12 | 3.11 | 9.05 | 3.62 |
MLP-CFE () | 9.51 | 8.23 | 9.85 | 7.44 | 14.69 | 8.6 |
MLP-tuned | 21.12 | 15.14 | 51.759 | 54.83 | 21.99 | 22.03 |
MLP-CFE | MLP-AE | MLP | MLP-PLS | MLP-Tuned | |
---|---|---|---|---|---|
time (s/epoch) | 0.0912 | 0.084 | 0.1592 | 0.239 | 0.132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.; Park, J.-H.; Jang, H.-D.; Nam, H.; Chang, D.E. A Sensor Drift Compensation Method with a Masked Autoencoder Module. Appl. Sci. 2024, 14, 2604. https://doi.org/10.3390/app14062604
Kwon S, Park J-H, Jang H-D, Nam H, Chang DE. A Sensor Drift Compensation Method with a Masked Autoencoder Module. Applied Sciences. 2024; 14(6):2604. https://doi.org/10.3390/app14062604
Chicago/Turabian StyleKwon, Seokjoon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam, and Dong Eui Chang. 2024. "A Sensor Drift Compensation Method with a Masked Autoencoder Module" Applied Sciences 14, no. 6: 2604. https://doi.org/10.3390/app14062604
APA StyleKwon, S., Park, J.-H., Jang, H.-D., Nam, H., & Chang, D. E. (2024). A Sensor Drift Compensation Method with a Masked Autoencoder Module. Applied Sciences, 14(6), 2604. https://doi.org/10.3390/app14062604