Improved Accuracy in Determining the Acceleration Due to Gravity in Free Fall Experiments Using Smartphones and Mechanical Switches
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Methods
4. Results
5. Discussion
5.1. Accuracy and Consistency of Results
5.2. Comparison with Alternative Methods
5.3. Variability in Time Measurements
5.4. Comparison of Theoretical and Experimental Values
5.5. Applicability and Significance
5.6. Limitations and Future Directions
5.6.1. Limitations
5.6.2. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tate, D.R. Acceleration due to gravity at the National Bureau of Standards. J. Res. Natl. Bur. Stand. Sect. C. 1968, 72C, 1–20. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; (LIGO Scientific Collaboration and Virgo Collaboration); et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- The LIGO Scientific Collaboration and The Virgo Collaboration. An improved analysis of GW150914 using a fully spin-precessing waveform model. Phys. Rev. X 2016, 6, 041014. [Google Scholar]
- Cervantes-Cota, J.L.; Galindo-Uribarri, S.; Smoot, G.F. A brief history of gravitational waves. Universe 2016, 2, 22. [Google Scholar] [CrossRef]
- Chen, C.-M.; Nester, J.M.; Ni, W.-T. A brief history of gravitational wave research. Chin. J. Phys. 2017, 5, 142–169. [Google Scholar] [CrossRef]
- Bailes, M.; Berger, B.K.; Brady, P.R.; Branchesi, M.; Danzmann, K.; Evans, M.; Holley-Bockelmann, K.; Iyer, B.R.; Kajita, T.; Katsanevas, S.; et al. Gravitational-wave physics and astronomy in the 2020s and 2030s. Nat. Rev. Phys. 2021, 3, 344–366. [Google Scholar] [CrossRef]
- Perna, R.; Giacomazzo, B. Editorial: Gravitational Waves: A new window to the Universe. Front. Astron. Space Sci. 2021, 8, 681919. [Google Scholar] [CrossRef]
- Cook, A.H. The absolute determination of the acceleration due to gravity. Metrologia 1965, 1, 84–114. [Google Scholar] [CrossRef]
- Cook, A.H. A new absolute determination of the acceleration due to gravity at the National Physical Laboratory. Nature 1965, 208, 279. [Google Scholar] [CrossRef]
- Walker, J. Fundamentals of Physics—Halliday & Resnick, 10th ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Horvat, D.; Jecmenica, R. The free fall experiment. Resonance 2016, 21, 259–275. [Google Scholar] [CrossRef]
- Siebert, C.; DeStefano, P.R.; Widenhorn, R. Comparative modeling of free fall and drag-enhanced motion in the classical physics drop experiment. Eur. J. Phys. 2019, 40, 045004. [Google Scholar] [CrossRef]
- Oliver, W.R.; Pirie, J. Measurement of g by free fall. Phys. Educ. 1969, 4, 49–51. [Google Scholar] [CrossRef]
- Ferlen, R.P.; Eaton, B. A simple release mechanism for the free fall experiment. Am. J. Phys. 1974, 42, 255–256. [Google Scholar] [CrossRef]
- Walton, D.S. A simple apparatus for the determination of g by free fall. Phys. Educ. 1974, 9, 80–81. [Google Scholar] [CrossRef]
- Blackburn, J.A.; Koenig, R. Precision falling body experiment. Am. J. Phys. 1976, 44, 855. [Google Scholar] [CrossRef]
- Edgar, A. A low-cost timer for free-fall experiments. Am. J. Phys. 1991, 59, 568–569. [Google Scholar] [CrossRef]
- Childs, J. A quick determination of g using photogates. Phys. Teach. 1994, 32, 100–101. [Google Scholar] [CrossRef]
- Wick, K.; Ruddick, K. An accurate measurement of g using falling balls. Am. J. Phys. 1999, 67, 962–965. [Google Scholar] [CrossRef]
- Vogt, P.; Kuhn, J.; Müller, S. Experiments using cell phones in physics classroom education: The computer-aided g determination. Phys. Teach. 2011, 49, 383–384. [Google Scholar] [CrossRef]
- Vogt, P.; Kuhn, J. Analyzing free fall with a smartphone acceleration sensor. Phys. Teach. 2012, 50, 182–183. [Google Scholar] [CrossRef]
- Schwarz, O.; Vogt, P.; Kuhn, J. Acoustic measurements of bouncing balls and the determination of gravitational acceleration. Phys. Teach. 2013, 51, 312–313. [Google Scholar] [CrossRef]
- AbdElazem, S.; Al-Basheer, W. Measuring the acceleration due to gravity using an IR transceiver. Eur. J. Phys. 2015, 36, 045017. [Google Scholar] [CrossRef]
- Fontana, E.; Yeung, C.; Hall, J.C. Determining the acceleration due to gravity and friction using the ticker tape timer method. Phys. Teach. 2020, 58, 330–331. [Google Scholar] [CrossRef]
- Pili, U.; Violanda, R. Measurement of the gravitational acceleration using a simple pendulum apparatus, ultrasonic sensor, and Arduino. Phys. Educ. 2019, 54, 043009. [Google Scholar] [CrossRef]
- Hidayat, R.; Akmam, A.; Susanti, E.; Febriani, A. A more convenient method to predict gravitational acceleration (g) using smartphone’s proximity sensor in a simple pendulum experiment. Phys. Educ. 2023, 58, 045005. [Google Scholar] [CrossRef]
- Unofre, P.; Violanda, R.; Ceniza, C. Measurement of g using a magnetic pendulum and a smartphone magnetometer. Phys. Teach. 2018, 56, 258–259. [Google Scholar]
- Pili, U.B. Sound-based measurement of g using a door alarm and a smartphone: Listening to the simple pendulum. Phys. Educ. 2020, 55, 033001. [Google Scholar] [CrossRef]
- Silva-Alé, J.A. Determination of gravity acceleration with smartphone ambient light sensor. Phys. Teach. 2021, 59, 218–219. [Google Scholar] [CrossRef]
- Kuhn, J.; Vogt, P. Smartphones as experimental tools: Different methods to determine the gravitational acceleration in classroom physics by using everyday devices. Eur. J. Phys. Educ. 2017, 4, 47–58. [Google Scholar]
- Stensgaard, I.; Lægsgaard, E. Listening to the coefficient of restitution—Revisited. Am. J. Phys. 2001, 69, 301–305. [Google Scholar] [CrossRef]
- Aguiar, C.E.; Laudares, F. Listening to the coefficient of restitution and the gravitational acceleration of a bouncing ball. Am. J. Phys. 2003, 71, 499–501. [Google Scholar] [CrossRef]
- Hunt, J.L. Five quantitative physics experiments (almost) without special apparatus. Phys. Teach. 2005, 43, 412–416. [Google Scholar] [CrossRef]
- White, J.A.; Medina, A.; Román, F.L.; Velasco, S. A measurement of g listening to falling balls. Phys. Teach. 2007, 45, 175–177. [Google Scholar] [CrossRef]
- Barrio-Perotti, R.; Blanco-Marigorta, E.; Argüelles-Díaz, K.; Fernández-Oro, J. Experimental evaluation of the drag coefficient of water rockets by a simple free-fall test. Eur. J. Phys. 2009, 30, 1039–1048. [Google Scholar] [CrossRef]
- Aguiar, C.E.; Pereira, M.M. Using the sound card as a timer. Phys. Teach. 2011, 49, 33–35. [Google Scholar] [CrossRef]
- Vogt, P.; Kuhn, J.; Neuschwander, D. Determining ball velocities with smartphones. Phys. Teach. 2014, 52, 376–377. [Google Scholar] [CrossRef]
- Theilmann, F. Going nuts: Measuring free-fall acceleration by analyzing the sound of falling metal pieces. Phys. Teach. 2016, 54, 182–183. [Google Scholar]
- SPARKvue, PASCO Scientific. Available online: https://www.pasco.com/downloads/sparkvue (accessed on 8 March 2024).
- Gravity of Earth. Available online: https://en.wikipedia.org/wiki/Gravity_of_Earth (accessed on 14 March 2024).
- Gauthier-Villars. Déclaration Relative il L’unité de Masse et il la Définition du Poids, et Discussion. In Comptes Rendus des Séances de la Troisième Conférence Générale des Poids et Mesures; Gauthier-Villars: Paris, France, 1901; pp. 68–70. (In French) [Google Scholar]
H (m) | Theory | Experiments | ||
---|---|---|---|---|
T (s) | T (s) | T2 (s2) | S.D. | |
0.60 | 0.350 | 0.330 | 0.109 | 0.011 |
0.80 | 0.404 | 0.392 | 0.153 | 0.005 |
1.00 | 0.452 | 0.448 | 0.201 | 0.012 |
1.20 | 0.495 | 0.482 | 0.232 | 0.002 |
1.40 | 0.535 | 0.522 | 0.272 | 0.002 |
Method | Sensor | Accuracy | Uncertainty | References |
---|---|---|---|---|
Free fall and acoustical Doppler effect | Microphone with a personal computer | 99.08% | 9.90 ± 0.2 m/s2 | [20] |
Free fall | Smartphone acceleration sensor | 98.06% | 10.00 ± 0.2 m/s2 | [21] |
Free fall | Smartphone’s onboard microphone | 99.99%, 97.45%, and 99.59% | 9.82, 10.06, and 9.77 m/s2 | [22] |
Free fall | IR transceiver | 99.8063% | 9.8092 ± 0.0384 m/s2 | [23] |
Free fall | Ticker tape timer | 90–95% | 9.82 ± 0.04 m/s2 | [24] |
Pendulum | Ultrasonic sensor and arduino | 99.60% | 9.82 ± 0.10 m/s2 | [25] |
Pendulum | Smartphone’s proximity sensor | 99.99–99.46% | 9.75 ± 0.02 m/s2 | [26] |
Pendulum | Smartphone magnetometer | 98.98% | 9.8 ± 0.1 m/s2 | [27] |
Pendulum | Piezo buzzer and smartphone’s onboard microphone | 99.39% | 9.72 ± 0.15 m/s2 | [28] |
Pendulum | Smartphone ambient light sensor | 99.215% | 9.729 ± 0.01 m/s2 | [28] |
Free fall | Microphone and sound card of a personal computer | 99.90% | 9.82 ± 0.03 m/s2 | [32] |
Falling ball with the pendulum | Microphone and sound card of a personal computer | 99.75% | 9.776 ± 0.005 m/s2 | [34] |
Free fall | Smartphone’s onboard microphone | 97.50% | 9.57 m/s2 | [38] |
Free fall | Smartphone’s onboard microphone | 99.82% | 9.8274 ± 0.01 m/s2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harnsoongnoen, S.; Srisai, S.; Kongkeaw, P.; Rakdee, T. Improved Accuracy in Determining the Acceleration Due to Gravity in Free Fall Experiments Using Smartphones and Mechanical Switches. Appl. Sci. 2024, 14, 2632. https://doi.org/10.3390/app14062632
Harnsoongnoen S, Srisai S, Kongkeaw P, Rakdee T. Improved Accuracy in Determining the Acceleration Due to Gravity in Free Fall Experiments Using Smartphones and Mechanical Switches. Applied Sciences. 2024; 14(6):2632. https://doi.org/10.3390/app14062632
Chicago/Turabian StyleHarnsoongnoen, Supakorn, Saksun Srisai, Pongsathorn Kongkeaw, and Tidarat Rakdee. 2024. "Improved Accuracy in Determining the Acceleration Due to Gravity in Free Fall Experiments Using Smartphones and Mechanical Switches" Applied Sciences 14, no. 6: 2632. https://doi.org/10.3390/app14062632
APA StyleHarnsoongnoen, S., Srisai, S., Kongkeaw, P., & Rakdee, T. (2024). Improved Accuracy in Determining the Acceleration Due to Gravity in Free Fall Experiments Using Smartphones and Mechanical Switches. Applied Sciences, 14(6), 2632. https://doi.org/10.3390/app14062632