Learning Accurate Pseudo-Labels via Feature Similarity in the Presence of Label Noise
Abstract
:1. Introduction
- •
- We introduce a simplified pseudo-labeling method that amalgamates the exponential moving average derived from the most recent round of pseudo-labels, predicted labels, and feature labels to form refined pseudo-labels. This approach is adept at handling datasets with differing noise types and levels.
- •
- We conducted thorough experiments on four benchmark datasets and one real dataset, covering four diverse noise types and two distinct noise levels. Our results consistently illustrate the superiority of our approach over prior methods, validating its efficacy.
2. Related Work
3. Materials and Methods
3.1. Preliminaries
3.2. Problems with Generating Pseudo-Labels
3.3. Generate Feature Labels
Algorithm 1: FPL |
|
4. Experiments and Discussion
4.1. Experimental Setup
4.1.1. Datasets
4.1.2. Noise Types
- 1.
- 2.
- Pair flip noise: Acquiring the pristine labels within each category involves randomly flipping to adjacent classes with equal likelihood.
- 3.
- Tridiagonal noise: This type of noise is created by performing two consecutive pairwise flips of two classes in opposite directions.
- 4.
- Instance noise: The likelihood of an object receiving an erroneous label depends on its attributes or properties.
4.1.3. Baselines
- 1.
- GCE [12]: A novel GCE loss function integrates the robustness to noise characteristic of the mean absolute error (MAE) loss function with the training expediency inherent in the conventional cross-entropy loss function.
- 2.
- APL [15]: A framework is suggested for crafting a robust loss function, termed active passive loss (APL). APL synergizes two interdependent robust loss functions to enhance both robustness and performance.
- 3.
- ELR [34]: Takes advantage of early learning through regularization. Firstly, the semi-supervised learning technique is used to generate the target probability according to the model output. Secondly, a regularization term is designed to guide the model to these targets, implicitly preventing the memory of false labels.
- 4.
- CDR [35]: This method categorizes parameters into critical and non-critical, employing distinct update regulations for various parameter types.
- 5.
- MSLC: Introduces a meta-learning model designed to predict soft labels by implementing a meta-gradient descent procedure guided by clean metadata, thereby efficiently allocating pseudo-labels to noisy ones.
- 6.
- PES [36]: Trains the network into different parts to counteract the effects of label noise.
- 7.
- MLC: The label correction process is considered a meta-process, where the label correction network functions as a meta-model to generate corrected pseudo-labels for noisy labels. Concurrently, the main model is trained to learn from these pseudo-labels instead of the noisy labels. Introduces a fresh contrast regularization function for acquiring representations in the presence of noisy data, mitigating the influence of label noise.
- 8.
- CTRR [37]: Proposes a new contrast regularization function for acquiring representations in the presence of noisy data, relieving the influence of label noise.
4.1.4. Network Structure
4.1.5. Parameter Analysis
4.2. Results and Discussion
4.2.1. Results on Simulated Noise Datasets
4.2.2. Results on Real Datasets
4.2.3. Results on Imbalance Datasets
4.3. Ablation Experiments
4.4. Experimental Complexity Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Jiang, Y.G.; Luo, J.; Chang, S.F. Noise resistant graph ranking for improved web image search. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 849–856. [Google Scholar]
- Welinder, P.; Branson, S.; Perona, P.; Belongie, S. The multidimensional wisdom of crowds. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 6–9 December 2010; Volume 23. [Google Scholar]
- Song, H.; Kim, M.; Park, D.; Shin, Y.; Lee, J.G. Learning from noisy labels with deep neural networks: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 8135–8153. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, W.; Ma, X.; Bailey, J.; Zha, H.; Song, L.; Xia, S.T. Iterative learning with open-set noisy labels. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8688–8696. [Google Scholar]
- Ghosh, A.; Kumar, H.; Sastry, P.S. Robust loss functions under label noise for deep neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Hendrycks, D.; Mazeika, M.; Wilson, D.; Gimpel, K. Using trusted data to train deep networks on labels corrupted by severe noise. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; Volume 31. [Google Scholar]
- Patrini, G.; Rozza, A.; Krishna Menon, A.; Nock, R.; Qu, L. Making deep neural networks robust to label noise: A loss correction approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1944–1952. [Google Scholar]
- Reed, S.; Lee, H.; Anguelov, D.; Szegedy, C.; Erhan, D.; Rabinovich, A. Training deep neural networks on noisy labels with bootstrapping. arXiv 2014, arXiv:1412.6596. [Google Scholar]
- Zhang, Z.; Sabuncu, M. Generalized cross entropy loss for training deep neural networks with noisy labels. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; Volume 31. [Google Scholar]
- Wang, Y.; Ma, X.; Chen, Z.; Luo, Y.; Yi, J.; Bailey, J. Symmetric cross entropy for robust learning with noisy labels. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 322–330. [Google Scholar]
- Feng, L.; Shu, S.; Lin, Z.; Lv, F.; Li, L.; An, B. Can cross entropy loss be robust to label noise? In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, Online, 7–15 January 2021; pp. 2206–2212. [Google Scholar]
- Ma, X.; Huang, H.; Wang, Y.; Romano, S.; Erfani, S.; Bailey, J. Normalized loss functions for deep learning with noisy labels. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual Event, 13–18 July 2020; pp. 6543–6553. [Google Scholar]
- Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang, I.; Sugiyama, M. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; Volume 31. [Google Scholar]
- Zhang, Z.; Pfister, T. Learning fast sample re-weighting without reward data. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 725–734. [Google Scholar]
- Shu, J.; Xie, Q.; Yi, L.; Zhao, Q.; Zhou, S.; Xu, Z.; Meng, D. Meta-weight-net: Learning an explicit mapping for sample weighting. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Volume 32. [Google Scholar]
- Shu, J.; Yuan, X.; Meng, D.; Xu, Z. CMW-Net: Learning a class-aware sample weighting mapping for robust deep learning. arXiv 2022, arXiv:2202.05613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Niu, G.; Sugiyama, M. Learning noise transition matrix from only noisy labels via total variation regularization. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual Event, 28–24 July 2021; pp. 12501–12512. [Google Scholar]
- Wang, Z.; Hu, G.; Hu, Q. Training noise-robust deep neural networks via meta-learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4524–4533. [Google Scholar]
- Hu, Z.; Yang, Z.; Hu, X.; Nevatia, R. Simple: Similar pseudo label exploitation for semi-supervised classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15099–15108. [Google Scholar]
- Karim, N.; Rizve, M.N.; Rahnavard, N.; Mian, A.; Shah, M. Unicon: Combating label noise through uniform selection and contrastive learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 9676–9686. [Google Scholar]
- Pham, H.; Dai, Z.; Xie, Q.; Le, Q.V. Meta pseudo labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11557–11568. [Google Scholar]
- Wu, Y.; Shu, J.; Xie, Q.; Zhao, Q.; Meng, D. Learning to purify noisy labels via meta soft label corrector. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 10388–10396. [Google Scholar]
- Zheng, G.; Awadallah, A.H.; Dumais, S. Meta label correction for noisy label learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 11053–11061. [Google Scholar]
- Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading digits in natural images with unsupervised feature learning. NIPS Workshop Deep. Learn. Unsupervised Feature Learn. 2011, 2011, 7. [Google Scholar]
- Deng, L. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 2012, 29, 141–142. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Hinton, G. Learning multiple layers of features from tiny images. Handb. Syst. Autoimmune Dis. 2009, 1. [Google Scholar]
- Xiao, T.; Xia, T.; Yang, Y.; Huang, C.; Wang, X. Learning from massive noisy labeled data for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2691–2699. [Google Scholar]
- Yang, Y.; Xu, Z. Rethinking the value of labels for improving class-imbalanced learning. Adv. Neural Inf. Process. Syst. 2020, 33, 19290–19301. [Google Scholar]
- Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning (still) requires rethinking generalization. Commun. ACM 2021, 64, 107–115. [Google Scholar] [CrossRef]
- Tanaka, D.; Ikami, D.; Yamasaki, T.; Aizawa, K. Joint optimization framework for learning with noisy labels. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5552–5560. [Google Scholar]
- Liu, S.; Niles-Weed, J.; Razavian, N.; Fernandez-Granda, C. Early-learning regularization prevents memorization of noisy labels. Adv. Neural Inf. Process. Syst. 2020, 33, 20331–20342. [Google Scholar]
- Xia, X.; Liu, T.; Han, B.; Gong, C.; Wang, N.; Ge, Z.; Chang, Y. Robust early-learning: Hindering the memorization of noisy labels. In Proceedings of the International Conference on Learning Representations, Vienna, Austria, 3–7 May 2021. [Google Scholar]
- Bai, Y.; Yang, E.; Han, B.; Yang, Y.; Li, J.; Mao, Y.; Niu, G.; Liu, T. Understanding and improving early stopping for learning with noisy labels. Adv. Neural Inf. Process. Syst. 2021, 34, 24392–24403. [Google Scholar]
- Yi, L.; Liu, S.; She, Q.; McLeod, A.I.; Wang, B. On learning contrastive representations for learning with noisy labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16682–16691. [Google Scholar]
Dataset | MNIST | SVHN | CIFAR10 | CIFAR100 | Clothing1M |
---|---|---|---|---|---|
classes | 10 | 10 | 10 | 100 | 14 |
Train | 60k | 7325 | 50k | 50k | 50k |
Test | 10k | 26,032 | 10k | 10k | 14k |
Size | 28 × 28 | 32 × 32 | 32 × 32 | 32 × 32 | 224 × 224 |
Classifier | 9-CNN | Resnet34 | Resnet18 |
Settings | Symmetric | Pair flip | Tridiagonal | Instance | ||||||
---|---|---|---|---|---|---|---|---|---|---|
20% | 40% | 20% | 40% | 20% | 40% | 20% | 40% | |||
0.8 | 0.1 | 0.1 | 70.76 ± 0.05 | 66.64 ± 0.09 | 73.14 ± 0.12 | 71.89 ± 0.10 | 73.19 ± 0.06 | 72.28 ± 0.11 | 71.48 ± 0.09 | 70.17 ± 0.10 |
0.9 | 0.09 | 0.01 | 71.51 ± 0.06 | 67.73 ± 0.07 | 73.15 ± 0.05 | 71.84 ± 0.08 | 73.20 ± 0.05 | 72.55 ± 0.06 | 71.37 ± 0.06 | 70.28 ± 0.05 |
0.9 | 0.099 | 0.001 | 71.55 ± 0.08 | 67.84 ± 0.04 | 73.43 ± 0.09 | 72.35 ± 0.09 | 73.2 ± 0.03 | 72.62 ± 0.07 | 71.49 ± 0.05 | 70.34 ± 0.05 |
Parameter | ||||
---|---|---|---|---|
MNIST | Symmetric | 0.9 | 0.09 | 0.01 |
Pair flip | ||||
Tridiagonal | ||||
Instance | ||||
SVHN | Symmetric | 0.9 | 0.099 | 0.001 |
Pair flip | ||||
Tridiagonal | ||||
Instance | ||||
CIFAR10 | Symmetric | 0.9 | 0.09 | 0.01 |
Pair flip | ||||
Tridiagonal | ||||
Instance | 0.9 | 0.099 | 0.001 | |
CIFAR100 | Symmetric | 0.9 | 0.099 | 0.001 |
Pair flip | ||||
Tridiagonal | ||||
Instance | ||||
Clothing1M | Symmetric | 0.9 | 0.099 | 0.001 |
Pair flip | ||||
Tridiagonal | ||||
Instance | ||||
im-MNIST | Symmetric | 0.9 | 0.09 | 0.01 |
Pair flip | ||||
Tridiagonal | ||||
Instance | ||||
im-SVHN | Symmetric | 0.9 | 0.09 | 0.01 |
Pair flip | ||||
Tridiagonal | ||||
Instance |
Noise Type | Symmetric | Pair flip | Tridiagonal | Instance | |||||
---|---|---|---|---|---|---|---|---|---|
Setting | 20% | 40% | 20% | 40% | 20% | 40% | 20% | 40% | |
MNIST | CE | 94.66 ± 0.12 | 79.15 ± 0.30 | 89.07 ± 0.20 | 64.96 ± 0.29 | 91.67 ± 0.14 | 70.32 ± 0.58 | 90.15 ± 0.25 | 69.24 ± 0.41 |
GCE | 98.99 ± 0.14 | 98.46 ± 0.12 | 99.16 ± 0.11 | 98.75 ± 0.13 | 99.12 ± 0.09 | 99.03 ± 0.14 | 98.28 ± 0.17 | 97.97 ± 0.21 | |
APL | 99.54 ± 0.03 | 99.21 ± 0.04 | 99.16 ± 0.04 | 84.27 ± 0.28 | 99.48 ± 0.03 | 97.14 ± 0.06 | 97.63 ± 0.73 | 87.90 ± 1.94 | |
ELR | 99.22 ± 0.13 | 98.97 ± 0.16 | 99.09 ± 0.1 | 98.99 ± 0.14 | 99.09 ± 0.09 | 99.06 ± 0.15 | 99.05 ± 0.11 | 98.94 ± 0.17 | |
MSLC | 99.07 ± 0.11 | 98.85 ± 0.14 | 99.57 ± 0.10 | 99.33 ± 0.10 | 99.64 ± 0.12 | 99.35 ± 0.14 | 99.58 ± 0.14 | 99.41 ± 0.16 | |
CDR | 94.27 ± 0.35 | 75.76 ± 0.94 | 87.40 ± 0.94 | 62.83 ± 1.57 | 91.40 ± 0.45 | 70.13 ± 1.16 | 89.62 ± 0.53 | 67.46 ± 1.59 | |
PES | 99.57 ± 0.04 | 99.49 ± 0.05 | 99.62 ± 0.02 | 99.58 ± 0.03 | 99.69 ± 0.01 | 99.54 ± 0.03 | 99.51 ± 0.02 | 99.42 ± 0.04 | |
MLC | 98.80 ± 0.04 | 98.47 ± 0.07 | 98.94 ± 0.05 | 97.36 ± 0.06 | 98.91 ± 0.01 | 98.54 ± 0.03 | 98.94 ± 0.03 | 98.42 ± 0.05 | |
CTRR | 98.96 ± 0.24 | 98.16 ± 0.34 | 99.29 ± 0.52 | 99.06 ± 0.47 | 99.01 ± 0.35 | 98.94 ± 0.26 | 98.83 ± 0.28 | 98.14 ± 0.32 | |
FPL | 99.71 ± 0.01 | 99.71 ± 0.02 | 99.72 ± 0.02 | 99.70 ± 0.02 | 99.73 ± 0.02 | 99.70 ± 0.02 | 99.6 ± 0.01 | 99.52 ± 0.02 | |
SVHN | CE | 87.44 ± 0.34 | 67.09 ± 0.56 | 83.42 ± 0.43 | 60.86 ± 0.37 | 86.08 ± 0.24 | 67.21 ± 0.44 | 83.27 ± 0.45 | 59.55 ± 0.64 |
GCE | 76.57 ± 0.28 | 60.82 ± 0.30 | 77.83 ± 0.24 | 62.59 ± 0.35 | 78.06 ± 0.19 | 62.98 ± 0.27 | 75.87 ± 0.26 | 60.12 ± 0.34 | |
APL | 77.46 ± 0.31 | 61.05 ± 0.46 | 75.62 ± 0.45 | 59.96 ± 0.47 | 76.06 ± 0.34 | 60.53 ± 0.41 | 75.27 ± 0.44 | 59.83 ± 0.45 | |
ELR | 74.39 ± 0.28 | 56.19 ± 0.23 | 76.94 ± 0.22 | 57.43 ± 0.26 | 75.94 ± 0.28 | 57.16 ± 0.21 | 75.69 ± 0.32 | 58.16 ± 0.27 | |
MSLC | 97.08 ± 0.17 | 95.12 ± 0.14 | 96.97 ± 0.21 | 95.24 ± 0.23 | 97.10 ± 0.18 | 96.88 ± 0.20 | 97.09 ± 0.23 | 96.95 ± 0.25 | |
CDR | 82.46 ± 0.21 | 67.50 ± 2.09 | 82.35 ± 1.39 | 60.41 ± 2.15 | 84.79 ± 1.00 | 64.59 ± 1.44 | 81.96 ± 2.30 | 60.71 ± 3.33 | |
PES | 87.63 ± 0.23 | 69.31 ± 0.37 | 88.92 ± 0.25 | 70.26 ± 0.31 | 89.17 ± 0.19 | 70.34 ± 0.27 | 85.49 ± 0.21 | 67.38 ± 0.36 | |
MLC | 96.75 ± 0.06 | 95.96 ± 0.12 | 96.99 ± 0.11 | 96.06 ± 0.10 | 96.43 ± 0.09 | 95.81 ± 0.11 | 96.38 ± 0.12 | 95.24 ± 0.15 | |
CTRR | 96.21 ± 0.14 | 95.57 ± 0.53 | 97.02 ± 0.21 | 96.20 ± 0.34 | 96.53 ± 0.44 | 96.06 ± 0.45 | 96.17 ± 0.14 | 95.89 ± 0.11 | |
FPL | 97.14 ± 0.02 | 96.87 ± 0.02 | 97.15 ± 0.01 | 97.11 ± 0.02 | 97.14 ± 0.01 | 97.01 ± 0.01 | 97.11 ± 0.01 | 97.02 ± 0.01 | |
CIFAR10 | CE | 83.81 ± 0.15 | 66.22 ± 0.43 | 81.83 ± 0.32 | 59.41 ± 0.60 | 82.97 ± 0.23 | 64.18 ± 0.41 | 81.65 ± 0.42 | 59.02 ± 0.42 |
GCE | 89.7 ± 0.23 | 87.62 ± 0.35 | 89.83 ± 0.19 | 87.61 ± 0.48 | 90.35 ± 0.04 | 86.63 ± 0.06 | 89.45 ± 0.29 | 82.28 ± 0.67 | |
APL | 88.15 ± 0.09 | 81.51 ± 0.17 | 86.07 ± 0.09 | 51.66 ± 0.20 | 77.34 ± 0.23 | 32.66 ± 0.26 | 78.83 ± 2.11 | 60.00 ± 1.71 | |
ELR | 89.42 ± 0.09 | 87.52 ± 0.15 | 89.87 ± 0.11 | 89.36 ± 0.14 | 88.96 ± 0.1 | 88.48 ± 0.17 | 89.78 ± 0.08 | 89.05 ± 0.17 | |
MSLC | 93.20 ± 0.09 | 90.67 ± 0.17 | 94.09 ± 0.09 | 92.74 ± 0.11 | 92.82 ± 0.11 | 92.44 ± 0.11 | 92.46 ± 0.1 | 91.93 ± 0.14 | |
CDR | 82.79 ± 0.66 | 64.16 ± 0.74 | 81.25 ± 0.96 | 60.17 ± 0.94 | 82.14 ± 0.60 | 64.13 ± 1.13 | 81.11 ± 0.80 | 62.69 ± 1.51 | |
PES | 92.48 ± 0.06 | 89.17 ± 0.13 | 92.14 ± 0.03 | 88.77 ± 0.09 | 92.40 ± 0.05 | 88.70 ± 0.08 | 91.57 ± 0.07 | 89.27 ± 0.11 | |
MLC | 89.46 ± 0.12 | 86.53 ± 0.24 | 90.33 ± 0.15 | 90.30 ± 0.14 | 90.31 ± 0.15 | 90.29 ± 0.13 | 89.74 ± 0.13 | 89.51 ± 0.14 | |
CTRR | 92.97 ± 0.32 | 92.16 ± 0.31 | 93.05 ± 0.56 | 92.82 ± 0.27 | 93.89 ± 0.39 | 93.04 ± 0.33 | 91.67 ± 0.25 | 90.16 ± 0.51 | |
FPL | 93.55 ± 0.03 | 92.92 ± 0.04 | 94.13 ± 0.07 | 94.08 ± 0.09 | 94.23 ± 0.06 | 93.71 ± 0.06 | 93.70 ± 0.06 | 93.59 ± 0.07 | |
CIFAR100 | CE | 56.78 ± 0.20 | 38.09 ± 0.25 | 58.27 ± 0.11 | 41.52 ± 0.17 | 59.99 ± 0.13 | 44.25 ± 0.33 | 55.10 ± 0.37 | 36.78 ± 0.26 |
GCE | 65.24 ± 0.56 | 58.94 ± 0.50 | 66.21 ± 0.09 | 57.62 ± 0.12 | 64.79 ± 0.11 | 58.35 ± 0.13 | 61.87 ± 0.39 | 47.66 ± 0.69 | |
APL | 54.13 ± 0.15 | 37.44 ± 0.40 | 57.11 ± 0.13 | 42.92 ± 0.24 | 57.75 ± 0.11 | 42.86 ± 0.44 | 51.91 ± 0.50 | 44.68 ± 0.16 | |
ELR | 70.83 ± 0.19 | 66.91 ± 0.21 | 73.46 ± 0.13 | 71.69 ± 0.17 | 72.6 ± 0.16 | 72.48 ± 0.2 | 70.09 ± 0.13 | 69.59 ± 0.19 | |
MSLC | 71.47 ± 0.20 | 67.50 ± 0.14 | 72.62 ± 0.13 | 71.79 ± 0.24 | 72.33 ± 0.08 | 71.71 ± 0.12 | 70.82 ± 0.11 | 69.04 ± 0.15 | |
CDR | 58.45 ± 0.27 | 52.56 ± 0.34 | 63.62 ± 0.26 | 45.82 ± 0.25 | 65.39 ± 0.31 | 48.89 ± 0.35 | 61.70 ± 0.56 | 43.01 ± 0.85 | |
PES | 69.26 ± 0.07 | 64.96 ± 0.14 | 70.67 ± 0.52 | 64.85 ± 0.64 | 71.43 ± 0.13 | 67.40 ± 0.18 | 68.30 ± 0.07 | 66.27 ± 0.16 | |
MLC | 50.92 ± 0.22 | 39.76 ± 0.13 | 58.85 ± 0.23 | 48.88 ± 0.14 | 58.85 ± 0.23 | 48.87 ± 0.14 | 50.67 ± 0.17 | 47.72 ± 0.22 | |
CTRR | 70.09 ± 0.45 | 65.32 ± 0.20 | 72.88 ± 0.34 | 66.75 ± 0.28 | 73.12 ± 0.42 | 64.46 ± 0.17 | 70.15 ± 0.23 | 64.53 ± 0.17 | |
FPL | 71.55 ± 0.08 | 67.84 ± 0.04 | 73.43 ± 0.09 | 72.35 ± 0.09 | 73.26 ± 0.03 | 72.62 ± 0.07 | 72.01 ± 0.08 | 70.07 ± 0.07 |
Method | Last | Best |
---|---|---|
CE | 67.22 | 64.68 |
APL | 56.01 | 55.63 |
ELR | 73.27 | 74.53 |
MSLC | 73.34 | 73.95 |
CDR | 63.22 | 63.22 |
PES | 72.37 | 73.64 |
MLC | 73.28 | 75.61 |
CTRR | 72.71 | 73.68 |
FPL | 73.54 | 73.57 |
Noise Type | Asym | ||||
---|---|---|---|---|---|
Setting | 20% | 30% | 40% | 45% | |
im-MNIST | CE | 90.66 ± 0.21 | 85.40 ± 0.25 | 80.40 ± 0.12 | 76.54 ± 0.20 |
GCE | 93.07 ± 0.11 | 87.94 ± 0.13 | 84.06 ± 0.12 | 78.84 ± 0.15 | |
APL | 98.44 ± 0.05 | 98.02 ± 0.10 | 94.68 ± 0.09 | 89.50 ± 0.22 | |
ELR | 95.66 ± 0.09 | 93.50 ± 0.13 | 89.28 ± 0.15 | 87.61 ± 0.14 | |
CDR | 98.45 ± 0.11 | 98.44 ± 0.11 | 96.15 ± 0.48 | 94.24 ± 0.78 | |
PES | 97.60 ± 0.08 | 96.42 ± 0.10 | 95.03 ± 0.14 | 93.91 ± 0.15 | |
CTRR | 98.37 ± 0.15 | 97.17 ± 0.24 | 95.96 ± 0.51 | 94.22 ± 0.26 | |
FPL | 98.55 ± 0.05 | 98.55 ± 0.05 | 98.53 ± 0.06 | 98.58 ± 0.04 |
Noise Type | Asymmetric | ||||
---|---|---|---|---|---|
Setting | 20% | 30% | 40% | 45% | |
im-SVHN | CE | 83.84 ± 0.34 | 73.93 ± 0.49 | 59.44 ± 0.40 | 54.17 ± 0.50 |
GCE | 85.62 ± 0.23 | 76.35 ± 0.28 | 61.82 ± 0.31 | 57.22 ± 0.29 | |
APL | 82.44 ± 0.05 | 71.84 ± 0.08 | 59.93 ± 0.14 | 53.74 ± 0.15 | |
ELR | 80.73 ± 2.08 | 69.33 ± 0.10 | 58.27 ± 0.15 | 54.62 ± 0.18 | |
CDR | 81.52 ± 2.08 | 72.58 ± 1.88 | 60.23 ± 2.74 | 55.10 ± 2.25 | |
PES | 87.77 ± 0.06 | 74.56 ± 0.13 | 61.86 ± 0.18 | 56.64 ± 0.16 | |
CTRR | 93.88 ± 0.41 | 89.64 ± 0.23 | 80.07 ± 0.36 | 73.59 ± 0.39 | |
FPL | 95.13 ± 0.04 | 95.18 ± 0.05 | 95.01 ± 0.05 | 94.99 ± 0.04 |
CE | P | F | Sym | Pair | Trid | Ins | Mean | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
20% | 40% | 20% | 40% | 20% | 40% | 20% | 40% | ||||
✓ | 83.81 ± 0.15 | 66.22 ± 0.43 | 81.83 ± 0.32 | 59.41 ± 0.60 | 82.97 ± 0.23 | 64.18 ± 0.41 | 81.65 ± 0.42 | 59.02 ± 0.42 | 72.39 | ||
✓ | ✓ | 93.18 ± 0.06 | 91.88 ± 0.06 | 94.10 ± 0.04 | 93.74 ± 0.05 | 94.43 ± 0.04 | 92.90 ± 0.04 | 93.72 ± 0.04 | 92.91 ± 0.02 | 93.36 | |
✓ | ✓ | 84.67 ± 0.10 | 84.18 ± 0.09 | 84.81 ± 0.05 | 84.42 ± 0.08 | 84.72 ± 0.09 | 84.10 ± 0.07 | 84.41 ± 0.09 | 84.61 ± 0.03 | 84.50 | |
✓ | ✓ | ✓ | 93.55 ± 0.03 | 92.92 ± 0.04 | 94.13 ± 0.07 | 94.08 ± 0.09 | 94.23 ± 0.06 | 93.71 ± 0.06 | 93.70 ± 0.06 | 93.59 ± 0.07 | 93.74 |
Method | Test Acc (%) | Time (h) |
---|---|---|
MSLC | 93.20 ± 0.09 | 3.93 |
MLC | 89.46 ± 0.12 | 3.7 |
CDR | 82.79 ± 0.66 | 20.44 |
FPL (w/o) | 93.18 ± 0.06 | 2.19 |
FPL | 93.55 ± 0.03 | 2.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Wang, X.; Wang , Z.; Dong, Y. Learning Accurate Pseudo-Labels via Feature Similarity in the Presence of Label Noise. Appl. Sci. 2024, 14, 2759. https://doi.org/10.3390/app14072759
Wang P, Wang X, Wang Z, Dong Y. Learning Accurate Pseudo-Labels via Feature Similarity in the Presence of Label Noise. Applied Sciences. 2024; 14(7):2759. https://doi.org/10.3390/app14072759
Chicago/Turabian StyleWang, Peng, Xiaoxiao Wang, Zhen Wang , and Yongfeng Dong. 2024. "Learning Accurate Pseudo-Labels via Feature Similarity in the Presence of Label Noise" Applied Sciences 14, no. 7: 2759. https://doi.org/10.3390/app14072759
APA StyleWang, P., Wang, X., Wang , Z., & Dong, Y. (2024). Learning Accurate Pseudo-Labels via Feature Similarity in the Presence of Label Noise. Applied Sciences, 14(7), 2759. https://doi.org/10.3390/app14072759