The Effect of Moisture Content on the Electrical Properties of Graphene Oxide/Cementitious Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of GO/CCs
2.3. Methods
3. Results and Discussion
3.1. Water Loss of GO/CCs
3.2. Conductivity of GO/CCs
3.2.1. Effect of Water Loss on Electrical Conductivity
3.2.2. Effect of Different GO Concentrations on Electrical Conductivity
3.2.3. Effect of Temperature on Electrical Conductivity
3.3. Polarization of GO/CC Specimens
3.3.1. Polarization of GO/CCs with Different GO Concentrations and Drying States
3.3.2. Spike Fluctuation of the Current Curve at Low Moisture Content State
3.4. SEM of GO/CC Specimens
4. Conclusions
- Water content is the main factor affecting the electrical conductivity of GO/CCs. The conductivity of GO/CCs decreases linearly with the increase in water loss, and the rate of conductivity decreases slowly when water loss exceeds 6%. The addition of GO has little effect on conductivity when the water content is close to saturation. When the water content is not saturated, a 0.1% GO concentration can significantly increase the electrical conductivity of GO/CCs.
- Temperature has a significant effect on the conductivity of GO/CCs, and the current intensity of GO/CCs increases tenfold when the temperature is increased from 10 °C to 70 °C. The fitted curves yield a quadratic correlation between the conductivity of GO/CCs and the temperature change.
- The addition of GO attenuates the polarization phenomenon of GO/CCs. When water loss is <8% and the GO content is ≥0.05%, the current intensity value decrease during the polarization of GO/CCs is linearly correlated with water loss. This could be used to gauge the water content of GO/CCs.
- The combined effect of ion migration in the water and electron migration on the GO surface constitutes the conductive mechanism of GO/CCs. Ion migration interferes with the electron migration paths, which are connected when the ionic conductivity is weakened.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, B.; Ding, S.; Yu, X. Intrinsic self-sensing concrete and structures: A review. Measurement 2015, 59, 110–128. [Google Scholar] [CrossRef]
- Lin, Y.; Du, H. Graphene reinforced cement composites: A review. Constr. Build. Mater. 2020, 265, 120312. [Google Scholar] [CrossRef]
- Cassese, P.; Rainieri, C.; Occhiuzzi, A. Applications of Cement-Based Smart Composites to Civil Structural Health Monitoring: A Review. Appl. Sci. 2021, 11, 8530. [Google Scholar] [CrossRef]
- Downey, A.; Garcia-Macias, E.; D’Alessandro, A.; Laflamme, S.; Castro-Triguero, R.; Ubertini, F. Continuous and embedded solutions for SHM of concrete structures using changing electrical potential in self-sensing cement-based composites. In Proceedings of the Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure, Portland, OR, USA, 25–29 March 2017; p. 10169. [Google Scholar] [CrossRef]
- Reddy, P.N.; Kavyateja, B.V.; Jindal, B.B. Structural health monitoring methods, dispersion of fibers, micro and macro structural properties, sensing, and mechanical properties of self-sensing concrete—A review. Struct. Concr. 2021, 22, 793–805. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; You, I.; Zi, G.; Lee, S.-J. Effects of carbon nanomaterial type and amount on self-sensing capacity of cement paste. Measurement 2019, 134, 750–761. [Google Scholar] [CrossRef]
- Yu, H.; Lei, Y.; Pei, C.; Wei, L.; Zhu, J.H.; Xing, F. Enhancing the mechanical and functional performance of carbon fiber reinforced cement mortar by the inclusion of a cost-effective graphene nanofluid additive. Cem. Concr. Compos. 2022, 134, 104777. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, M.; Han, X.; Zheng, Y. A review on properties of cement-based composites doped with graphene. J. Build. Eng. 2023, 70, 106367. [Google Scholar] [CrossRef]
- Verma, P.; Chowdhury, R.; Chakrabarti, A. Effect of adding highly reduced graphene oxide (rGO) nanosheets based nanomaterial on cement composites. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Gladwin Alex, A.; Kedir, A.; Gebrehiwet Tewele, T. Review on effects of graphene oxide on mechanical and microstructure of cement-based materials. Constr. Build. Mater. 2022, 360, 129609. [Google Scholar] [CrossRef]
- Lu, D.; Shi, X.; Zhong, J. Interfacial bonding between graphene oxide coated carbon nanotube fiber and cement paste matrix. Cem. Concr. Compos. 2022, 134, 104802. [Google Scholar] [CrossRef]
- Meng, S.; Ouyang, X.; Fu, J.; Niu, Y.; Ma, Y. The role of graphene/graphene oxide in cement hydration. Nanotechnol. Rev. 2021, 10, 768–778. [Google Scholar] [CrossRef]
- Rezakhani, D.; Jafari, A.H.; Hajabassi, M. Durability, mechanical properties and rebar corrosion of slag-based cement concrete modified with graphene oxide. Structures 2023, 49, 678–697. [Google Scholar] [CrossRef]
- Kong, X.; Wang, R.; Zhang, T.; Sun, R.; Fu, Y. Effects of graphene oxygen content on durability and microstructure of cement mortar composites. Constr. Build. Mater. 2022, 354, 129121. [Google Scholar] [CrossRef]
- Yoon, H.N.; Jang, D.; Kil, T.; Lee, H.K. Influence of various deterioration factors on the electrical properties of conductive cement paste. Constr. Build. Mater. 2023, 367, 130289. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, J.; Ni, Z.; Hang, Z.; Feng, C.; Yang, J.; Su, Y.; Weng, G.J. A two-step homogenization micromechanical model for strain-sensing of graphene reinforced porous cement composites. J. Build. Eng. 2023, 71, 106546. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Z.; Yu, Y.; Ben, X. The effect of graphene on the conductivity of magnesium sulfate cement. Constr. Build. Mater. 2021, 312, 125342. [Google Scholar] [CrossRef]
- Han, J.; Pan, J.; Cai, J. Self-sensing properties and piezoresistive effect of high ductility cementitious composite. Constr. Build. Mater. 2022, 323, 126390. [Google Scholar] [CrossRef]
- Qi, G.; Wang, Q.; Zhang, R.; Guo, Z.; Zhan, D.; Liu, S. Effect of rGO/GNP on the electrical conductivity and piezoresistance of cement-based composite subjected to dynamic loading. Constr. Build. Mater. 2023, 368, 130340. [Google Scholar] [CrossRef]
- Edwards, N.J.; Lin, Y.; Du, H.; Ruan, D. Effect of graphene oxide on cement mortar under quasi-static and dynamic loading. J. Build. Eng. 2023, 74, 106783. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, L.; Lin, Z.; Fan, D.; Saafi, M.; Castro Gomes, J.; Yang, S. Experimental test and analytical modeling of mechanical properties of graphene-oxide cement composites. J. Compos. Mater. 2018, 52, 3027–3037. [Google Scholar] [CrossRef]
- Chung, D.D.L.; Xi, X. A review of cement-based materials as electroceramics. Ceram. Int. 2023, 49, 24621–24642. [Google Scholar] [CrossRef]
- Li, H.; Xiao, H.; Ou, J. Electrical property of cement-based composites filled with carbon black under long-term wet and loading condition. Compos. Sci. Technol. 2008, 68, 2114–2119. [Google Scholar] [CrossRef]
- Fan, Y.; Ni, Z.; Mu, S.; Hang, Z.; Wang, Y.; Feng, C.; Su, Y.; Weng, G.J. Hybrid micromechanical modelling and experiments on electrical conductivity of graphene reinforced porous and saturated cement composites. Cem. Concr. Compos. 2023, 141, 105148. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, Q.; Zhao, L.; Hao, L.; Nie, Z. Effect of moisture on the thermoelectric properties in expanded graphite/carbon fiber cement composites. Ceram. Int. 2017, 43, 10763–10769. [Google Scholar] [CrossRef]
- Zeng, H.; Qu, S.; Tian, Y.; Hu, Y.; Li, Y. Recent progress on graphene oxide for next-generation concrete: Characterizations, applications and challenges. J. Build. Eng. 2023, 69, 106192. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Lu, N.; Qu, F.; Vessalas, K.; Sheng, D. Piezoresistive behaviours of cement-based sensor with carbon black subjected to various temperature and water content. Compos. Part B Eng. 2019, 178, 107488. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Vessalas, K.; He, X.; Sun, Z.; Sheng, D. Piezoresistivity deterioration of smart graphene nanoplate/cement-based sensors subjected to sulphuric acid attack. Compos. Commun. 2021, 23, 100563. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Zhu, X.; Sheng, D.; Shah, S.P. Multifunctional cementitious composites with integrated self-sensing and hydrophobic capacities toward smart structural health monitoring. Cem. Concr. Compos. 2021, 118, 103962. [Google Scholar] [CrossRef]
- Zhou, Z.; Xie, N.; Cheng, X.; Feng, L.; Hou, P.; Huang, S.; Zhou, Z. Electrical properties of low dosage carbon nanofiber/cement composite: Percolation behavior and polarization effect. Cem. Concr. Compos. 2020, 109, 103539. [Google Scholar] [CrossRef]
- Del Moral, B.; Baeza, F.J.; Navarro, R.; Galao, O.; Zornoza, E.; Vera, J.; Farcas, C.; Garcés, P. Temperature and humidity influence on the strain sensing performance of hybrid carbon nanotubes and graphite cement composites. Constr. Build. Mater. 2021, 284, 122786. [Google Scholar] [CrossRef]
- Guo, R.; Suo, Y.; Xia, H.; Yang, Y.; Ma, Q.; Yan, F. Study of Piezoresistive Behavior of Smart Cement Filled with Graphene Oxide. Nanomaterials 2021, 11, 206. [Google Scholar] [CrossRef] [PubMed]
- Suo, Y.; Guo, R.; Xia, H.; Yang, Y.; Yan, F.; Ma, Q. Study on modification mechanism of workability and mechanical properties for graphene oxide-reinforced cement composite. Nanomater. Nanotechnol. 2020, 10, 184798042091260. [Google Scholar] [CrossRef]
- Zhang, J.; Heath, A.; Abdalgadir, H.M.T.; Ball, R.J.; Paine, K. Electrical impedance behaviour of carbon fibre reinforced cement-based sensors at different moisture contents. Constr. Build. Mater. 2022, 353, 129049. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, A.; Zhang, L.; Wang, Q.; Yang, X.H.; Gao, X.; Shi, F. Electrical and piezoresistive properties of carbon nanofiber cement mortar under different temperatures and water contents. Constr. Build. Mater. 2020, 265, 120740. [Google Scholar] [CrossRef]
- Wei, Y.; Cui, Y.; Wang, Y. Ionic thermoelectric effect of pure cement paste and its temperature sensing performance. Constr. Build. Mater. 2023, 364, 129898. [Google Scholar] [CrossRef]
- Mao, F.; Zhang, C.; Gao, C.Z.; Dai, J.; Zhang, F.S. The effects of electron transfer on the energy loss of slow He2+, C2+, and C4+ ions penetrating a graphene fragment. J. Phys. Condens. Matter 2014, 26, 085402. [Google Scholar] [CrossRef] [PubMed]
Component | SiO2 | CaO | Al2O3 | MgO | SO3 | Fe2O3 |
---|---|---|---|---|---|---|
Percentage (%) | 24.99 | 51.42 | 8.26 | 3.71 | 2.51 | 4.03 |
Diameter (μm) | Thickness (nm) | Layers | Purity | Element (%) | ||
---|---|---|---|---|---|---|
Carbon | Oxygen | Sulfur | ||||
0.5–3 | 0.55–1.2 | <3 | >99% | 68.44 | 30.92 | 0.63 |
Cement (g) | w/c | Deionized Water (g) | GO (%) | GO (g) | PCs (g) |
---|---|---|---|---|---|
500 | 0.35 | 175 | 0.000 | 0 | 3.6 |
500 | 0.35 | 175 | 0.025 | 0.125 | 3.6 |
500 | 0.35 | 175 | 0.050 | 0.25 | 3.6 |
500 | 0.35 | 175 | 0.075 | 0.375 | 3.6 |
500 | 0.35 | 175 | 0.100 | 0.5 | 3.6 |
GO Concentration | Drying State I | Drying State II | Drying State III | Drying State IV | Drying State V | Drying State VI |
---|---|---|---|---|---|---|
Water Loss | ||||||
0.000% | 0.000% | 1.358% | 3.600% | 5.552% | 7.188% | 8.830% |
0.025% | 0.000% | 1.677% | 3.590% | 5.230% | 7.130% | 8.813% |
0.050% | 0.000% | 1.737% | 3.803% | 5.477% | 7.477% | 9.223% |
0.075% | 0.000% | 1.923% | 4.090% | 5.870% | 7.963% | 9.867% |
0.100% | 0.000% | 2.016% | 4.152% | 5.936% | 7.868% | 9.912% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Xia, H.; Yan, F.; Zhang, K.; Guo, R. The Effect of Moisture Content on the Electrical Properties of Graphene Oxide/Cementitious Composites. Appl. Sci. 2024, 14, 2819. https://doi.org/10.3390/app14072819
Liang Z, Xia H, Yan F, Zhang K, Guo R. The Effect of Moisture Content on the Electrical Properties of Graphene Oxide/Cementitious Composites. Applied Sciences. 2024; 14(7):2819. https://doi.org/10.3390/app14072819
Chicago/Turabian StyleLiang, Zhengxian, Haiting Xia, Feng Yan, Kaomin Zhang, and Rongxin Guo. 2024. "The Effect of Moisture Content on the Electrical Properties of Graphene Oxide/Cementitious Composites" Applied Sciences 14, no. 7: 2819. https://doi.org/10.3390/app14072819
APA StyleLiang, Z., Xia, H., Yan, F., Zhang, K., & Guo, R. (2024). The Effect of Moisture Content on the Electrical Properties of Graphene Oxide/Cementitious Composites. Applied Sciences, 14(7), 2819. https://doi.org/10.3390/app14072819