The Role of Brachytherapy Alone and in Combined Treatment of Esophageal Cancer—A Review
Abstract
:1. Introduction
2. Brachytherapy as Radical Treatment
2.1. Intraductal Brachytherapy as an Independent Treatment in Early Esophageal Cancer
2.2. Brachytherapy Combined with Teleradiotherapy in the Treatment of Early Esophageal Cancer
3. Brachytherapy Combined with Teleradiotherapy in Advanced, Non-Operative Stages
4. Brachytherapy in the Palliative Treatment of Esophageal Cancer
5. Conclusions
6. Future Direction
Funding
Conflicts of Interest
References
- Soni, K.K.; Arora, V.; Chaudhary, A.; Kumar, H.S.; Tanwar, R.K.; Sharma, N.; Jakhar, S.L.; Purohit, B.N. Comparative Study between conventional EBRT alone and EBRT followed by intraluminal brachytherapy in local advanced cancer esophagus. J. Radiat. Cancer Res. 2023, 14, 28–32. [Google Scholar]
- Lancellotta, V.; Cellini, F.; Fionda, B.; De Sanctis, V.; Vidali, C.; Fusco, V.; Frassine, F.; Tomasini, D.; Vavassori, A.; Gambacorta, M.A.; et al. The role of interventional radiotherapy (brachytherapy) in stage I esophageal cancer: An AIRO (Italian Association of Radiotherapy and Clinical Oncology) systematic review. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7589–7597. [Google Scholar]
- Pellat, A.; Dohan, A.; Soyer, P.; Veziant, J.; Coriat, R.; Barret, M. The Role of Magnetic Resonance Imaging in the Management of Esophageal Cancer. Cancers 2022, 14, 1141. [Google Scholar] [CrossRef] [PubMed]
- Dudzic, W.; Płatkowski, C.; Folwarski, M.; Meyer-Szary, J.; Kaźmierczak-Siedlecka, K.; Ekman, M.; Wojciechowicz, T.; Dobosz, M. Nutritional Status and the Outcomes of Endoscopic Stenting in Benign and Malignant Diseases of Esophagus. Nutrients 2023, 15, 1524. [Google Scholar] [CrossRef]
- Tai, P.; Yu, E. Esophageal cancer management controversies: Radiation oncology point of view. World J. Gastrointest. Oncol. 2014, 6, 263–274. [Google Scholar] [CrossRef]
- Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Cooke, D.; Corvera, C.; Das, P.; Enzinger, P.C.; Enzler, T.; Farjah, F.; Gerdes, H.; et al. Esophageal and Esophagogastric Junction Cancers, Version 2.2023, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2023, 21, 393–422. [Google Scholar] [CrossRef] [PubMed]
- Fuccio, L.; Mandolesi, D.; Farioli, A.; Hassan, C.; Frazzoni, L.; Guido, A.; de Bortoli, N.; Cilla, S.; Pierantoni, C.; Violante, F.S.; et al. Brachytherapy for the palliation of dysphagia owing to esophageal cancer: A systematic review and metaanalysis of prospective studies. Radiother. Oncol. 2017, 122, 332–339. [Google Scholar] [CrossRef]
- Zheng, H.; Kang, N.; Huang, Y.; Zhao, Y.; Zhang, R. Endoscopic resection versus esophagectomy for early esophageal cancer: A meta-analysis. Transl. Cancer Res. 2021, 10, 2653–2662. [Google Scholar] [CrossRef]
- Maingon, P.; d’Hombres, A.; Truc, G.; Barillot, I.; Michiels, C.; Bedenne, L.; Horiot, J.C. High dose rate brachytherapy for superficial cancer of the esophagus. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 71–76. [Google Scholar] [CrossRef]
- Murakami, Y.; Nagata, Y.; Nishibuchi, I.; Kimura, T.; Kenjo, M.; Kaneyasu, Y.; Okabe, T.; Hashimoto, Y.; Akagi, Y. Longterm outcomes of intraluminal brachytherapy in combination with external beam radiotherapy for superficial esophageal cancer. Int. J. Clin. Oncol. 2012, 17, 263–271. [Google Scholar] [CrossRef]
- Hishikawa, Y.; Kurisu, K.; Taniguchi, M.; Kamikonya, N.; Miura, T. High-dose-rate intraluminal brachytherapy (HDRIBT) for esophageal cancer. IJROBP 1991, 21, 1133–1135. [Google Scholar] [CrossRef]
- Nemoto, K.; Yamada, S.; Hareyama, M.; Nagakura, H.; Hirokawa, Y. Radiation therapy for superficial esophageal cancer: A comparison of radiotherapy methods. Int. J. Radiat. Oncol. Biol. Phys. 2001, 50, 639–644. [Google Scholar] [CrossRef]
- Rovirosa, Á.; Tagliaferri, L.; Chicheł, A.; Lancellotta, V.; Zhang, Y.; Antelo, G.; Hoskin, P.; Steen-Banasik, E.V.; Biete, A.; Kovács, G. Why is a very easy, useful, old technique underused? An overview of esophageal brachytherapy—Interventional radiotherapy. J. Contemp. Brachytherapy 2022, 14, 299–309. [Google Scholar] [CrossRef]
- Murakami, M.; Kuroda, Y.; Nakajima, T.; Okamoto, Y.; Mizowaki, T.; Kusumi, F.; Hajiro, K.; Nishimura, S.; Matsusue, S.; Takeda, H. Comparison between chemoradiation protocol intended for organ preservation and conventional surgery for clinical T1-T2 esophageal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 1999, 45, 277–284. [Google Scholar] [CrossRef]
- Ishikawa, H.; Sakurai, H.; Tamaki, Y.; Nonaka, T.; Yamakawa, M.; Saito, Y.; Kitamoto, Y.; Higuchi, K.; Hasegawa, M.; Nakano, T. Radiation therapy alone for stage I (UICC T1N0M0) squamous cell carcinoma of the esophagus: Indications for surgery or combined chemoradiotherapy. J. Gastroenterol. Hepatol. 2006, 21, 1290–1296. [Google Scholar] [CrossRef]
- Pasquier, D.; Mirabel, X.; Adenis, A.; Rezvoy, N.; Hecquet, G.; Fournier, C.; Coche-Dequeant, B.; Prevost, B.; Castelain, B.; Lartigau, E. External beam radiation therapy followed by high-dose-rate brachytherapy for inoperable superficial esophageal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 1456–1461. [Google Scholar] [CrossRef]
- Tamaki, T.; Ishikawa, H.; Takahashi, T.; Tamaki, Y.; Kitamoto, Y.; Okamoto, M.; Noda, S.E.; Katoh, H.; Shirai, K.; Sakurai, H.; et al. Comparison of efficacy and safety of low-dose-rate vs. high-dose-rate intraluminal brachytherapy boost in patients with superficial esophageal cancer. Brachytherapy 2012, 11, 130–136. [Google Scholar] [CrossRef]
- Sai, H.; Mitsumori, M.; Araki, N.; Mizowaki, T.; Nagata, Y.; Nishimura, Y.; Hiraoka, M. Long-term results of definitive radiotherapy for stage I esophageal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2005, 62, 1339–1344. [Google Scholar] [CrossRef]
- Yamada, K.; Murakami, M.; Okamoto, Y.; Okuno, Y.; Nakajima, T.; Kusumi, F.; Takakuwa, H.; Matsusue, S. Treatment results of chemoradiotherapy for clinical stage I (T1N0M0) esophageal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 1106–1111. [Google Scholar] [CrossRef]
- Shioyama, Y.; Nakamura, K.; Sasaki, T.; Ooga, S.; Urashima, Y.; Kimura, M.; Uehara, S.; Terashima, H.; Honda, H. Clinical results of radiation therapy for stage I esophageal cancer: A single institutional experience. Am. J. Clin. Oncol. 2005, 28, 75–80. [Google Scholar] [CrossRef]
- Nishimura, Y.; Okuno, Y.; Ono, K.; Mitsumori, M.; Nagata, Y.; Hiraoka, M. External beam radiation therapy with or without high-dose-rate intraluminal brachytherapy for patients with superficial esophageal carcinoma. Cancer 1999, 86, 220–228. [Google Scholar] [CrossRef]
- Yorozu, A.; Dokiya, T.; Oki, Y.; Suzuki, T. Curative radiotherapy with high-dose-rate brachytherapy boost for localized esophageal carcinoma: Dose-effect relationship of brachytherapy with the balloon type applicator system. Radiother. Oncol. 1999, 51, 133–139. [Google Scholar] [CrossRef]
- Gaspar, L.E.; Winter, K.; Kocha, W.I.; Coia, L.R.; Herskovic, A.; Graham, M. A phase I/II study of external beam radiation, brachytherapy, and concurrent chemotherapy for patients with localized carcinoma of the esophagus (Radiation Therapy Oncology Group Study 9207): Final report. Cancer 2000, 88, 988–995. [Google Scholar] [CrossRef]
- Kato, K.; Ito, Y.; Nozaki, I.; Daiko, H.; Kojima, T.; Yano, M.; Ueno, M.; Nakagawa, S.; Takagi, M.; Tsunoda, S.; et al. Parallel-Group Controlled Trial of Surgery Versus Chemoradiotherapy in Patients with Stage I Esophageal Squamous Cell Carcinoma. Gastroenterology 2021, 161, 1878–1886.e2. [Google Scholar] [CrossRef]
- Haneda, R.; Booka, E.; Ishii, K.; Kikuchi, H.; Hiramatsu, Y.; Kamiya, K.; Ogawa, H.; Yasui, H.; Takeuchi, H.; Tsubosa, Y. Evaluation of Definitive Chemoradiotherapy Versus Radical Esophagectomy in Clinical T1bN0M0 Esophageal Squamous Cell Carcinoma. World J. Surg. 2021, 45, 1835–1844. [Google Scholar] [CrossRef]
- Okawa, T.; Dokiya, T.; Nishio, M.; Hishikawa, Y.; Morita, K. Multi-institutional randomized trial of external radiotherapy with and without intraluminal brachytherapy for esophageal cancer in Japan. Japanese Society of Therapeutic Radiology and Oncology (JASTRO) Study Group. Int. J. Radiat. Oncol. Biol. Phys. 1999, 45, 623–628. [Google Scholar] [CrossRef]
- van Hagen, P.; Hulshof, M.C.; van Lanschot, J.J.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.; Richel, D.J.; Nieuwenhuijzen, G.A.; Hospers, G.A.; Bonenkamp, J.J.; et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef]
- Macdonald, J.S.; Smalley, S.R.; Benedetti, J.; Hundahl, S.A.; Estes, N.C.; Stemmermann, G.N.; Haller, D.G.; Ajani, J.A.; Gunderson, L.L.; Jessup, J.M.; et al. Chemoradiotherapy after Surgery Compared with Surgery Alone for Adenocarcinoma of the Stomach or Gastroesophageal Junction. N. Engl. J. Med. 2001, 345, 725–730. [Google Scholar] [CrossRef]
- Tepper, J.; Krasna, M.J.; Niedzwiecki, D.; Hollis, D.; Reed, C.E.; Goldberg, R.; Kiel, K.; Willett, C.; Sugarbaker, D.; Mayer, R. Phase III trial of trimodality therapy with cisplatin, fluorouracil, radiotherapy, and surgery compared with surgery alone for esophageal cancer: CALGB 9781. J. Clin. Oncol. 2008, 26, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Yea, J.W.; Oh, S.A.; Park, J.W. Omitting surgery in esophageal cancer patients with complete response after neoadjuvant chemoradiotherapy: A systematic review and meta-analysis. Radiat. Oncol. 2021, 16, 219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, M.; Zhang, K.; Zheng, A.; Li, G.; Chen, S.; Chen, X.; Li, X.; Sheng, Y.; Sun, X.; et al. Concurrent Chemoradiation of Different Doses (50.4 Gy vs. 59.4 Gy) and Different Target Field (ENI vs. IFI) for Locally Advanced Esophageal Squamous Cell Carcinoma: Results from a Randomized, Multicenter Phase Ⅲ Clinical. IJROBP 2022, 114, S15. [Google Scholar] [CrossRef]
- Herskovic, A.; Martz, K.; Sarraf, M.; Leichman, L.; Brindle, J.; Vaitkevicius, V.; Cooper, J.; Byhardt, R.; Davis, L.; Emami, B. Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N. Engl. J. Med. 1992, 326, 1593–1598. [Google Scholar] [CrossRef]
- Hujala, K.; Sipilä, J.; Minn, H.; Ruotsalainen, P.; Grenman, R. Combined external and intraluminal radiotherapy in the treatment of advanced oesophageal cancer. Radiother. Oncol. 2002, 64, 41–45. [Google Scholar] [CrossRef]
- Vuong, T.; Szego, P.; David, M.; Evans, M.; Parent, J.; Mayrand, S.; Corns, R.; Burtin, P.; Faria, S.; Devic, S. The safety and usefulness of high-dose-rate endoluminal brachytherapy as a boost in the treatment of patients with esophageal cancer with external beam radiation with or without chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 758–764. [Google Scholar] [CrossRef]
- López Carrizosa, M.C.; Samper Ots, P.M.; Rodríguez Pérez, A.; Sotoca, A.; Sáez Garrido, J.; de Miguel, M.M. High dose rate brachytherapy (HDR-BT) in locally advanced oesophageal cancer. Clinic response and survival related to biological equivalent dose (BED). Clin. Transl. Oncol. 2007, 6, 385–391. [Google Scholar] [CrossRef]
- Taal, B.G.; Aleman, B.M.; Koning, C.C.; Boot, H. High dose rate brachytherapy before external beam irradiation in inoperable oesophageal cancer. Br. J. Cancer 1996, 74, 1452–1457. [Google Scholar] [CrossRef]
- Ye, M.; Han, D.; Mao, Z.; Cheng, G. A prospective study of radical external beam radiotherapy versus external beam radiotherapy combined with intraluminal brachytherapy for primary esophageal cancer. Brachytherapy 2022, 5, 703–711. [Google Scholar] [CrossRef]
- Muijs, C.T.; Beukema, J.C.; Mul, V.E.; Plukker, J.T.; Sijtsema, N.M.; Langendijk, J.A. External beam radiotherapy combined with intraluminal brachytherapy in esophageal carcinoma. Radiother. Oncol. 2012, 2, 303–308. [Google Scholar] [CrossRef]
- Someya, M.; Sakata, K.; Saito, A.; Nagakura, H.; Oouchi, A.; Hareyama, M. Results of external irradiation and low-dose-rate intraluminal brachytherapy for esophageal cancer. Acta Oncol. 2002, 41, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Calais, G.; Dorval, E.; Louisot, P.; Bourlier, P.; Klein, V.; Chapet, S.; Reynaud-Bougnoux, A.; Huten, N.; De Calan, L.; Aget, H.; et al. Radiotherapy with high dose rate brachytherapy boost and concomitant chemotherapy for Stages IIB and III esophageal carcinoma: Results of a pilot study. Int. J. Radiat. Oncol. Biol. Phys. 1997, 38, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Mangesius, J.; Hörmandinger, K.; Jäger, R.; Skvortsov, S.; Plankensteiner, M.; Maffei, M.; Seppi, T.; Dejaco, D.; Santer, M.; Sarcletti, M.; et al. Chemoradiotherapy Combined with Brachytherapy for the Definitive Treatment of Esophageal Carcinoma. Cancers 2023, 15, 3594. [Google Scholar] [CrossRef]
- Laskar, S.G.; Lewis, S.; Agarwal, J.P.; Mishra, S.; Mehta, S.; Patil, P. Combined brachytherapy and external beam radiation: An effective approach for palliation in esophageal cancer. J. Contemp. Brachytherapy 2015, 7, 453–461. [Google Scholar] [CrossRef]
- Aggarwal, A.; Harrison, M.; Glynne-Jones, R.; Sinha-ray, R.; Cooper, D.; Hoskin, P.J. Combination external beam radiotherapy and intraluminal brachytherapy for non-radical treatment of oesophageal carcinoma in patients not suitable for surgery or chemoradiation. Clin. Oncol. 2015, 27, 56–64. [Google Scholar] [CrossRef]
- Kissel, M.; Chirat, E.; Annede, P.; Burtin, P.; Fumagalli, I.; Bronsart, E.; Mignot, F.; Schernberg, A.; Dumas, I.; Haie-Meder, C.; et al. Esophageal brachytherapy: Institut Gustave Roussy’s experience. Brachytherapy 2020, 19, 499–509. [Google Scholar] [CrossRef]
- Li, C.; Zhao, S.; Zheng, Y.; Han, Y.; Chen, X.; Cheng, Z.; Wu, Y.; Feng, X.; Qi, W.; Chen, K.; et al. Preoperative pembrolizumab combined with chemoradiotherapy for oesophageal squamous cell carcinoma (PALACE-1). Eur. J. Cancer 2021, 144, 232–241. [Google Scholar] [CrossRef]
- Yang, J.; Huang, A.; Yang, K.; Jiang, K. Neoadjuvant chemoradiotherapy plus tislelizumab followed by surgery for esophageal carcinoma (CRISEC study): The protocol of a prospective, single-arm, phase II trial. BMC Cancer 2023, 23, 249. [Google Scholar] [CrossRef]
- van den Ende, T.; de Clercq, N.C.; van Berge Henegouwen, M.I.; Gisbertz, S.S.; Geijsen, E.D.; Verhoeven, R.H.A.; Meijer, S.L.; Schokker, S.; Dings, M.P.G.; Bergman, J.J.G.H.M.; et al. Neoadjuvant Chemoradiotherapy Combined with Atezolizumab for Resectable Esophageal Adenocarcinoma: A Single-arm Phase II Feasibility Trial (PERFECT). Clin. Cancer Res. 2021, 27, 3351–3359. [Google Scholar] [CrossRef]
- Chen, R.; Liu, Q.; Li, Q.; Zhu, Y.; Zhao, L.; Liu, S.; Chen, B.; Liu, M.; Hu, Y.; Lin, T.; et al. A phase II clinical trial of toripalimab combined with neoadjuvant chemoradiotherapy in locally advanced esophageal squamous cell carcinoma (NEOCRTEC1901). eClin. Med. 2023, 62, 102118. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, C.; Zhang, T.; Chen, X.; Dong, J.; Zhao, J.; Han, D.; Wang, J.; Zhao, G.; Cao, F.; et al. Addition of camrelizumab to docetaxel, cisplatin, and radiation therapy in patients with locally advanced esophageal squamous cell carcinoma: A phase 1b study. Oncoimmunology 2021, 10, 1971418. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.H.; Kim, H.; Park, S.Y.; Kim, D.J.; Lee, C.G.; Cho, J.; Kim, J.H.; Kim, H.R.; Kim, Y.-H.; Park, S.R.; et al. A phase II trial of preoperative chemoradiotherapy and pembrolizumab for locally advanced esophageal squamous cell carcinoma (ESCC). Ann. Oncol. 2019, 30, 754. [Google Scholar] [CrossRef]
- Park, S.; Sun, J.M.; Choi, Y.L.; Oh, D.; Kim, H.K.; Lee, T.; Chi, S.A.; Lee, S.H.; Choi, Y.S.; Jung, S.H.; et al. Adjuvant durvalumab for esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy: A placebo-controlled, randomized, double-blind, phase II study. ESMO Open 2022, 7, 100385. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Burchardt, W.; Chyrek, A.; Burchardt, E.; Bielęda, G.; Trojanowski, M.; Chicheł, A. Reducing dysphagia with palliative 2D high-dose-rate brachytherapy improves survival in esophageal cancer. J. Contemp. Brachytherapy 2019, 11, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Lancellotta, V.; Cellini, F.; Fionda, B.; De Sanctis, V.; Vidali, C.; Fusco, V.; Barbera, F.; Gambacorta, M.A.; Corvò, R.; Magrini, S.M.; et al. The role of palliative interventional radiotherapy (brachytherapy) in esophageal cancer: An AIRO (Italian Association of Radiotherapy and Clinical Oncology) systematic review focused on dysphagia-free survival. Brachytherapy 2020, 19, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Homs, M.Y.; Steyerberg, E.W.; Eijkenboom, W.M.; Tilanus, H.W.; Stalpers, L.J.; Bartelsman, J.F.; van Lanschot, J.J.; Wijrdeman, H.K.; Mulder, C.J.; Reinders, J.G.; et al. Single-dose brachytherapy versus metals stent placement for the palliation of dysphagia from oesophageal cancer: Multicenter randomized trial. Lancet 2004, 364, 1497–1504. [Google Scholar] [CrossRef]
- Van Rossum, P.S.N.; Jeene, P.M.; Rozema, T. Patient-reported outcomes after external beam radiotherapy versus brachytherapy for palliation of dysphagia in esophageal cancer: A matched comparison of two prospective trials. Radiother. Oncol. 2021, 155, 73–79. [Google Scholar] [CrossRef]
- Doki, Y.; Ajani, J.A.; Kato, K.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.H.; Adenis, A.; et al. CheckMate 648 Trial Investigators. Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 386, 449–462. [Google Scholar] [CrossRef]
- Sun, J.M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.P.; Li, Z.; Kim, S.B.; et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Lu, J.; Bai, Y.; Mao, T.; Wang, J.; Fan, Q.; Zhang, Y.; Zhao, K.; Chen, Z.; Gao, S.; et al. ESCORT-1st Investigators. Effect of Camrelizumab vs Placebo Added to Chemotherapy on Survival and Progression-Free Survival in Patients with Advanced or Metastatic Esophageal Squamous Cell Carcinoma: The ESCORT-1st Randomized Clinical Trial. JAMA 2021, 326, 916–925. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Kojima, T.; Shah, M.A.; Muro, K.; Francois, E.; Adenis, A.; Hsu, C.H.; Doi, T.; Moriwaki, T.; Kim, S.B.; Lee, S.H.; et al. Randomized Phase III KEYNOTE-181 Study of Pembrolizumab Versus Chemotherapy in Advanced Esophageal Cancer. J. Clin. Oncol. 2020, 38, 4138–4148. [Google Scholar] [CrossRef]
- Kato, K.; Cho, B.C.; Takahashi, M.; Okada, M.; Lin, C.Y.; Chin, K.; Kadowaki, S.; Ahn, M.J.; Hamamoto, Y.; Doki, Y.; et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 1506–1517. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.J.; Zaidi, A.H.; Smith, M.A.; Omstead, A.N.; Kosovec, J.E.; Matsui, D.; Martin, S.A.; DiCarlo, C.; Werts, E.D.; Silverman, J.F.; et al. The Dynamic and Transient Immune Microenvironment in Locally Advanced Esophageal Adenocarcinoma Post Chemoradiation. Ann. Surg. 2018, 268, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Osipov, A.; Li, Q.; Thomassian, S.; Annamalai, L.; Yearley, J.H.; Rutgers, J.K.; Hendifar, A.E.; Tuli, R. Impact of chemoradiotherapy on PD1/PDL1 expression and clinical outcomes in gastroesophageal cancers. J. Clin. Oncol. 2017, 35, 4031. [Google Scholar] [CrossRef]
- Patel, R.B.; Baniel, C.C.; Sriramaneni, R.N.; Bradley, K.; Markovina, S.; Morris, Z.S. Combining brachytherapy and immunotherapy to achieve in situ tumor vaccination: A review of cooperative mechanisms and clinical opportunities. Brachytherapy 2018, 17, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Z. Nonlinear dose-response relationship in the immune system following exposure to ionizing radiation: Mechanisms and implications. Nonlinearity Biol. Toxicol. Med. 2003, 1, 71–92. [Google Scholar] [CrossRef] [PubMed]
- Wani, S.Q.; Dar, I.A.; Khan, T.; Lone, M.M.; Afroz, F. Radiation Therapy and its Effects beyond the Primary Target: An Abscopal Effect. Cureus 2019, 11, e4100. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Liang, H.; Xu, M.; Yang, X.; Burnette, B.; Arina, A.; Li, X.D.; Mauceri, H.; Beckett, M.; Darga, T.; et al. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity 2014, 41, 843–852. [Google Scholar] [CrossRef]
- Harding, S.M.; Benci, J.L.; Irianto, J.; Discher, D.E.; Minn, A.J.; Roger, A. Greenberg Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 2017, 548, 4. [Google Scholar] [CrossRef]
- Gameiro, S.R.; Jammeh, M.L.; Wattenberg, M.M.; Tsang, K.Y.; Ferrone, S.; Hodge, J.W. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 2014, 5, 403–416. [Google Scholar] [CrossRef]
- Burnette, B.C.; Liang, H.; Lee, Y.; Chlewicki, L.; Khodarev, N.N.; Weichselbaum, R.R.; Fu, Y.X.; Auh, S.L. The efficacy of radiotherapy relies upon induction of type i interferon- dependent innate and adaptive immunity. Cancer Res. 2011, 71, 2488–2496. [Google Scholar] [CrossRef] [PubMed]
- Lugade, A.A.; Sorensen, E.W.; Gerber, S.A.; Moran, J.P.; Frelinger, J.G.; Lord, E.M. Radiation- induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J. Immunol. 2008, 180, 3132–3139. [Google Scholar] [CrossRef] [PubMed]
- Ablasser, A.; Goldeck, M.; Cavlar, T.; Deimling, T.; Witte, G.; Röhl, I.; Hopfner, K.-P.; Ludwig, J.; Hornung, V. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 2013, 498, 380–384. [Google Scholar] [CrossRef]
- Ishikawa, H.; Ma, Z.; Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009, 461, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, S.; Wang, B.; Kawashima, N.; Braunstein, S.; Badura, M.; Cameron, T.O.; Babb, J.S.; Schneider, R.J.; Formenti, S.C.; Dustin, M.L.; et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J. Immunol. 2008, 181, 3099–3107. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, S.; Demaria, S. Up-regulation of the pro-inflammatory chemokine CXCL16 is a common response of tumor cells to ionizing radiation. Radiat. Res. 2010, 173, 418–425. [Google Scholar] [CrossRef]
- Link, B.; Torres Crigna, A.; Hölzel, M.; Giordano, F.A.; Golubnitschaja, O. Abscopal effects in Metastatic Cancer: Is a Predictive Approach Possible to Improve Individual Outcomes? J. Clin. Med. 2021, 31, 5124. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.A.; Callahan, M.K.; Barker, C.A.; Yamada, Y.; Yuan, J.; Kitano, S.; Mu, Z.; Rasalan, T.; Adamow, M.; Ritter, E.; et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 2012, 366, 925–931. [Google Scholar] [CrossRef]
- Dagoglu, N.; Karaman, S.; Caglar, H.B.; Oral, E.N. Abscopal Effect of Radiotherapy in the Immunotherapy Era: Systematic Review of Reported Cases. Cureus 2019, 11, e4103. [Google Scholar] [CrossRef]
- Davis, A.A.; Patel, V.G. The role of PD-L1 expression as a predictive biomarker: An analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J. Immunother. Cancer 2019, 7, 278. [Google Scholar] [CrossRef]
- Kang, J.; Demaria, S.; Formenti, S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J. Immunother. Cancer 2016, 4, 51. [Google Scholar] [CrossRef]
- Schaue, D.; Ratikan, J.A.; Iwamoto, K.S.; McBride, W.H. Maximizing tumor immunity with fractionated radiation. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1306. [Google Scholar] [CrossRef]
- Dewan, M.Z.; Galloway, A.E.; Kawashima, N.; Dewyngaert, J.K.; Babb, J.S.; Formenti, S.C.; Demaria, S. Fractionated but Not Single-Dose Radiotherapy Induces an Immune-Mediated Abscopal Effect when Combined with Anti-CTLA-4 Antibody. Clin. Cancer Res. 2009, 15, 5379–5388. [Google Scholar] [CrossRef]
- Rees, G.J.; Ross, C.M. Abscopal regression following radiotherapy for adenocarcinoma. Br. J. Radiol. 1983, 56, 63–66. [Google Scholar] [CrossRef]
- Bruton Joe, M.; Truong, P.T. Abscopal effect after palliative radiation therapy for metastatic adenocarcinoma of the esophagus. Cureus 2018, 10, e3089. [Google Scholar] [CrossRef]
- Biswas, R.; Jindel, R.; Halder, A.; Sen, K.; Kabasi, A. Abscopal effect of radiation in metastatic esophageal carcinoma: Fourth reported case. Int. Cancer Conf. J. 2023, 12, 200–204. [Google Scholar] [CrossRef]
- Zhao, X.; Kang, J.; Zhao, R. Abscopal effect of radiation on lymph node metastasis in esophageal carcinoma: A case report and literature review. Oncol. Lett. 2018, 16, 3555–3560. [Google Scholar] [CrossRef]
- Schwarzlmueller, P.; Corradini, S.; Seidensticker, M.; Zimmermann, P.; Schreiner, J.; Maier, T.; Triebig, A.; Knösel, T.; Pazos, M.; Pfluger, T.; et al. High-Dose Rate Brachytherapy Combined with PD-1 Blockade as a Treatment for Metastatic Adrenocortical Carcinoma—A Single Center Case Series. Horm. Metab. Res. 2024, 56, 30–37. [Google Scholar] [CrossRef]
- Suzuki, G.; Masui, K.; Yamazaki, H.; Takenaka, T.; Asai, S.; Taniguchi, H.; Nakamura, T.; Ukimura, O.; Yamada, K. Abscopal effect of high-dose-rate brachytherapy on pelvic bone metastases from renal cell carcinoma: A case report. J. Contemp. Brachytherapy 2019, 11, 458–461. [Google Scholar] [CrossRef]
- Bellia, S.R.; Feliciani, G.; Duca, M.D.; Monti, M.; Turri, V.; Sarnelli, A.; Romeo, A.; Kelson, I.; Keisari, Y.; Popovtzer, A.; et al. Clinical evidence of abscopal effect in cutaneous squamous cell carcinoma treated with diffusing alpha emitters radiation therapy: A case report. J. Contemp. Brachytherapy 2019, 11, 449–457. [Google Scholar] [CrossRef]
- Kubo, M.; Satoh, T.; Ishiyama, H.; Tabata, K.I.; Tsumura, H.; Komori, S.; Iwamura, M.; Baba, S.; Hayakawa, K.; Kawamura, T.; et al. Enhanced activated T cell subsets in prostate cancer patients receiving iodine-125 low-dose-rate prostate brachytherapy. Oncol. Rep. 2018, 39, 417–424. [Google Scholar] [CrossRef]
- Omari, J.; Heinze, C.; Wilck, A.; Hass, P.; Seidensticker, M.; Damm, R.; Fischbach, K.; Ricke, J.; Pech, M.; Powerski, M. Image-guided interstitial high-dose-rate brachytherapy in the treatment of metastatic esophageal squamous cell carcinoma. J. Contemp. Brachytherapy 2018, 10, 439–445. [Google Scholar] [CrossRef]
n | Stage | BT | EBRT | CHT | 5 Years LC | 5 Years OS | Toxicity | |
---|---|---|---|---|---|---|---|---|
Ishikawa 2006 [15] | 36 | T1 | HDR 3 × 3 Gy LDR 2 × 5 Gy | T1a—56 Gy T1b—60 Gy | - | T1a 100% T1b 75% | 58.7% | Pneumonitis 3% Esophagitis 15% |
Tamaki 2012 [17] | 54 | T1 | HDR 3 × 3 Gy LDR 2 × 5 Gy | T1a—56 Gy T1b—60 Gy | - | LDR 81.5% HDR 72.9% | LDR 64.7% HDR 53.6% | LDR 26% HDR 9% |
Sai 2005 [18] | 27 | T1 | 8–12 Gy/2–3 fr | 52 Gy | - | 68.4% | 58.9% | 2.9% |
Murakami 2012 [10] | 87 | T1b | 7.5 Gy/3 fr 10 Gy/2–4 fr 15 Gy/3 fr | 54–60 Gy | - | 49% | 31% | 7% |
Yamada 2006 [19] | 63 | T1 | HDR 10–12/2–3 fr | 59.4 (55–66) | PF | 66.4% | 6.3% | |
Shioyama 2005 [20] | 12 | T1 | LDR 18 (12–21) HDR 13.5 (10–20) | 60.6 (50.4–70) | - | 66% | 62% | 6.8% |
Pasquier 2006 [16] | 66 | T1a | 7 +/− 3.98 | 60 +/− 4.83 | - | 63% | 35.6 | 9% |
Nemoto 2001 [12] | 92 | T1a | LDR 9 (3–31) HDR 11(9–36) | 65 (54–84) | - | T1a 88%, T1b 77% | T1a 62%, T1b 42% | 5.4% |
Nishimura 1999 [21] | 13 | T1a | HDR 8–12 Gy/2–3 fr | 50–56 Gy | - | 3 years 85% | - | 9.5% |
Yoruzu 1999 [22] | 124 | T1–2 | HDR 8–24 | 40–60 Gy | PF | 2 years 58% | - | Ulcerations: 12 Gy—17% 24 Gy—80% |
Murakami 1998 [14] | 32 | T1–2 | HDR 10–12 | 50–66 Gy | PF | 2 years 70–83% | 2 years 72% | 20% ulcerations |
Okawa 1999 [26] | 43 | T1–4, N0–1 | 10/2 fr | 60 | Etoposide mono-therapy | - | 2 years 32.9% | Early 11.6, late 8.3 (grade 3 or more) |
Gaspar 2000 [23] | 49 | T1—2 | HDR 15/4 fr LDR 20 | 50 | PF | - | 1 year 49% | 24%, 12% fistulas |
n | Stage | BT | EBRT | CHT | LC | OS | Toxicity | |
---|---|---|---|---|---|---|---|---|
Hujala 2002 [33] | 40 | III–IV | 10 | 40 | - | - | 1 year: 30% 2 years: 17.5% | |
Vuong 2005 [34] | 70 | T1–3, N0–1 | 20 | 50 | PF | 2 years 75% | 5 years: 28% | |
Lopez 2007 [35] | 23 | II–IV | 21 | 44.2 | - | - | 5 years: 10% | |
Muijs 2011 [38] | 62 | T1–4, N0–1 | 12 | 60 | - | 1 year: 71% 2 years: 50% 5 years: 45% | 1 year: 57% 2 years: 34% 5 years: 11% | Esophagitis, ulcerations, (11%) and strictures (16%) |
Someya 2002 [39] | 77 | III–IV | 10–24 | 40–65 | - | 2 years: <5 cm: 83%, ≥5 cm: 25% | 2 years: 35.6% 5 years: 10.6% | - |
Laskar 2015 [42] | 75 | III–IV | 16 | 20–30 | - | - | 1 year: 27% | 27% (stenosis, fistula, bleeding) |
Aggarwal 2015 [43] | 59 | I–IV | 10–15 | 27–30 | - | - | 1 year: 51% 2 years: 19% 3 years: 7% | Stenosis: 8% Ulcers: 3% |
Kissel 2020 [44] | 41 | III–IV | 15 | 30 | - | - | 1 year: 68% 2 years: 50% | |
Calais 1997 [40] | 53 | IIb–III | 10 | 60 | PF, Mitomycin | LC 1 year: 74% 3 years: 30% | 3 years: 27% | Stenosis: 13% Severe late toxicity: 11% |
Taal 1996 [36] | 51 | III–IV | 10 | 40 | - | - | 1 year: 20% | 2% stenosis and 1% dead by pneumonitis |
Mangesius 2023 [41] | 71 | I–IV | 10 | 59.4 | Most only 5FU, some PF | mLC 30.5 m | mOS 22.7 m | Esophageal stenosis 22.5% |
Mingyue Ye 2022 [37] | 64 | I–IV | 10 | 50 | - | 1 year: 88% 2 years: 72% 3 years: 53% | 3 years: 38% | 2 pt: dysphagia, 3 pt: bone marrow suppression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cisek, P.; Strąk, A.; Stachyra-Strawa, P.; Majdan, A.; Grzybowska-Szatkowska, L. The Role of Brachytherapy Alone and in Combined Treatment of Esophageal Cancer—A Review. Appl. Sci. 2024, 14, 2840. https://doi.org/10.3390/app14072840
Cisek P, Strąk A, Stachyra-Strawa P, Majdan A, Grzybowska-Szatkowska L. The Role of Brachytherapy Alone and in Combined Treatment of Esophageal Cancer—A Review. Applied Sciences. 2024; 14(7):2840. https://doi.org/10.3390/app14072840
Chicago/Turabian StyleCisek, Paweł, Aleksander Strąk, Paulina Stachyra-Strawa, Andrzej Majdan, and Ludmiła Grzybowska-Szatkowska. 2024. "The Role of Brachytherapy Alone and in Combined Treatment of Esophageal Cancer—A Review" Applied Sciences 14, no. 7: 2840. https://doi.org/10.3390/app14072840
APA StyleCisek, P., Strąk, A., Stachyra-Strawa, P., Majdan, A., & Grzybowska-Szatkowska, L. (2024). The Role of Brachytherapy Alone and in Combined Treatment of Esophageal Cancer—A Review. Applied Sciences, 14(7), 2840. https://doi.org/10.3390/app14072840