MScope: A Reliable Battery for Functional Status Assessment in Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.3.1. Muscle Mass Assessments
2.3.2. Functional Capacity Assessments
2.3.3. Neuromuscular Assessments
2.4. Statistical Analysis
2.4.1. Intra-Day Reproducibility
2.4.2. Inter-Day Reproducibility
3. Results
3.1. Intra-Day Reproducibility
3.2. Inter-Day Reproducibility
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [Google Scholar] [CrossRef]
- Lublin, F.D.; Häring, D.A.; Ganjgahi, H.; Ocampo, A.; Hatami, F.; Čuklina, J.; Aarden, P.; Dahlke, F.; Arnold, D.L.; Wiendl, H.; et al. How Patients with Multiple Sclerosis Acquire Disability. Brain 2022, 145, 3147–3161. [Google Scholar] [CrossRef] [PubMed]
- Manca, A.; Dvir, Z.; Deriu, F. Meta-Analytic and Scoping Study on Strength Training in People With Multiple Sclerosis. J. Strength Cond. Res. 2019, 33, 874–889. [Google Scholar] [CrossRef]
- Beiki, O.; Frumento, P.; Bottai, M.; Manouchehrinia, A.; Hillert, J. Changes in the Risk of Reaching Multiple Sclerosis Disability Milestones In Recent Decades: A Nationwide Population-Based Cohort Study in Sweden. JAMA Neurol. 2019, 76, 665. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W.; Sandroff, B.M.; Kwakkel, G.; Dalgas, U.; Feinstein, A.; Heesen, C.; Feys, P.; Thompson, A.J. Exercise in Patients with Multiple Sclerosis. Lancet Neurol. 2017, 16, 848–856. [Google Scholar] [CrossRef]
- Latimer-Cheung, A.E.; Pilutti, L.A.; Hicks, A.L.; Martin Ginis, K.A.; Fenuta, A.M.; MacKibbon, K.A.; Motl, R.W. Effects of Exercise Training on Fitness, Mobility, Fatigue, and Health-Related Quality of Life among Adults with Multiple Sclerosis: A Systematic Review to Inform Guideline Development. Arch. Phys. Med. Rehabil. 2013, 94, 1800–1828 e3. [Google Scholar] [CrossRef] [PubMed]
- Dalgas, U.; Stenager, E.; Jakobsen, J.; Petersen, T.; Overgaard, K.; Ingemann-Hansen, T. Muscle Fiber Size Increases Following Resistance Training in Multiple Sclerosis. Mult. Scler. 2010, 16, 1367–1376. [Google Scholar] [CrossRef]
- Prosperini, L.; Di Filippo, M. Beyond Clinical Changes: Rehabilitation-Induced Neuroplasticity in MS. Mult. Scler. 2019, 25, 1348–1362. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; Mulero, P.; Menéndez, H.; Pinto-Fraga, J.; Lista, S.; Santos-Lozano, A.; Téllez, N. Pumping up the Fight against Multiple Sclerosis: The Effects of High-Intensity Resistance Training on Functional Capacity, Muscle Mass, and Axonal Damage. Healthcare 2024, 12, 837. [Google Scholar] [CrossRef]
- Mulero, P.; Maroto-Izquierdo, S.; Redondo, N.; Gonzalo-Benito, H.; Chavarría-Miranda, A.; Calvo, H.; Cabero, M.I.; Hernandez, M.; Nieto, M.L.; Tellez, N. Effect of Resistance Exercise Training on Plasma Neurofilaments in Multiple Sclerosis: A Proof of Concept for Future Designs. Neurol. Sci. 2023, 44, 3997–4000. [Google Scholar] [CrossRef] [PubMed]
- Faramarzi, M.; Banitalebi, E.; Nori, S.; Farzin, S.; Taghavian, Z. Effects of Rhythmic Aerobic Exercise plus Core Stability Training on Serum Omentin, Chemerin and Vaspin Levels and Insulin Resistance of Overweight Women. J. Sports Med. Phys. Fit. 2015, 56, 476–482. [Google Scholar]
- Kjølhede, T.; Vissing, K.; De Place, L.; Pedersen, B.G.; Ringgaard, S.; Stenager, E.; Petersen, T.; Dalgas, U. Neuromuscular Adaptations to Long-Term Progressive Resistance Training Translates to Improved Functional Capacity for People with Multiple Sclerosis and Is Maintained at Follow-Up. Mult. Scler. 2015, 21, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Caravaca, L.; Ramos-Campo, D.J.; Chung, L.H.; Manonelles, P.; Boas, J.P.V.; Rubio-Arias, J.Á. Fast-Velocity Resistance Training Improves Force Development and Mobility in Multiple Sclerosis. Int. J. Sports Med. 2022, 43, 593–599. [Google Scholar] [CrossRef]
- Dalgas, U.; Stenager, E.; Jakobsen, J.; Petersen, T.; Hansen, H.J.; Knudsen, C.; Overgaard, K.; Ingemann-Hansen, T. Resistance Training Improves Muscle Strength and Functional Capacity in Multiple Sclerosis. Neurology 2009, 73, 1478–1484. [Google Scholar] [CrossRef]
- Dalgas, U.; Kjølhede, T.; Gijbels, D.; Romberg, A.; Santoyo, C.; Noordhout, B.; Knuts, K.; Feys, P. Aerobic Intensity and Pacing Pattern during the Six-Minute Walk Test in Patients with Multiple Sclerosis. J. Rehabil. Med. 2014, 46, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.B.; Bibby, B.M.; Skjerbæk, A.G.; Jensen, E.; Sørensen, H.; Stenager, E.; Dalgas, U. Validity and Variability of the 5-Repetition Sit-to-Stand Test in Patients with Multiple Sclerosis. Disabil. Rehabil. 2012, 34, 2251–2258. [Google Scholar] [CrossRef]
- Callesen, J.; Cattaneo, D.; Brincks, J.; Kjeldgaard Jørgensen, M.-L.; Dalgas, U. How Do Resistance Training and Balance and Motor Control Training Affect Gait Performance and Fatigue Impact in People with Multiple Sclerosis? A Randomized Controlled Multi-Center Study. Mult. Scler. 2020, 26, 1420–1432. [Google Scholar] [CrossRef] [PubMed]
- Sebastião, E.; Sandroff, B.M.; Learmonth, Y.C.; Motl, R.W. Validity of the Timed Up and Go Test as a Measure of Functional Mobility in Persons With Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2016, 97, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Duncan, R.P.; Leddy, A.L.; Earhart, G.M. Five Times Sit-to-Stand Test Performance in Parkinson’s Disease. Arch. Phys. Med. Rehabil. 2011, 92, 1431–1436. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, F.C.; Candotti, C.T.; Rodrigues, L.P. Reliability of the Five Times Sit to Stand Test Performed Remotely by Multiple Sclerosis Patients. Mult. Scler. Relat. Disord. 2023, 73, 104654. [Google Scholar] [CrossRef] [PubMed]
- Mong, Y.; Teo, T.W.; Ng, S.S. 5-Repetition Sit-to-Stand Test in Subjects with Chronic Stroke: Reliability and Validity. Arch. Phys. Med. Rehabil. 2010, 91, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Faramarzi, M.; Banitalebi, E.; Raisi, Z.; Samieyan, M.; Saberi, Z.; Mardaniyan Ghahfarrokhi, M.; Negaresh, R.; Motl, R.W. Effect of Combined Exercise Training on Pentraxins and Pro- Inflammatory Cytokines in People with Multiple Sclerosis as a Function of Disability Status. Cytokine 2020, 134, 155196. [Google Scholar] [CrossRef] [PubMed]
- Twork, S.; Wiesmeth, S.; Spindler, M.; Wirtz, M.; Schipper, S.; Pöhlau, D.; Klewer, J.; Kugler, J. Disability Status and Quality of Life in Multiple Sclerosis: Non-Linearity of the Expanded Disability Status Scale (EDSS). Health Qual. Life Outcomes 2010, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Akagi, R.; Iwanuma, S.; Fukuoka, M.; Kanehisa, H.; Fukunaga, T.; Kawakami, Y. Methodological Issues Related to Thickness-Based Muscle Size Evaluation. J. Physiol. Anthropol. 2011, 30, 169–174. [Google Scholar] [CrossRef]
- Franchi, M.V.; Longo, S.; Mallinson, J.; Quinlan, J.I.; Taylor, T.; Greenhaff, P.L.; Narici, M.V. Muscle Thickness Correlates to Muscle Cross-sectional Area in the Assessment of Strength Training-induced Hypertrophy. Scand. Med. Sci. Sports 2018, 28, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Kalron, A.; Dolev, M.; Givon, U. Further Construct Validity of the Timed Up-and-Go Test as a Measure of Ambulation in Multiple Sclerosis Patients. Eur. J. Phys. Rehabil. Med. 2017, 53, 841–847. [Google Scholar] [CrossRef]
- Alcazar, J.; Losa-Reyna, J.; Rodriguez-Lopez, C.; Alfaro-Acha, A.; Rodriguez-Mañas, L.; Ara, I.; García-García, F.J.; Alegre, L.M. The Sit-to-Stand Muscle Power Test: An Easy, Inexpensive and Portable Procedure to Assess Muscle Power in Older People. Exp. Gerontol. 2018, 112, 38–43. [Google Scholar] [CrossRef]
- Bohannon, R.W. Measurement of Sit-to-Stand Among Older Adults. Top. Geriatr. Rehabil. 2012, 28, 11–16. [Google Scholar] [CrossRef]
- Courel-Ibáñez, J.; Hernández-Belmonte, A.; Cava-Martínez, A.; Pallarés, J.G. Familiarization and Reliability of the Isometric Knee Extension Test for Rapid Force Production Assessment. Appl. Sci. 2020, 10, 4499. [Google Scholar] [CrossRef]
- Severijns, D.; Lamers, I.; Kerkhofs, L.; Feys, P. Hand Grip Fatigability in Persons with Multiple Sclerosis According to Hand Dominance and Disease Progression. J. Rehabil. Med. 2015, 47, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Learmonth, Y.C.; Paul, L.; McFadyen, A.K.; Mattison, P.; Miller, L. Reliability and Clinical Significance of Mobility and Balance Assessments in Multiple Sclerosis. Int. J. Rehabil. Res. 2012, 35, 69–74. [Google Scholar] [CrossRef]
- Nilsagard, Y.; Lundholm, C.; Gunnarsson, L.-G.; Dcnison, E. Clinical Relevance Using Timed Walk Tests and “timed up and Go” Testing in Persons with Multiple Sclerosis. Physiother. Res. Int. 2007, 12, 105–114. [Google Scholar] [CrossRef]
- Ayvat, F.; Ayvat, E.; Doğan, M.; Onursal Kılınç, Ö.; Kılınç, M. Can Timed Up and Go Test Discriminate the Risk of Falling in Patients with Multiple Sclerosis with Low to Moderate Impairment? Disabil. Rehabil. 2024, 1–6. [Google Scholar] [CrossRef]
- Polidori, A.; Malagoli, M.; Giacalone, R.; Brichetto, G.; Monti Bragadin, M.; Prada, V. 30-Second Chair Stand and 5-Times Sit-to-Stand Tests Are Interesting Tools for Assessing Disability and Ability to Ambulate among Patients with Multiple Sclerosis. Life 2024, 14, 703. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.A.; Krishnan, A.V.; Goodman, A.D.; Potts, J.; Wang, P.; Havrdova, E.; Polman, C.; Rudick, R.A. The Clinical Meaning of Walking Speed as Measured by the Timed 25-Foot Walk in Patients With Multiple Sclerosis. JAMA Neurol. 2014, 71, 1386. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, A.; Cutter, G.; Bozinov, N.; Hinman, J.A.; Hittle, M.; Motl, R.; Odden, M.; Nelson, L.M. The Timed 25-Foot Walk in a Large Cohort of Multiple Sclerosis Patients. Mult. Scler. 2022, 28, 289–299. [Google Scholar] [CrossRef]
- Lang, J.T.; Kassan, T.O.; Devaney, L.L.; Colon-Semenza, C.; Joseph, M.F. Test-Retest Reliability and Minimal Detectable Change for the 10-Meter Walk Test in Older Adults With Parkinson’s Disease. J. Geriatr. Phys. Ther. 2016, 39, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.M.; Fritz, S.L.; Krotish, D.E. Assessing the Reliability and Validity of a Shorter Walk Test Compared With the 10-Meter Walk Test for Measurements of Gait Speed in Healthy, Older Adults. J. Geriatr. Phys. Ther. 2013, 36, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Paltamaa, J.; West, H.; Sarasoja, T.; Wikström, J.; Mälkiä, E. Reliability of Physical Functioning Measures in Ambulatory Subjects with MS. Physiother. Res. Int. 2005, 10, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Fry, D.K.; Pfalzer, L.A. Reliability of Four Functional Tests and Rating of Perceived Exertion in Persons with Multiple Sclerosis. Physiother. Can. 2006, 58, 212–220. [Google Scholar] [CrossRef]
- Santinelli, F.B.; Abasıyanık, Z.; Ramari, C.; Gysemberg, G.; Kos, D.; Pau, M.; Kalron, A.; Meyns, P.; Ozakbas, S.; Feys, P. Manifestations of Walking Fatigability in People with Multiple Sclerosis Based on Gait Quality and Distance Walked during the Six Minutes Walking Test. Mult. Scler. Relat. Disord. 2024, 91, 105909. [Google Scholar] [CrossRef]
- Portilla-Cueto, K.; Medina-Pérez, C.; Romero-Pérez, E.M.; Hernández-Murúa, J.A.; Vila-Chã, C.; De Paz, J.A. Reliability of Isometric Muscle Strength Measurement and Its Accuracy Prediction of Maximal Dynamic Force in People with Multiple Sclerosis. Medicina 2022, 58, 948. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Gill, N.; Newton, R.U. Reliability and Validity of Two Isometric Squat Tests. J. Strength Cond. Res. 2002, 16, 298–304. [Google Scholar] [PubMed]
- Pepin, E.B.; Spencer, M.K.; Hicks, R.W.; Jackson, C.G.R.; Tran, Z.V. Reliability of a Handgrip Test for Evaluating Heart Rate and Pressor Responses in Multiple Sclerosis. Med. Sci. Sports Exerc. 1998, 30, 1296–1298. [Google Scholar] [CrossRef]
- McGrath, R.; Johnson, N.; Klawitter, L.; Mahoney, S.; Trautman, K.; Carlson, C.; Rockstad, E.; Hackney, K.J. What Are the Association Patterns between Handgrip Strength and Adverse Health Conditions? A Topical Review. SAGE Open Med. 2020, 8, 2050312120910358. [Google Scholar] [CrossRef]
- Mañago, M.M.; Kline, P.W.; Harris-Love, M.O.; Christiansen, C.L. The Validity of the Single-Leg Heel Raise Test in People With Multiple Sclerosis: A Cross-Sectional Study. Front. Neurol. 2021, 12, 650297. [Google Scholar] [CrossRef]
- Bertoni, R.; Lamers, I.; Chen, C.C.; Feys, P.; Cattaneo, D. Unilateral and Bilateral Upper Limb Dysfunction at Body Functions, Activity and Participation Levels in People with Multiple Sclerosis. Mult. Scler. 2015, 21, 1566–1574. [Google Scholar] [CrossRef]
- Yuksel, H.; Balaban, M.; Tan, O.O.; Mungan, S. Sarcopenia in Patients with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2022, 58, 103471. [Google Scholar] [CrossRef]
- Fu, H.; Wang, L.; Zhang, W.; Lu, J.; Yang, M. Diagnostic Test Accuracy of Ultrasound for Sarcopenia Diagnosis: A Systematic Review and Meta-analysis. J. Cachexia Sarcopenia Muscle 2023, 14, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Nijholt, W.; Scafoglieri, A.; Jager-Wittenaar, H.; Hobbelen, J.S.M.; Van Der Schans, C.P. The Reliability and Validity of Ultrasound to Quantify Muscles in Older Adults: A Systematic Review. J. Cachexia Sarcopenia Muscle 2017, 8, 702–712. [Google Scholar] [CrossRef]
- Lesinski, M.; Bashford, G.; Markov, A.; Risch, L.; Cassel, M. Reliability of Assessing Skeletal Muscle Architecture and Tissue Organization of the Gastrocnemius Medialis and Vastus Lateralis Muscle Using Ultrasound and Spatial Frequency Analysis. Front. Sports Act. Living 2024, 6, 1282031. [Google Scholar] [CrossRef]
Visit | Test | Measures | ICC (95% CI) | CV (%) | ||
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
Day 1 | Handgrip (kg) | 28.40 ± 10.6 | 29.0 ± 9.4 | - | 0.965 (0.936–0.980) | 7.3 |
VLR muscle thickness (cm) | 1.82 ± 0.4 | 1.83 ± 0.4 | 1.83 ± 0.4 | 0.978 (0.964–0.987) | 3.4 | |
VLL muscle thickness (cm) | 1.83 ± 0.4 | 1.83 ± 0.4 | 1.82 ± 0.4 | 0.995 (0.995–0.997) | 2.4 | |
RFR muscle thickness (cm) | 1.88 ± 0.4 | 1.88 ± 0.4 | 1.89 ± 0.4 | 0.994 (0.990–0.997) | 2.5 | |
RFL muscle thickness (cm) | 1.85 ± 0.4 | 1.86 ± 0.4 | 1.86 ± 0.4 | 0.996 (0.994–0.999) | 1.8 | |
TUG test (s) | 6.28 ± 1.4 | 6.09 ± 1.2 | 5.94 ± 1.2 | 0.984 (0.974–0.991) | 4.4 | |
60STST (n) | 32.13 ± 9.4 | 32.22 ± 9.7 | - | 0.971 (0.947–0.984) | 4.6 | |
5RSTST (w/kg) | 2.97 ± 0.9 | 3.15 ± 0.9 | - | 0.968 (0.942–0.9802) | 6.8 | |
MVICSQ (N) | 476.59 ± 218.3 | 504.98 ± 194.6 | - | 0.912 (0.840–0.951) | 13.2 | |
GRF (N) | 1189.49 ± 271.8 | 1103.64 ± 280.2 | - | 0.935 (0.882–0.964) | 6.2 | |
GRFR (N) | 596.64 ± 153.2 | 551.51 ± 149.6 | - | 0.922 (0.859–0.957) | 7.3 | |
GRFL (N) | 588.20 ± 127.8 | 550.47 ± 136.9 | - | 0.935 (0.881–0.964) | 6.2 | |
MVICLEXT (N) | 302.48 ± 174.1 | 315.36 ± 168.6 | - | 0.983 (0.969–0.991) | 8.1 | |
UMVICLEXT_R (N) | 93.68 ± 75.5 | 105.66 ± 90.1 | - | 0.970 (0.946–0.983) | 11.5 | |
UMVICLEXT_L (N) | 111.64 ± 91.0 | 109.84 ± 93.2 | - | 0.975 (0.955–0.986) | 12.6 | |
10MWT (s) | 5.27 ± 0.9 | 5.09 ± 1.0 | 5.00 ± 0.8 | 0.957 (0.930–0.975) | 3.2 | |
Day 2 | Handgrip (kg) | 30.71 ± 9.8 | 31.17 ± 10.20 | - | 0.984 (0.970–0.991) | 4.4 |
VLR muscle thickness (cm) | 1.89 ± 0.4 | 1.89 ± 0.4 | 1.89 ± 0.4 | 0.995 (0.992–0.997) | 2.1 | |
VLL muscle thickness (cm) | 1.85 ± 0.4 | 1.86 ± 0.4 | 1.86 ± 0.4 | 0.996 (0.994–0.998) | 1.9 | |
RFR muscle thickness (cm) | 1.95 ± 0.4 | 1.94 ± 0.4 | 1.96 ± 0.4 | 0.994 (0.991–0.997) | 2.0 | |
RFL muscle thickness (cm) | 1.92 ± 0.4 | 1.91 ± 0.4 | 1.91 ± 0.4 | 0.998 (0.996–0.999) | 1.5 | |
TUG test (s) | 5.55 ± 1.0 | 5.40 ± 0.9 | 5.30 ± 0.8 | 0.975 (0.959–0.986) | 3.8 | |
60STST (n) | 37.49 ± 10.4 | 36.60 ± 10.8 | - | 0.971 (0.946–0.984) | 5.0 | |
5STST (w/kg) | 3.78 ± 0.9 | 3.91 ± 1.0 | - | 0.979 (0.960–0.988) | 4.0 | |
MVICSQ (N) | 556.75 ± 226.3 | 572.43 ± 238.7 | - | 0.970 (0.945–0.984) | 8.5 | |
GRF (N) | 1241.25 ± 283.0 | 1178.98 ± 273.5 | - | 0.988 (0.977–0.993) | 3.4 | |
GRFR (N) | 623.61 ± 157.4 | 593.82 ± 153.3 | - | 0.989 (0.980–0.994) | 3.8 | |
GRFL (N) | 617.64 ± 132.5 | 585.07 ± 126.0 | - | 0.981 (0.965–0.990) | 4.0 | |
MVICLEXT (N) | 332.25 ± 166.6 | 327.71 ± 186.8 | - | 0.980 (0.964–0.989) | 10.3 | |
UMVICLEXT_R (N) | 102.35 ± 97.9 | 97.60 ± 89.8 | - | 0.972 (0.948–0.985) | 12.8 | |
UMVICLEXT_L (N) | 103.42 ± 90.3 | 106.28 ± 92.7 | - | 0.984 (0.971–0.991) | 11.4 | |
10MWT (s) | 4.97 ± 0.8 | 4.83 ± 0.8 | 4.78 ± 0.7 | 0.982 (0.970–0.990) | 3.4 |
Tests | Measures | RMs p-Value | ICC (95% CI) | %CV | |
---|---|---|---|---|---|
Day 1 | Day 2 | ||||
Handgrip (kg) | 26.84 ± 6.2 | 28.18 ± 5.9 | 0.031 | 0.817 (0.648–0.905) | 9.2 |
VLR muscle thickness (cm) | 1.82 ± 0.4 | 1.88 ± 0.4 | 0.032 | 0.933 (0.875–0.964) | 6.2 |
VLL muscle thickness (cm) | 1.81 ± 0.4 | 1.85± 0.4 | 0.130 | 0.958 (0.920–0.978) | 4.8 |
RFR muscle thickness (cm) | 1.88 ± 0.4 | 1.94 ± 0.4 | 0.033 | 0.933 (0.874–0.964) | 5.5 |
RFL muscle thickness (cm) | 1.85 ± 0.4 | 1.88 ± 0.4 | 0.028 * | 0.973 (0.948–0.986) | 3.2 |
TUG test (s) | 5.80 ± 0.9 | 5.24 ± 0.7 | <0.001 | 0.866 (0.752–0.927) | 8.6 |
60STST (n) | 33.49 ± 10.0 | 38.17 ± 10.0 | <0.001 | 0.937 (0.884–0.966) | 10.8 |
5RSTST (w/kg) | 3.26 ± 0.9 | 3.96 ± 1.0 | <0.001 * | 0.832 (0.690–0.909) | 17.8 |
MVICSQ (N) | 541.79 ± 213.0 | 593.18 ± 229.0 | 0.014 * | 0.775 (0.587–0.877) | 17.0 |
GRF (N) | 1196.72 ± 276.6 | 1248.35 ± 282.4 | 0.102 * | 0.882 (0.682–0.907) | 9.6 |
GRFR (N) | 604.49 ± 152.0 | 628.70 ± 156.7 | 0.136 * | 0.850 (0.723–0.919) | 9.6 |
GRFL (N) | 592.47 ± 130.0 | 621.77 ± 132.2 | 0.082 | 0.797 (0.625–0.890) | 10.2 |
MVICLEXT (N) | 327.87 ± 183.9 | 349.23 ± 178.9 | 0.067 | 0.955 (0.917–0.975) | 17.1 |
UMVICLEXT_R (N) | 109.51 ± 92.3 | 108.8 ± 99.9 | 0.922 | 0.932 (0.875–0.963) | 25.9 |
UMVICLEXT_L (N) | 122.14 ± 96.4 | 122.68 ± 94.6 | 0.288 | 0.897 (0.812–0.944) | 26.9 |
10MWT (s) | 5.11 ± 0.9 | 4.86 ± 0.8 | <0.001 * | 0.933 (0.875–0.964) | 4.9 |
6MWT (m) | 621.51 ± 87.3 | 644.40 ± 84.8 | 0.002 | 0.929 (0.866–0.962) | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisardo, D.; López-Ortiz, S.; Jauregui-Fajardo, I.; Pinto-Fraga, J.; García-Chico, C.; Chavarría-Miranda, A.; Téllez, N.; Maroto-Izquierdo, S. MScope: A Reliable Battery for Functional Status Assessment in Multiple Sclerosis. Appl. Sci. 2025, 15, 11. https://doi.org/10.3390/app15010011
Lisardo D, López-Ortiz S, Jauregui-Fajardo I, Pinto-Fraga J, García-Chico C, Chavarría-Miranda A, Téllez N, Maroto-Izquierdo S. MScope: A Reliable Battery for Functional Status Assessment in Multiple Sclerosis. Applied Sciences. 2025; 15(1):11. https://doi.org/10.3390/app15010011
Chicago/Turabian StyleLisardo, Daniel, Susana López-Ortiz, Irati Jauregui-Fajardo, José Pinto-Fraga, Celia García-Chico, Alba Chavarría-Miranda, Nieves Téllez, and Sergio Maroto-Izquierdo. 2025. "MScope: A Reliable Battery for Functional Status Assessment in Multiple Sclerosis" Applied Sciences 15, no. 1: 11. https://doi.org/10.3390/app15010011
APA StyleLisardo, D., López-Ortiz, S., Jauregui-Fajardo, I., Pinto-Fraga, J., García-Chico, C., Chavarría-Miranda, A., Téllez, N., & Maroto-Izquierdo, S. (2025). MScope: A Reliable Battery for Functional Status Assessment in Multiple Sclerosis. Applied Sciences, 15(1), 11. https://doi.org/10.3390/app15010011