Optimizing Nitrogen Use Efficiency and Yield in Winter Barley: A Three-Year Study of Fertilization Systems in Southern Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Weather Conditions
2.2. Experimental Design
2.3. Experimental Treatments
- N 1–N 11: Fixed fertilization application including control plots,
- N 12–N 17: Official fertilization systems including adjustments,
2.3.1. Fixed Fertilization Levels (N 1–N 11)
2.3.2. Official Fertilization Systems (N 12–N 17)
2.3.3. Sensor-Based N Fertilization (N 18–N 28)
- Sensor-determined N applications were adjusted (N 19 to N 22) to explore the flexibility of the system.
- The first N application was varied (N 23, N 24) to test the sensitivity of the algorithm to initial fertilization levels.
- Target yields were adjusted (N 25, N 26) to evaluate performance under modified yield expectations.
- The total N supply was limited (N 27, N 28) to assess efficiency under reduced N availability.
2.4. Crop Yield, Protein Concentrations, N Uptake and N Balancing
2.5. Statistical Analyses
3. Results
3.1. Multi-Row Variety ‘Meridian’ in 2021
3.2. Two-Row Variety ‘Sandra’ in 2021
3.3. Multi-Row Variety ‘Meridian’ in 2022
3.4. Two-Row Variety ‘Sandra’ in 2022
3.5. Performance of Multi-Row Variety ‘Meridian’ in 2023
3.6. Two-Row Variety ‘Sandra’ in 2023
3.7. Evaluation of the Regression Models
4. Discussion
4.1. Discussion of Methods
4.2. Discussion of Results
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Year | Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | Oct | Nov | Dec | Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2021 | |||||||||||||
Temperature | −0.6 | 2.6 | 4.1 | 6.4 | 10.4 | 18.4 | 17.6 | 16.4 | 14.8 | 8.4 | 2.8 | 2.3 | 8.6 |
Precipitation ∑ | 63 | 43 | 48 | 25 | 147 | 155 | 114 | 159 | 53 | 29 | 33 | 75 | 945 |
2022 | |||||||||||||
Temperature | 1.4 | 3.9 | 4.5 | 7.6 | 15.1 | 18.7 | 19.5 | 19.1 | 13.0 | 12.5 | 5.5 | 1.6 | 10.2 |
Precipitation ∑ | 24 | 28 | 6 | 59 | 98 | 106 | 72 | 116 | 80 | 81 | 59 | 66 | 794 |
2023 | |||||||||||||
Temperature | 2.6 | 2.5 | 6.1 | 7.3 | 12.9 | 18.5 | 19.7 | 19.2 | 16.9 | 12.0 | 5.3 | 3.2 | 9.9 |
Precipitation ∑ | 16 | 33 | 43 | 86 | 111 | 46 | 85 | 185 | 45 | 50 | 166 | 123 | 1005 |
1991–2020 | |||||||||||||
Temperature | −1.3 | 0 | 3.6 | 7.8 | 12.3 | 15.4 | 17.5 | 16.8 | 13.6 | 8.6 | 3.3 | −0.1 | 8.1 |
Precipitation ∑ | 50 | 48 | 54 | 75 | 107 | 127 | 120 | 118 | 84 | 57 | 63 | 56 | 958 |
Treatment | N Fertilization [kg ha-1] | FM Yield [t ha−1] | Protein [%] | N Uptake [kg ha−1] | N Surplus [kg ha−1] | NUE [%] | |
---|---|---|---|---|---|---|---|
N 1 | 0/0/0=0 | 0/0/0 = 0 | 3.6 m | 8.2 l | 40.7 n | −40.7 j | |
N 2 | 40/30/0 = 70 | 40/30/0 = 70 | 7.0 l | 8.4 l | 81.8 m | −11.8 i | 58.7 b |
N 3 | 40/30/40 = 110 | 40/30/40 = 110 | 8.4k | 10.0 k | 116.9 l | -6.9 hi | 69.3 ab |
N 4 | 40/60/40 = 140 | 40/60/40 = 140 | 9.3 hij | 10.8 hijk | 140.0 ijk | 0.1 ghi | 70.9 ab |
N 5 | 70/30/40 = 140 | 70/30/40 = 140 | 9.4 ghij | 10.9 hijk | 141.2 hijk | -1.2 ghi | 71.7 a |
N 6 | 160/0/0 = 160 | 160/0/0 = 160 | 9.8 abcdefghi | 10.8 ijk | 145.9 ghijk | 14.1 cdefgh | 65.7 ab |
N 7 | 70/90/0 = 160 | 70/90/0 = 160 | 10.0 abcdefghi | 11.4 ghij | 157.3 efghi | 2.8 ghi | 72.8 a |
N 8 | 40/90/40 = 170 | 40/90/40 = 170 | 9.7 defghij | 12.3 defg | 164.0 efgh | 6.0 fghi | 72.5 a |
N 9 | 70/60/40 = 170 | 70/60/40 = 170 | 10.1 abcdefgh | 12.1 efgh | 167.8 defg | 2.2 ghi | 74.8 a |
N 10 | 70/90/40 = 200 | 70/90/40 = 200 | 10.5 abcd | 13.0 bcdef | 187.2 abcd | 12.8 cdefgh | 73.3 a |
N 11 | 70/120/40 = 230 | 70/120/40 = 230 | 10.2 abcdefg | 14.1 abc | 198.9 ab | 31.1 abcde | 68.8 ab |
N 12 | GFO | 80/52/40 = 172 | 10.3 abcdef | 12.1 efgh | 172.5 cde | −0.5 ghi | 76.6 a |
N 13 | GFO − 10% | 72/47/36 = 155 | 9.5 fghij | 11.4 ghij | 149.4 fghij | 5.6 fghi | 70.1 ab |
N 14 | GFO − 20% | 64/42/32 = 138 | 9.2 hijk | 10.3 jk | 131.7 jkl | 6.4 fghi | 65.9 ab |
N 15 | GFO − 30% | 56/36/28 = 120 | 8.9 jk | 10.0 k | 123.3 kl | −3.3 ghi | 68.8 ab |
N 16 | GFO + 10% | 88/57/44 = 189 | 10.0 abcdefgh | 12.4 defg | 171.1 cdef | 17.9 bcdefg | 69.0 ab |
N 17 | BESyD + Yara N-Tester | 60/55/50 = 165 | 9.8 bcdefghi | 11.7 fghi | 158.8 efghi | 6.2 fghi | 71.5 a |
N 18 | Sensor 10 t ha−1 | 80/94/52 = 226 | 10.3 abcdef | 13.4 abcde | 191.4 abc | 34.7 abcd | 66.5 ab |
N 19 | Sensor − 10% | 76/77/30 = 183 | 10.3 abcdef | 12.1 efgh | 172.8 cde | 10.8 defghi | 72.4 a |
N 20 | Sensor − 20% | 72/64/13 = 149 | 9.9 abcdefghi | 10.8 hijk | 148.2 fghij | 0.6 ghi | 73.0 a |
N 21 | Sensor − 30% | 68/53/7 = 128 | 9.1 ijk | 9.8 k | 124.3 kl | 3.5 ghi | 65.4 ab |
N 22 | Sensor + 10% | 84/106/61 = 251 | 10.7 ab | 14.2 ab | 209.7 a | 41.1 ab | 67.8 ab |
N 23 | Sensor 10 t ha−1 VB + 30% | 104/92/37 = 233 | 10.6 abc | 13.5 abcd | 196.2 ab | 36.1 abc | 66.9 ab |
N 24 | Sensor 10 t ha−1 VB − 30% | 56/107/77 = 240 | 9.9 abcdefghi | 14.5 a | 197.5 ab | 42.5 a | 65.4 ab |
N 25 | Sensor 11 t ha−1 | 88/80/50 = 218 | 10.7 a | 12.8 cdef | 188.9 abcd | 28.4 abcdef | 68.4 ab |
N 26 | Sensor 8 t ha−1 | 64/62/46 = 172 | 9.6 efghij | 12.0 fghi | 158.7 efghi | 13.1 cdefgh | 68.4 ab |
N 27 | Sensor balance | 80/92/17 = 189 | 10.4 abcde | 12.3 defg | 177.2 bcde | 11.8 cdefghi | 72.2 a |
N 28 | Sensor GFO | 80/91/1 = 172 | 9.8 cdefghi | 12.1 efgh | 163.4 efgh | 8.7 efghi | 71.3 a |
Treatment | N Fertilization [kg ha−1] | FM Yield [t ha−1] | Protein [%] | N Uptake [kg ha−1] | N Surplus [kg ha−1] | NUE [%] | |
---|---|---|---|---|---|---|---|
N 1 | 0/0/0=0 | 0/0/0 = 0 | 3.5 j | 7.4 no | 35.5 p | −35.5 l | |
N 2 | 40/30/0 = 70 | 40/30/0 = 70 | 7.1 i | 6.9 o | 67.7 o | 2.3 k | 46.0 de |
N 3 | 40/30/40 = 110 | 40/30/40 = 110 | 8.2 gh | 8.5 lmn | 96.4 mn | 13.6 j | 55.4 abcd |
N 4 | 40/60/40 = 140 | 40/60/40 = 140 | 8.9 cdefg | 9.7 ghijkl | 119.7 hijkl | 20.3 hij | 60.1 ab |
N 5 | 70/30/40 = 140 | 70/30/40 = 140 | 9.0 abcdef | 9.2 ijklm | 114.4 jkl | 25.7 ghij | 56.3 abcd |
N 6 | 160/0/0 = 160 | 160/0/0 = 160 | 9.3 abcde | 9.0 jklm | 115.1 ijkl | 44.9 abcde | 49.7 bcde |
N 7 | 70/90/0 = 160 | 70/90/0 = 160 | 9.4 abcd | 10.0 fghijk | 130.3 efghij | 29.7 efghi | 59.2 abc |
N 8 | 40/90/40 = 170 | 40/90/40 = 170 | 9.0 bcdef | 11.5 bc | 142.8 bcdef | 27.3 fghij | 63.1 a |
N 9 | 70/60/40 = 170 | 70/60/40 = 170 | 9.5 abcd | 10.6 cdefgh | 138.9 cdefg | 31.1 defghi | 60.8 ab |
N 10 | 70/90/40 = 200 | 70/90/40 = 200 | 9.7 abc | 11.4 bcd | 153.3 bc | 46.7 abc | 58.9 abc |
N 11 | 70/120/40 = 230 | 70/120/40 = 230 | 9.8 a | 13.2 a | 178.7 a | 51.3 a | 62.3 a |
N 12 | GFO | 80/63/35 = 178 | 9.6 abcd | 10.9 bcdefg | 145.2 bcde | 32.8 cdefghi | 61.6 a |
N 13 | GFO − 10% | 72/57/32 = 161 | 9.4 abcd | 10.2 efghij | 132.1 efghi | 29.0 fghi | 60.0 ab |
N 14 | GFO − 20% | 64/50/28 = 142 | 8.9 cdefg | 9.1 ijklm | 111.6 klm | 30.5 efghi | 53.6 abcde |
N 15 | GFO − 30% | 56/44/25 = 125 | 8.6 efgh | 8.8 klm | 104.3 lmn | 20.7 hij | 55.0 abcd |
N 16 | GFO + 10% | 88/69/39 = 196 | 9.6 abcd | 11.4 bcde | 150.0 bcd | 46.0 abcd | 58.4 abc |
N 17 | BESyD + Yara N-Tester | 65/50/50 = 165 | 9.3 abcde | 10.2 efghij | 130.9 efghij | 34.1 bcdefgh | 57.8 abc |
N 18 | Sensor 10 t ha−1 | 80/51/29 = 160 | 9.4 abcd | 9.6 hijkl | 125.4 fghijk | 34.6 bcdefgh | 56.2 abcd |
N 19 | Sensor − 10% | 76/41/38 = 155 | 9.2 abcdef | 9.6 hijkl | 122.1 ghijk | 32.9 cdefghi | 55.9 abcd |
N 20 | Sensor − 20% | 72/33/17 = 122 | 8.5 fgh | 8.0 mno | 93.8 n | 28.2 fghi | 47.8 cde |
N 21 | Sensor − 30% | 68/24/1 = 93 | 7.8 hi | 7.0 o | 75.5 o | 17.5 ij | 43.0 e |
N 22 | Sensor + 10% | 84/68/54 = 206 | 9.5 abcd | 12.0 ab | 157.8 b | 48.2 ab | 59.4 abc |
N 23 | Sensor 10 t ha−1 VB + 30% | 104/40/18 = 162 | 9.4 abcd | 9.5 hijkl | 123.1 ghijk | 38.9 abcdefg | 54.1 abcde |
N 24 | Sensor 10 t ha−1 VB − 30% | 56/67/52 = 175 | 9.3 abcde | 11.0 bcdef | 141.2 bcdef | 33.9 bcdefgh | 60.4 ab |
N 25 | Sensor 11 t ha−1 | 88/81/29 = 198 | 9.7 ab | 11.6 bc | 156.0 bc | 42.1 abcdef | 60.8 ab |
N 26 | Sensor 8 t ha−1 | 64/35/40 = 139 | 8.9 defg | 9.5 hijkl | 116.6 hijkl | 22.4 hij | 58.4 abc |
N 27 | Sensor balance | 80/53/36 = 169 | 9.4 abcd | 10.0 fghijk | 129.9 efghij | 39.1 abcdefg | 55.9 abcd |
N 28 | Sensor GFO | 80/56/32 = 168 | 9.5 abcd | 10.2 defghi | 133.8 defgh | 34.2 bcdefgh | 58.5 abc |
Group Name | Model Type | Nsurplusmax | Nsurplusopt |
---|---|---|---|
Meridian 2021 | LP | −21.3 | −21.3 |
Meridian 2021 | Q | −3.5 | −10.2 |
Meridian 2021 | QP | −3.3 | −10.3 |
Meridian 2022 | LP | −24.8 | −24.8 |
Meridian 2022 | Q | −3.0 | −10.6 |
Meridian 2022 | QP | −2.4 | −10.2 |
Meridian 2023 | LP 1 | 5.7 | 5.7 |
Meridian 2023 | Q | 18.0 | 14.9 |
Meridian 2023 | QP 1 | 17.9 | 14.8 |
Sandra 2021 | LP | 1.8 | 14.8 |
Sandra 2021 | Q | 37.7 | 29.8 |
Sandra 2021 | QP | 38.0 | 30.0 |
Sandra 2022 | LP | 11.7 | 11.7 |
Sandra 2022 | Q | 33.4 | 24.0 |
Sandra 2022 | QP | 31.7 | 22.8 |
Sandra 2023 | LP 1 | 30.0 | 30.0 |
Sandra 2023 | Q | 47.1 | 42.0 |
Sandra 2023 | QP 1 | 46.6 | 41.6 |
References
- BMEL. Getreide: Welche Getreide Produziert Deutschland? Available online: https://www.bmel-statistik.de/landwirtschaft/bodennutzung-und-pflanzliche-erzeugung/getreide#:~:text=Welche%20Getreide%20produziert%20Deutschland%3F&text=Weizen%20wird%20am%20meisten%20in,Hektar)%20wuchsen%20Roggen%20und%20Wintermenggetreide (accessed on 30 October 2024).
- Samarah, N.H.; Alqudah, A.M.; Amayreh, J.A.; McAndrews, G.M. The effect of late-terminal drought stress on yield components of four barley cultivars. J. Agron. Crop Sci. 2009, 195, 427–441. [Google Scholar] [CrossRef]
- Narasimhalu, P.; Kong, D.; Choo, T.M. Straw yields and nutrients of seventy-five Canadian barley cultivars. Can. J. Anim. Sci. 1998, 78, 127–134. [Google Scholar] [CrossRef]
- Balducci, E.; Beccari, G.; Orfei, M.; Tini, F.; Covarelli, L.; Benincasa, P. Nitrogen fertilization management and seeding density differently affect net blotch incidence and grain yield in one two-row and one six-row cultivar of barley. Ital. J. Agron. 2024, 19, 100019. [Google Scholar] [CrossRef]
- Weckesser, F.; Leßke, F.; Luthardt, M.; Hülsbergen, K.-J. Conceptual Design of a Comprehensive Farm Nitrogen Management System. Agronomy 2021, 11, 2501. [Google Scholar] [CrossRef]
- Olfs, H.-W.; Blankenau, K.; Brentrup, F.; Jasper, J.; Link, A.; Lammel, J. Soil- and plant-based nitrogen-fertilizer recommendations in arable farming. J. Plant Nutr. Soil Sci. 2005, 168, 414–431. [Google Scholar] [CrossRef]
- Mittermayer, M.; Donauer, J.; Kimmelmann, S.; Maidl, F.-X.; Hülsbergen, K.-J. Effects of different nitrogen fertilization systems on crop yield and nitrogen use efficiency—Results of a field experiment in southern Germany. Heliyon 2024, 10, e28065. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Li, W.; Jiang, J.; Liu, Y.; Cheng, T.; Tian, Y.; Zhu, Y.; Cao, W.; Zhang, Y.; Yao, X. A Comparative Assessment of Different Modeling Algorithms for Estimating Leaf Nitrogen Content in Winter Wheat Using Multispectral Images from an Unmanned Aerial Vehicle. Remote Sens. 2018, 10, 2026. [Google Scholar] [CrossRef]
- Prey, L.; Hu, Y.; Schmidhalter, U. High-Throughput Field Phenotyping Traits of Grain Yield Formation and Nitrogen Use Efficiency: Optimizing the Selection of Vegetation Indices and Growth Stages. Front. Plant Sci. 2019, 10, 1672. [Google Scholar] [CrossRef] [PubMed]
- Campos, I.; González-Gómez, L.; Villodre, J.; Calera, M.; Campoy, J.; Jiménez, N.; Plaza, C.; Sánchez-Prieto, S.; Calera, A. Mapping within-field variability in wheat yield and biomass using remote sensing vegetation indices. Precis. Agric 2019, 20, 214–236. [Google Scholar] [CrossRef]
- Li, F.; Mistele, B.; Hu, Y.; Chen, X.; Schmidhalter, U. Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. Eur. J. Agron. 2014, 52, 198–209. [Google Scholar] [CrossRef]
- Maidl, F.X. Method for Ascertaining the Fertilizer Requirement, in Particular the Nitrogen Fertilizer Requirement, and Apparatus for Carrying Out the Method. US-Patent Specification U.S. 10 007 640 B2, 26 June 2018. [Google Scholar]
- Basso, B.; Fiorentino, C.; Cammarano, D.; Schulthess, U. Variable rate nitrogen fertilizer response in wheat using remote sensing. Precis. Agric. 2016, 17, 168–182. [Google Scholar] [CrossRef]
- Argento, F.; Anken, T.; Abt, F.; Vogelsanger, E.; Walter, A.; Liebisch, F. Site-specific nitrogen management in winter wheat supported by low-altitude remote sensing and soil data. Precis. Agric. 2021, 22, 364–386. [Google Scholar] [CrossRef]
- Robertson, M.J.; Llewellyn, R.S.; Mandel, R.; Lawes, R.; Bramley, R.G.V.; Swift, L.; Metz, N.; O’Callaghan, C. Adoption of variable rate fertiliser application in the Australian grains industry: Status, issues and prospects. Precis. Agric. 2012, 13, 181–199. [Google Scholar] [CrossRef]
- Lowenberg-DeBoer, J.; Erickson, B. Setting the Record Straight on Precision Agriculture Adoption. Agron. J. 2019, 111, 1552–1569. [Google Scholar] [CrossRef]
- Gabriel, A.; Gandorfer, M. Adoption of digital technologies in agriculture—An inventory in a european small-scale farming region. Precis. Agric. 2022, 24, 68–91. [Google Scholar] [CrossRef]
- Hagn, L.; Mittermayer, M.; Kern, A.; Kimmelmann, S.; Maidl, F.-X.; Hülsbergen, K.-J. Effects of sensor-based, site-specific nitrogen fertilization on crop yield, nitrogen balance and nitrogen efficiency. 2024; under review. [Google Scholar]
- Sieling, K.; Kage, H. Winter barley grown in a long-term field trial with a large variation in N supply: Grain yield, yield components, protein concentration and their trends. Eur. J. Agron. 2022, 136, 126505. [Google Scholar] [CrossRef]
- Mirosavljević, M.; Momčilović, V.; Mikić, S.; Trkulja, D.; Brbaklić, L.; Zorić, M.; Abičić, I. Changes in stay-green and nitrogen use efficiency traits in historical set of winter barley cultivars. Field Crops Res. 2020, 249, 107740. [Google Scholar] [CrossRef]
- Wendland, M.; Offenberger, K.; Euba, M. N-Düngung zu Wintergerste Anhand Verschiedener Düngesysteme (DSN, N-Sensor und N-Simulation) mit und Ohne Organischer Düngung: N Fertilization for Winter Barley Using Different Fertilization Systems (DSN, N Sensor and N-Simulation) with and Without Organic Fertilization; Bayerische Landesanstalt für Landwirtschaft: Freising, Germany, 2017. [Google Scholar]
- Prücklmaier, J. Feldexperimentelle Analysen zur Ertragsbildung und Stickstoffeffizienz bei Organisch-Mineralischer Düngung auf Heterogenen Standorten und Möglichkeiten zur Effizienzsteigerung Durch Computer—Und sensorgestützte Düngesysteme (Field Experimental Analyses of Yield Effects and Nitrogen efficiency of Fertilizer Application Systems), 1st ed.; Dr. Köster: Berlin, Germany, 2020. [Google Scholar]
- Wortmann, C.S.; Tarkalson, D.D.; Shapiro, C.A.; Dobermann, A.R.; Ferguson, R.B.; Hergert, G.W.; Walters, D. Nitrogen Use Efficiency of Irrigated Corn for Three Cropping Systems in Nebraska. Agron. J. 2011, 103, 76–84. [Google Scholar] [CrossRef]
- Sieling, K.; Kage, H. Efficient N management using winter oilseed rape. A review. Agron. Sustain. Dev. 2010, 30, 271–279. [Google Scholar] [CrossRef]
- Taube, F. Die Stickstoffbedarfswerte der Düngeverordnung (DüV) für Winterraps und Winterweizen sind 15-20% zu Hoch Angesetzt—Eine Replik auf Kage et al. (2022): Stickstoffdüngung zu Winterraps und Winterweizen; Berichte über Landwirtschaft—Zeitschrift für Agrarpolitik und Landwirtschaft: Berlin, Germany, 2023; Aktuelle Beiträge. [Google Scholar] [CrossRef]
- Kuhn, T.; Enders, A.; Gaiser, T.; Schäfer, D.; Srivastava, A.K.; Britz, W. Coupling crop and bio-economic farm modelling to evaluate the revised fertilization regulations in Germany. Agric. Syst. 2020, 177, 102687. [Google Scholar] [CrossRef]
- DüV. Verordnung Über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der Guten Fachlichen Praxis Beim Düngen (Düngeverordnung-DüV).; BGBl. I S. 846 (German Fertilizer Application Ordinance); Berichte über Landwirtschaft: Berlin, Germany, 2020. [Google Scholar]
- Blume, H.-P.; Brümmer, G.W.; Fleige, H.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.-M. Scheffer/Schachtschabel Soil Science; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-642-30941-0. [Google Scholar]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants: BBCH Monograph; Open Agrar Repositorium: Quedlinburg, Germany, 2018. [Google Scholar] [CrossRef]
- Spicker, A. Entwicklung von Verfahren der Teilflächenspezifischen Stickstoffdüngung zu Wintergerste (Hordeum vulgare L.) und Winterraps (Brassica napus L.) auf Grundlage Reflexionsoptischer Messungen (Development of Sensor-Based Nitrogen Fertilization Systems for Oilseed Rape (Brassica napus L.) and Winter Wheat (Hordeum vulgare L.)), 1st ed.; Dr. Köster: Berlin, Germany, 2016; ISBN 978-3-89574-921-6. [Google Scholar]
- Stieber, J.; Kolbe, H.; Jackel, U. In Ein Verfahren der N-Düngebedarfsermittlung zur Anwendung in der Praxis, Proceedings of the 16th scientific conference on organic agriculture 2023 in Frick (CH). V. Bibic, K. Schmidtke (2023) One Step Ahead—einen Schritt voraus! Beiträge zur 16, Frick, Switzerland, 8–10 March 2023; Wissenschaftstagung Ökologischer Landbau, Frick (CH); Verlag Dr. Köster: Berlin, Germany, 2023. [Google Scholar]
- Aranguren, M.; Castellón, A.; Aizpurua, A. Wheat Grain Protein Content under Mediterranean Conditions Measured with Chlorophyll Meter. Plants 2021, 10, 374. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, G.S.; Gupta, N.; Kukal, S.S.; Meetpal-Singh. Standardization of Automated Vario EL III CHNS Analyzer for Total Carbon and Nitrogen Determination in Plants. Commun. Soil Sci. Plant Anal. 2014, 45, 1316–1324. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 18 December 2024).
- Mittermayer, M.; Gilg, A.; Maidl, F.-X.; Nätscher, L.; Hülsbergen, K.-J. Site-specific nitrogen balances based on spatially variable soil and plant properties. Precis. Agric. 2021, 22, 1416–1436. [Google Scholar] [CrossRef]
- Mittermayer, M.; Maidl, F.-X.; Nätscher, L.; Hülsbergen, K.-J. Analysis of site-specific N balances in heterogeneous croplands using digital methods. Eur. J. Agron. 2022, 133, 126442. [Google Scholar] [CrossRef]
- YARA Atfarm. How Does the N-Tester Work? How Can the N-Tester Support Me? Available online: https://support.at.farm/hc/en-ca/articles/4410320887442-How-does-the-N-Tester-work-How-can-the-N-Tester-support-me (accessed on 25 November 2024).
- Surendran, U.; Nagakumar, K.C.V.; Samuel, M.P. Remote Sensing in Precision Agriculture. In Digital Agriculture; Priyadarshan, P.M., Jain, S.M., Penna, S., Al-Khayri, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 201–223. ISBN 978-3-031-43547-8. [Google Scholar]
- Georgi, C.; Spengler, D.; Itzerott, S.; Kleinschmit, B. Automatic delineation algorithm for site-specific management zones based on satellite remote sensing data. Precis. Agric 2018, 19, 684–707. [Google Scholar] [CrossRef]
- Goulding, K. Nitrate leaching from arable and horticultural land. Soil Use Manag. 2000, 16, 145–151. [Google Scholar] [CrossRef]
- Styczen, M.E.; Abrahamsen, P.; Hansen, S.; Knudsen, L. Model analysis of the significant drop in protein content in Danish grain crops from 1990–2015. Eur. J. Agron. 2020, 118, 126068. [Google Scholar] [CrossRef]
- Evangelou, E.; Stamatiadis, S.; Schepers, J.S.; Glampedakis, A.; Glampedakis, M.; Dercas, N.; Tsadilas, C.; Nikoli, T. Evaluation of sensor-based field-scale spatial application of granular N to maize. Precis. Agric 2020, 21, 1008–1026. [Google Scholar] [CrossRef]
- Prey, L.; Schmidhalter, U. Temporal and Spectral Optimization of Vegetation Indices for Estimating Grain Nitrogen Uptake and Late-Seasonal Nitrogen Traits in Wheat. Sensors 2019, 19, 4640. [Google Scholar] [CrossRef]
Field | Unit | 2021 | 2022 | 2023 |
---|---|---|---|---|
Size of the plot trial | ha | 0.9 ha | 0.9 ha | 0.9 ha |
Name of the field | U 3–4 | U 5 | M 2–3 | |
Soil | silty loam | silty loam | silty loam | |
Soil type | Cambisol | Cambisol | Cambisol | |
German soil evaluation 1 | 54 | 55 | 54 | |
pH | 6.7 | 6.8 | 6.8 | |
Phosphorus (P2O5) | mg 100 g−1 | 13.1 | 10.9 | 6.7 |
Potassium (K2O) | mg 100 g−1 | 18.0 | 21.3 | 19.9 |
SMN (0–60 cm) 2 | kg ha−1 | 35.1 | 40.2 | 29.1 |
SMN (0–60 cm) 3 | kg ha−1 | 28.2 | 38.1 | 22.2 |
Treatment | Explanation | |
---|---|---|
N 1 | 0/0/0 = 0 | Control (no N fertilization) |
N 2 | 40/30/0 = 70 | Fixed N application |
N 3 | 40/30/40 = 110 | Fixed N application |
N 4 | 40/60/40 = 140 | Fixed N application |
N 5 | 70/30/40 = 140 | Fixed N application |
N 6 | 160/0/0 = 160 | Fixed N application |
N 7 | 70/90/0 = 160 | Fixed N application |
N 8 | 40/90/40 = 170 | Fixed N application |
N 9 | 70/60/40 = 170 | Fixed N application |
N 10 | 70/90/40 = 200 | Fixed N application |
N 11 | 70/120/40 = 230 | Fixed N application |
N 12 | GFO | Determination of the N fertilizer requirement according to GFO 1 |
N 13 | GFO − 10% | Adjustments of the N fertilizer requirement according to GFO 1 |
N 14 | GFO − 20% | Adjustments of the N fertilizer requirement according to GFO 1 |
N 15 | GFO − 30% | Adjustments of the N fertilizer requirement according to GFO 1 |
N 16 | GFO + 10% | Adjustments of the N fertilizer requirement according to GFO 1 |
N 17 | BESyD + Yara N-Tester | Model BESyD (consideration of the N content of the crop stand using a chlorophyll-meter. |
N 18 | Sensor 10 t ha−1 | Sensor method 2, target yield 10 t ha−1 |
N 19 | Sensor − 10% | Sensor method 2 (according to treatment 18) − 10% targeted N uptake |
N 20 | Sensor − 20% | Sensor method 2 (according to treatment 18) − 20% targeted N uptake |
N 21 | Sensor − 30% | Sensor method 2 (according to treatment 18) − 30% targeted N uptake |
N 22 | Sensor + 10% | Sensor method 2 (according to treatment 18) + 10% targeted N uptake |
N 23 | Sensor 10 t ha−1 VB + 30% | Sensor method 2, 30% more N fertilization at the beginning of vegetation, target yield 10 ha−1 |
N 24 | Sensor 10 t ha−1 VB − 30% | Sensor method 2, 30% less N fertilization at the beginning of vegetation, target yield 10 ha−1 |
N 25 | Sensor 11 t ha−1 | Sensor method 2, target yield 11 t ha−1 |
N 26 | Sensor 8 t ha−1 | Sensor method 2, target yield 8 t ha−1 |
N 27 | Sensor balance | Sensor method 2, the mean N uptake ha−1 with a target yield of 10 ha−1 is the upper limit of fertilization |
N 28 | Sensor GFO | Sensor method 2, the fertilizer requirement according to GFO is the upper limit of fertilization |
Treatment | N Fertilization [kg ha−1] | FM Yield [t ha−1] | Protein [%] | N Uptake [kg ha−1] | N Surplus [kg ha−1] | NUE [%] | |
---|---|---|---|---|---|---|---|
N 1 | 0/0/0 = 0 | 0/0/0 = 0 | 3.5 j | 10.3 op | 49.3 n | −49.3 k | |
N 2 | 40/30/0 = 70 | 40/30/0 = 70 | 7.7 i | 10.0 p | 106.2 m | −36.2 j | 81.2 abcd |
N 3 | 40/30/40 = 110 | 40/30/40 = 110 | 8.8 h | 11.1 no | 134.2 l | −24.2 hij | 77.2 abcdef |
N 4 | 40/60/40 = 140 | 40/60/40 = 140 | 9.9 defg | 11.9 ijklm | 162.3 hij | −22.3 ghij | 80.7 abcde |
N 5 | 70/30/40 = 140 | 70/30/40 = 140 | 10.1 bcdef | 11.3 lmn | 157.2 ijk | −17.2 ghi | 77.0 abcdef |
N 6 | 160/0/0 = 160 | 160/0/0 = 160 | 10.8 ab | 11.7 klmn | 172.6 fghi | −12.6 efghi | 77.1 abcdef |
N 7 | 70/90/0 = 160 | 70/90/0 = 160 | 10.6 abcde | 12.2 hijk | 176.6 efgh | −16.6 fghi | 79.6 abcde |
N 8 | 40/90/40 = 170 | 40/90/40 = 170 | 10.0 cdefg | 13.2 efg | 181.6 defg | −11.6 efghi | 77.8 abcde |
N 9 | 70/60/40 = 170 | 70/60/40 = 170 | 10.5 abcdef | 12.6 ghi | 182.1 cdefg | −12.1 efghi | 78.1 abcde |
N 10 | 70/90/40 = 200 | 70/90/40 = 200 | 10.6 abcd | 13.6 def | 197.2 abc | 2.8 bcde | 74.0 cdefg |
N 11 | 70/120/40 = 230 | 70/120/40 = 230 | 10.0 cdefg | 14.7 ab | 201.7 a | 28.3 a | 66.3 g |
N 12 | GFO | 60/55/50 = 175 | 10.9 a | 12.9 fgh | 193.7 abcd | −18.7 ghij | 82.5 abc |
N 13 | GFO − 10% | 54/50/54 = 158 | 10.4 abcdef | 12.5 ghij | 178.1 efg | −20.1 ghij | 81.5 abc |
N 14 | GFO − 20% | 48/44/48 = 140 | 10.5 abcdef | 11.7 jklmn | 168.4 ghij | −28.4 ij | 85.1 ab |
N 15 | GFO − 30% | 42/39/42 = 123 | 9.4 gh | 11.2 mn | 145.6 kl | −22.6 ghij | 78.3 abcde |
N 16 | GFO + 10% | 66/61/66 = 193 | 10.9 a | 13.3 efg | 198.8 ab | −5.8 cdefg | 77.4 abcdef |
N 17 | BESyD + Yara N-Tester | 55/60/50 = 165 | 10.7 ab | 12.1 ijkl | 177.3 efgh | −12.3 efghi | 77.5 abcdef |
N 18 | Sensor 10 t ha−1 | 60/77/68 = 205 | 10.9 a | 13.7 def | 204.7 a | 0.9 bcdef | 75.7 bcdefg |
N 19 | Sensor − 10% | 57/68/57 = 182 | 10.6 abc | 13.1 efg | 191.4 abcde | −10.2 defgh | 78.4 abcde |
N 20 | Sensor − 20% | 54/54/40 = 148 | 10.6 abc | 12.1 hijk | 177.2 efgh | −28.7 ij | 86.5 a |
N 21 | Sensor − 30% | 51/49/33 = 133 | 9.9 efg | 11.5 klmn | 155.9 jk | −23.6 hij | 80.7 abcde |
N 22 | Sensor + 10% | 63/89/82 = 234 | 9.8 fg | 15.3 a | 206.8 a | 26.9 a | 67.4 fg |
N 23 | Sensor 10 t ha−1 VB + 30% | 60/81/72 = 213 | 10.5 abcdef | 14.2 bcd | 205.6 a | 6.7 bcd | 73.7 cdefg |
N 24 | Sensor 10 t ha−1 VB − 30% | 60/78/70 = 208 | 10.3 abcdef | 13.9 cde | 196.3 abcd | 11.8 abc | 70.7 efg |
N 25 | Sensor 11 t ha−1 | 66/72/82 = 220 | 10.4 abcdef | 14.5 bc | 206.1 a | 14.0 ab | 71.2 defg |
N 26 | Sensor 8 t ha−1 | 48/73/38 = 159 | 10.1 bcdefg | 12.6 ghi | 174.8 fgh | −15.8 fghi | 79.0 abcde |
N 27 | Sensor balance | 60/80/49 = 189 | 11.0 a | 13.0 fg | 196.6 abcd | −7.6 defgh | 78.0 abcde |
N 28 | Sensor GFO | 60/82/33 = 175 | 10.6 abcde | 12.7 ghi | 184.0 bcdef | −9.0 defgh | 77.0 abcdef |
Treatment | N Fertilization [kg ha−1] | FM Yield [t ha−1] | Protein [%] | N Uptake [kg ha−1] | N Surplus [kg ha−1] | NUE [%] | |
---|---|---|---|---|---|---|---|
N 1 | 0/0/0 = 0 | 0/0/0 = 0 | 2.9 k | 8.6 l | 35.4 p | −35.4 l | |
N 2 | 40/30/0 = 70 | 40/30/0 = 70 | 7.0 j | 8.7 l | 84.3 o | −14.3 k | 69.8 a |
N 3 | 40/30/40 = 110 | 40/30/40 = 110 | 8.1 i | 9.8 k | 109.6 n | 0.4 jk | 67.4 a |
N 4 | 40/60/40 = 140 | 40/60/40 = 140 | 8.9 h | 10.6 ghijk | 130.4 klm | 9.7 ghij | 67.8 a |
N 5 | 70/30/40 = 140 | 70/30/40 = 140 | 9.2 fgh | 10.2 ijk | 128.7 klm | 11.4 ghij | 66.6 a |
N 6 | 160/0/0 = 160 | 160/0/0 = 160 | 9.9 abcde | 10.1 jk | 137.3 ijk | 22.7 cdefghi | 63.7 a |
N 7 | 70/90/0 = 160 | 70/90/0 = 160 | 9.6 cdef | 11.1 efghi | 148.4 ghij | 11.7 ghij | 70.6 a |
N 8 | 40/90/40 = 170 | 40/90/40 = 170 | 9.2 fgh | 11.8 def | 148.7 ghij | 21.3 cdefghi | 66.6 a |
N 9 | 70/60/40 = 170 | 70/60/40 = 170 | 9.7 bcdef | 11.5 defg | 154.3 fgh | 15.8 efghij | 69.9 a |
N 10 | 70/90/40 = 200 | 70/90/40 = 200 | 10.1 abcde | 12.2 cd | 170.2 bcde | 29.8 cdef | 67.4 a |
N 11 | 70/120/40 = 230 | 70/120/40 = 230 | 9.9 abcde | 13.4 ab | 182.2 ab | 47.9 ab | 63.8 a |
N 12 | GFO | 80/62/40 = 182 | 10.1 abcde | 11.7 def | 162.7 defg | 19.3 defghi | 69.9 a |
N 13 | GFO − 10% | 72/56/36 = 164 | 9.6 cdef | 11.2 efgh | 148.8 ghij | 15.2 efghij | 69.1 a |
N 14 | GFO − 20% | 64/50/32 = 146 | 9.6 def | 10.5 hijk | 138.6 hijk | 7.4 hij | 70.7 a |
N 15 | GFO − 30% | 56/43/28 = 127 | 8.7 h | 9.6 kl | 115.8 mn | 11.2 ghij | 63.3 a |
N 16 | GFO + 10% | 88/68/44 = 200 | 10.2 abc | 12.1 cde | 169.1 bcdef | 30.9 bcde | 66.8 a |
N 17 | BESyD + Yara N-Tester | 55/65/50 = 170 | 9.5 efg | 11.4 defgh | 150.1 ghi | 20.0 cdefghi | 67.4 a |
N 18 | Sensor 10 t ha−1 | 80/69/60 = 209 | 10.4 a | 12.8 bc | 183.1 ab | 26.2 cdefg | 70.8 a |
N 19 | Sensor − 10% | 76/65/48 = 189 | 9.9 abcde | 12.0 cde | 164.2 cdefg | 24.4 cdefgh | 68.3 a |
N 20 | Sensor − 20% | 72/47/30 = 149 | 9.7 bcde | 10.5 ghijk | 141.5 hijk | 7.5 hij | 71.2 a |
N 21 | Sensor − 30% | 68/39/18 = 125 | 9.0 h | 9.6 kl | 118.8 lmn | 6.0 ij | 66.9 a |
N 22 | Sensor + 10% | 84/84/80 = 248 | 9.8 bcde | 14.0 a | 189.2 a | 57.8 a | 62.2 a |
N 23 | Sensor 10 t ha−1 VB + 30% | 80/71/64 = 215 | 10.0 abcd | 12.9 bc | 179.9 abc | 35.4 bcd | 67.2 a |
N 24 | Sensor 10 t ha−1 VB − 30% | 80/72/64 = 216 | 10.1 abcde | 12.8 bc | 178.1 abcd | 37.7 bc | 66.1 a |
N 25 | Sensor 11 t ha−1 | 88/64/61 = 213 | 10.2 abc | 12.8 bc | 179.2 abc | 34.3 bcd | 67.4 a |
N 26 | Sensor 8 t ha−1 | 56/23/68 = 147 | 9.0 gh | 10.8 fghij | 134.2 jkl | 13.1 fghij | 67.1 a |
N 27 | Sensor balance | 80/73/36 = 189 | 10.3 ab | 11.9 cde | 168.0 bcdef | 21.0 cdefghi | 70.1 a |
N 28 | Sensor GFO | 80/73/29 = 182 | 10.0 abcde | 11.5 defg | 157.9 efg | 24.1 cdefgh | 67.3 a |
Treatment | N Fertilization [kg ha−1] | FM Yield [t ha−1] | Protein [%] | N Uptake [kg ha−1] | N Surplus [kg ha−1] | NUE [%] | |
---|---|---|---|---|---|---|---|
N 1 | 0/0/0 = 0 | 0/0/0 = 0 | 3.9 j | 10.0 k | 54.5 n | −54.5 g | |
N 2 | 40/30/0 = 70 | 40/30/0 = 70 | 7.8 i | 9.9 k | 106.3 m | −36.3 fg | 74.0 c |
N 3 | 40/30/40 = 110 | 40/30/40 = 110 | 9.3 h | 11.0 jk | 141.6 l | −31.6 f | 79.2 abc |
N 4 | 40/60/40 = 140 | 40/60/40 = 140 | 10.5 defg | 12.1 fghij | 173.9 ghij | −33.9 fg | 85.3 abc |
N 5 | 70/30/40 = 140 | 70/30/40 = 140 | 10.4 defg | 11.7 ghij | 167.6 ijk | −27.6 def | 80.8 abc |
N 6 | 160/0/0 = 160 | 160/0/0 = 160 | 11.2 abcd | 11.6 hij | 178.8 fghi | −18.8 abcdef | 77.7 abc |
N 7 | 70/90/0 = 160 | 70/90/0 = 160 | 11.1 abcde | 12.5 defghi | 192.1 defgh | −32.1 f | 86.0 ab |
N 8 | 40/90/40 = 170 | 40/90/40 = 170 | 10.9 bcde | 13.0 bcdefg | 195.0 defg | −25.0 cdef | 82.6 abc |
N 9 | 70/60/40 = 170 | 70/60/40 = 170 | 11.2 abcd | 12.9 cdefgh | 198.7 cdef | −28.7 def | 84.9 abc |
N 10 | 70/90/40 = 200 | 70/90/40 = 200 | 11.7 ab | 13.5 abcde | 218.5 abc | −18.5 abcdef | 82.0 abc |
N 11 | 70/120/40 = 230 | 70/120/40 = 230 | 11.9 a | 14.2 ab | 233.9 a | −3.9 ab | 78.0 abc |
N 12 | GFO | 60/50/60 = 170 | 11.4 abc | 13.0 bcdefg | 205.2 bcde | −35.2 fg | 88.7 a |
N 13 | GFO − 10% | 54/45/54 = 153 | 10.4 defg | 12.5 defghi | 180.2 fghi | −27.2 def | 82.2 abc |
N 14 | GFO − 20% | 48/40/48 = 136 | 10.2 efgh | 11.8 ghij | 166.2 ijk | −30.2 ef | 82.2 abc |
N 15 | GFO − 30% | 42/35/42 = 119 | 9.7 gh | 11.4 ij | 153.3 jkl | −34.3 fg | 83.0 abc |
N 16 | GFO + 10% | 66/55/66 = 187 | 11.1 abcde | 13.5 abcde | 206.3 bcde | −19.3 abcdef | 81.2 abc |
N 17 | BESyD + Yara N-Tester | 60/55/50 = 165 | 11.1 abcde | 12.6 defghi | 192.7 defg | −27.7 def | 83.8 abc |
N 18 | Sensor 10 t ha−1 | 60/86/64 = 210 | 11.4 abc | 13.9 abc | 219.3 abc | −10.3 abcde | 78.9 abc |
N 19 | Sensor − 10% | 57/70/43 = 170 | 11.2 abcd | 12.8 cdefgh | 198.9 cdef | −28.9 ef | 85.6 ab |
N 20 | Sensor − 20% | 54/56/29 = 139 | 10.6 cdef | 11.6 hij | 170.1 hijk | −31.1 f | 83.6 abc |
N 21 | Sensor − 30% | 51/46/18 = 115 | 9.7 gh | 11.1 jk | 148.5 kl | −33.0 f | 81.8 abc |
N 22 | Sensor + 10% | 63/96/69 = 228 | 11.5 abc | 14.3 ab | 227.0 ab | 0.0 a | 76.7 bc |
N 23 | Sensor 10 t ha−1 VB + 30% | 78/77/43 = 198 | 11.6 ab | 13.7 abcd | 219.0 abc | −21.3 bcdef | 83.3 abc |
N 24 | Sensor 10 t ha−1 VB − 30% | 42/94/76 = 212 | 11.0 abcde | 14.4 a | 219.2 abc | −8.0 abcd | 78.0 abc |
N 25 | Sensor 11 t ha−1 | 66/96/68 = 230 | 11.8 ab | 14.4 a | 233.9 a | −4.9 abc | 78.8 abc |
N 26 | Sensor 8 t ha−1 | 48/53/31 = 132 | 9.8 fgh | 12.2 efghij | 165.0 ijk | −33.3 f | 84.3 abc |
N 27 | Sensor balance | 60/85/44 = 189 | 11.6 ab | 13.4 abcdef | 213.7 abcd | −24.7 bcdef | 84.2 abc |
N 28 | Sensor GFO | 60/83/27 = 170 | 10.6 cdef | 13.0 bcdefg | 190.8 efgh | −20.8 bcdef | 80.2 abc |
Treatment | N Fertilization [kg ha−1] | FM Yield [t ha−1] | Protein [%] | N Uptake [kg ha−1] | N Surplus [kg ha−1] | NUE [%] | |
---|---|---|---|---|---|---|---|
N 1 | 0/0/0 = 0 | 0/0/0 = 0 | 3.1 j | 7.4 m | 32.6 m | −32.5 d | |
N 2 | 40/30/0 = 70 | 40/30/0 = 70 | 7.1 i | 8.4 lm | 83.7 l | −13.7 c | 73.1 ab |
N 3 | 40/30/40 = 110 | 40/30/40 = 110 | 8.7 fgh | 9.4 ijkl | 112.6 jk | −2.6 bc | 72.8 ab |
N 4 | 40/60/40 = 140 | 40/60/40 = 140 | 10.1 abcde | 9.9 ghijkl | 136.7 ghij | 3.3 bc | 74.4 ab |
N 5 | 70/30/40 = 140 | 70/30/40 = 140 | 9.6 bcdefg | 10.1 fghijk | 134.4 ghij | 5.6 bc | 74.5 ab |
N 6 | 160/0/0 = 160 | 160/0/0 = 160 | 9.7 bcdefg | 10.5 efghijk | 139.7 fghi | 20.3 ab | 67.0 ab |
N 7 | 70/90/0 = 160 | 70/90/0 = 160 | 10.3 abc | 11.1 cdefg | 158.9 cdefg | 1.1 bc | 79.0 ab |
N 8 | 40/90/40 = 170 | 40/90/40 = 170 | 9.9 abcdef | 12.2 abcd | 167.0 bcde | 3.0 bc | 79.1 ab |
N 9 | 70/60/40 = 170 | 70/60/40 = 170 | 10.0 ab | 11.6 bcdef | 173.3 bcd | −3.3 bc | 82.8 a |
N 10 | 70/90/40 = 200 | 70/90/40 = 200 | 11.1 a | 12.4 abc | 189.4 ab | 10.6 bc | 78.4 ab |
N 11 | 70/120/40 = 230 | 70/120/40 = 230 | 10.6 ab | 13.6 a | 199.6 a | 30.4 a | 72.6 ab |
N 12 | GFO | 60/56/55 = 171 | 10.8 ab | 11.8 bcde | 174.7 abcd | −3.7 bc | 83.2 a |
N 13 | GFO − 10% | 54/50/50 = 154 | 10.3 abc | 10.9 cdefgh | 156.0 defgh | −2.0 bc | 80.1 ab |
N 14 | GFO − 20% | 48/45/44 = 137 | 9.7 bcdefg | 10.0 ghijk | 133.1 hij | 3.9 bc | 73.4 ab |
N 15 | GFO − 30% | 42/39/39 = 120 | 9.1 cdefg | 9.9 ghijkl | 125.0 ij | −5.0 bc | 77.0 ab |
N 16 | GFO + 10% | 66/62/61 = 189 | 10.7 ab | 12.4 abc | 182.7 abc | 6.3 bc | 79.4 ab |
N 17 | BESyD + Yara N-Tester | 65/50/50 = 165 | 10.4 abc | 11.1 cdefg | 159.0 cdefg | 6.1 bc | 76.6 ab |
N 18 | Sensor 10 t ha−1 | 60/43/42 = 145 | 10.1 abcde | 10.5 efghijk | 146.2 efghi | −1.2 bc | 78.4 ab |
N 19 | Sensor − 10% | 57/36/32 = 125 | 9.0 defg | 9.8 ghijkl | 122.3 ij | 2.7 bc | 71.8 ab |
N 20 | Sensor − 20% | 54/43/16 = 113 | 8.9 efgh | 9.1 jkl | 112.1 jk | 0.9 bc | 70.4 ab |
N 21 | Sensor − 30% | 51/17/36 = 104 | 7.6 hi | 9.0 kl | 95.6 kl | 8.4 bc | 60.6 b |
N 22 | Sensor + 10% | 63/57/49 = 169 | 10.1 abcde | 11.6 bcdef | 162.1 cdefg | 6.9 bc | 76.6 ab |
N 23 | Sensor 10 t ha−1 VB + 30% | 78/35/36 = 149 | 9.9 abcdefg | 10.3 fghijk | 139.7 fghi | 9.3 bc | 71.9 ab |
N 24 | Sensor 10 t ha−1 VB − 30% | 42/55/55 = 152 | 10.3 abcd | 11.5 bcdef | 163.6 cdef | −11.6 c | 86.2 a |
N 25 | Sensor 11 t ha−1 | 66/89/47 = 202 | 10.8 ab | 12.8 ab | 191.0 ab | 11.1 bc | 78.4 ab |
N 26 | Sensor 8 t ha−1 | 48/43/20 = 111 | 8.6 gh | 9.4 hijkl | 111.5 jk | −0.5 bc | 71.1 ab |
N 27 | Sensor balance | 60/44/46 = 150 | 9.9 abcdef | 10.6 efghij | 145.7 efghi | 4.3 bc | 75.4 ab |
N 28 | Sensor GFO | 60/46/47 = 153 | 9.7 bcdefg | 10.8 defghi | 144.9 efghi | 8.1 bc | 73.4 ab |
Group Name | Model Type | MAE | RMSE | R2 | Nmax | Ymax | Nopt | Yopt |
---|---|---|---|---|---|---|---|---|
Meridian 2021 | LP | 0.39 | 0.49 | 0.89 | 144.8 | 10.5 | 144.8 | 10.5 |
Meridian 2021 | Q | 0.37 | 0.45 | 0.91 | 187.5 | 10.6 | 173.3 | 10.5 |
Meridian 2021 | QP | 0.39 | 0.48 | 0.89 | 188.2 | 10.5 | 173.6 | 10.5 |
Meridian 2022 | LP | 0.39 | 0.52 | 0.89 | 161.9 | 11.4 | 161.9 | 11.4 |
Meridian 2022 | Q | 0.35 | 0.47 | 0.91 | 233.5 | 11.7 | 213.0 | 11.6 |
Meridian 2022 | QP | 0.35 | 0.47 | 0.91 | 235.0 | 11.7 | 214.2 | 11.6 |
Meridian 2023 | LP | 0.49 | 0.61 | 0.86 | 162.0 | 10.6 | 162.0 | 10.6 |
Meridian 2023 | Q | 0.46 | 0.58 | 0.87 | 237.5 | 11.0 | 216.7 | 10.9 |
Meridian 2023 | QP | 0.46 | 0.58 | 0.87 | 237.5 | 11.0 | 216.7 | 10.9 |
Sandra 2021 | LP | 0.33 | 0.43 | 0.91 | 156.1 | 9.9 | 156.1 | 9.9 |
Sandra 2021 | Q | 0.28 | 0.36 | 0.94 | 216.7 | 10.1 | 197.4 | 10.0 |
Sandra 2021 | QP | 0.29 | 0.36 | 0.94 | 217.4 | 10.1 | 197.9 | 10.0 |
Sandra 2022 | LP | 0.41 | 0.53 | 0.86 | 172.6 | 10.3 | 172.6 | 10.3 |
Sandra 2022 | Q | 0.36 | 0.46 | 0.90 | 231.9 | 10.4 | 208.8 | 10.4 |
Sandra 2022 | QP | 0.36 | 0.46 | 0.90 | 228.0 | 10.4 | 205.7 | 10.3 |
Sandra 2023 | LP | 0.28 | 0.36 | 0.92 | 149.6 | 9.5 | 149.6 | 9.5 |
Sandra 2023 | Q | 0.23 | 0.30 | 0.94 | 215.0 | 9.7 | 192.9 | 9.6 |
Sandra 2023 | QP | 0.23 | 0.30 | 0.94 | 213.0 | 9.7 | 191.3 | 9.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mittermayer, M.; Maidl, F.-X.; Donauer, J.; Kimmelmann, S.; Liebl, J.; Hülsbergen, K.-J. Optimizing Nitrogen Use Efficiency and Yield in Winter Barley: A Three-Year Study of Fertilization Systems in Southern Germany. Appl. Sci. 2025, 15, 391. https://doi.org/10.3390/app15010391
Mittermayer M, Maidl F-X, Donauer J, Kimmelmann S, Liebl J, Hülsbergen K-J. Optimizing Nitrogen Use Efficiency and Yield in Winter Barley: A Three-Year Study of Fertilization Systems in Southern Germany. Applied Sciences. 2025; 15(1):391. https://doi.org/10.3390/app15010391
Chicago/Turabian StyleMittermayer, Martin, Franz-Xaver Maidl, Joseph Donauer, Stefan Kimmelmann, Johannes Liebl, and Kurt-Jürgen Hülsbergen. 2025. "Optimizing Nitrogen Use Efficiency and Yield in Winter Barley: A Three-Year Study of Fertilization Systems in Southern Germany" Applied Sciences 15, no. 1: 391. https://doi.org/10.3390/app15010391
APA StyleMittermayer, M., Maidl, F.-X., Donauer, J., Kimmelmann, S., Liebl, J., & Hülsbergen, K.-J. (2025). Optimizing Nitrogen Use Efficiency and Yield in Winter Barley: A Three-Year Study of Fertilization Systems in Southern Germany. Applied Sciences, 15(1), 391. https://doi.org/10.3390/app15010391