Analysis of Tunnel Deformation Using Elastoplastic Stillinger Weber (SW) Potential Embedded Discretized Virtual Internal Bond (DVIB) Method †
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
2. Development of Elastoplastic SW-DVIB Method
2.1. Brief Description of SW-DVIB Model
2.2. Elastoplastic SW-DVIB Model
2.3. Numerical Implementation
3. Simulation Results of the Elastoplastic SW-DVIB Method
3.1. Parameter Sensitivity Analysis
3.2. Plastic Deformation Simulation in a Cracked Plate
3.3. Fracture Energy Conservation
3.4. Elastoplastic SW-DVIB Fracture Simulation
3.5. Crack Growth and Linkage in Pre-Cracked Rock Disks
3.5.1. Crack Growth and Fracture Mode Transition
- Mode I tensile failure was dominant at and , where crack propagation extended vertically under maximal tensile stress conditions. This aligns with the typical fracture patterns observed in brittle materials under purely tensile loading conditions.
- Mixed-mode fracture (I + II) occurred at and , where tensile and shear interactions jointly governed crack propagation, leading to complex stress redistribution effects. This fracture mode represents the transition zone, where shear contributions significantly influence crack evolution.
- Mode II shear-dominated failure emerged at , characterized by a substantial crack path deviation due to localized shear stress concentration. The crack trajectory exhibited pronounced branching and irregular fracture surfaces, indicative of shear-driven instability.
3.5.2. Scaling Effect and Crack Coalescence Mechanisms
3.6. Analysis of Tunnel Deformation
3.6.1. In Situ Stress and Its Effects on Tunnel Deformation
3.6.2. Effect of Poisson’s Ratio on Tunnel Deformation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, Y.; Su, Y.; Zhao, M.; Vlachopoulos, N. Tunnel Stability Analysis in Weak Rocks Using the Convergence Confinement Method. Rock. Mech. Rock. Eng. 2021, 54, 559–582. [Google Scholar] [CrossRef]
- Xiaoming, W.; Yuanjie, X.; Wenbing, S.; Juanjuan, R.; Zhengxing, C.; Hua, L. Research on Meso-Scale Deformation and Failure Mechanism of Fractured Rock Mass Subject to Biaxial Compression. Arab. J. Geosci. 2021, 14, 1390. [Google Scholar] [CrossRef]
- Zhou, C.; Han, Y.; Liu, G.-F.; Mu, H.-Q.; Tie, J.-K.; Feng, G.-L. Risk Analysis of Progressive Cracking and Failure of Hard Rock around Deep Underground Caverns with High Sidewall. IOP Conf. Ser. Earth Environ. Sci. 2021, 861, 042019. [Google Scholar] [CrossRef]
- Yang, H. Numerical Calculation of Instability of Tunnel Surrounding Rock Based on Elastic Hole Theory. IOP Conf. Ser. Earth Environ. Sci. 2019, 283, 012047. [Google Scholar] [CrossRef]
- Ren, Q.; Xu, L.; Zhu, A.; Shan, M.; Zhang, L.; Gu, J.; Shen, L. Comprehensive Safety Evaluation Method of Surrounding Rock during Underground Cavern Construction. Undergr. Space 2021, 6, 46–61. [Google Scholar] [CrossRef]
- Guo, X.; Zhao, Z.; Gao, X.; Ma, Z.; Ma, N. The Criteria of Underground Rock Structure Failure and Its Implication on Rockburst in Roadway: A Numerical Method. Shock Vib. 2019, 2019, 7509690. [Google Scholar] [CrossRef]
- Duan, S.; Liu, G.; Gao, P.; Sun, Y.; Xu, L.; Cao, B.; Jiang, Q. Stability Prediction and Analysis for Large Underground Cavern Controlled by Weak Interlayer Zone under High Geostress. IOP Conf. Ser. Earth Environ. Sci. 2021, 861, 042014. [Google Scholar] [CrossRef]
- Yang, X.L.; Zhang, R. Collapse Analysis of Shallow Tunnel Subjected to Seepage in Layered Soils Considering Joined Effects of Settlement and Dilation. Geomech. Eng. 2017, 13, 217–235. [Google Scholar] [CrossRef]
- Yang, X.L.; Xu, J.S.; Li, Y.X.; Yan, R.M. Collapse Mechanism of Tunnel Roof Considering Joined Influences of Nonlinearity and Non-Associated Flow Rule. Geomech. Eng. 2016, 10, 21–35. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, Z.; Yang, X.L. Roof Failure of Shallow Tunnel Based on Simplified Stochastic Medium Theory. Geomech. Eng. 2018, 14, 571–580. [Google Scholar] [CrossRef]
- Protosenya, A.; Vilner, M. Assessment of Excavation Intersections’ Stability in Jointed Rock Masses Using the Discontinuum Approach. Rud.-Geološko-Naft. Zbornik 2022, 37, 137–147. [Google Scholar] [CrossRef]
- Mboussa, D.J.W.; Sun, S. Analysis of Rock Mass Behavior with Empirical and Numerical Method for the Construction of Diversion Tunnel, Laos. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1212, 012028. [Google Scholar] [CrossRef]
- Mao, Z.T.; Zhu, Y.P. Study of Stability Assessment Method for Deep Surrounding Rock. Appl. Mech. Mater. 2014, 638–640, 565–569. [Google Scholar] [CrossRef]
- Barton, N.; Løset, F.; Lien, R.; Lunde, J. Application of Q-System in Design Decisions Concerning Dimensions and Appropriate Support for Underground Installations. In Subsurface Space; Elsevier: Amsterdam, The Netherlands, 1981; pp. 553–561. [Google Scholar]
- Barton, N. Rock Mass Classification and Tunnel Reinforcement Selection Using the Q-System. In Rock Classification Systems for Engineering Purposes; ASTM International: West Conshohocken, PA, USA, 1988; pp. 59–88. ISBN 978-0-8031-0988-9. [Google Scholar]
- Barton, N.; Lien, R.; Lunde, J. Engineering Classification of Rock Masses for the Design of Tunnel Support. Rock Mech. 1974, 6, 189–236. [Google Scholar] [CrossRef]
- Dhang, P.C. Rock Mass Index (RMI) to Estimate the Shear Strength Parameters of the Rockmass: Case Study from Lesser Himalayas, Jammu & Kashmir, India. In Stability of Slopes and Underground Excavations; Satyanarayana Reddy, C.N.V., Muthukkumaran, K., Vaidya, R., Eds.; Lecture Notes in Civil Engineering; Springer Singapore: Singapore, 2022; Volume 185, pp. 209–219. ISBN 978-981-16-5600-2. [Google Scholar]
- Palmstrøm, A. Characterizing Rock Masses by the RMi for Use in Practical Rock Engineering. Tunn. Undergr. Space Technol. 1996, 11, 175–188. [Google Scholar] [CrossRef]
- Ismail, A.; A Rashid, A.S.; Sa’ari, R.; Rasib, A.W.; Mustaffar, M.; Abdullah, R.A.; Kassim, A.; Mohd Yusof, N.; Abd Rahaman, N.; Mohd Apandi, N.; et al. Application of UAV-Based Photogrammetry and Normalised Water Index (NDWI) to Estimate the Rock Mass Rating (RMR): A Case Study. Phys. Chem. Earth Parts A/B/C 2022, 127, 103161. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Classification of Rock Masses for Engineering: The RMR System and Future Trends. In Rock Testing and Site Characterization; Elsevier: Amsterdam, The Netherlands, 1993; pp. 553–573. ISBN 978-0-08-042066-0. [Google Scholar]
- Hussian, S.; Mohammad, N.; Ur Rehman, Z.; Khan, N.M.; Shahzada, K.; Ali, S.; Tahir, M.; Raza, S.; Sherin, S. Review of the Geological Strength Index (GSI) as an Empirical Classification and Rock Mass Property Estimation Tool: Origination, Modifications, Applications, and Limitations. Adv. Civ. Eng. 2020, 2020, 6471837. [Google Scholar] [CrossRef]
- Pachri, H.; Safruddim; Fajrin, M. Study of Weathering and Rock Mass Quality Using the Geological Strength Index (GSI) Method on the Tuntun Mine Road Banggai Regency Central Sulawesi Province. IOP Conf. Ser. Earth Environ. Sci. 2024, 1378, 012008. [Google Scholar] [CrossRef]
- Marinos, V.; Marinos, P.; Hoek, E. The Geological Strength Index: Applications and Limitations. Bull. Eng. Geol. Environ. 2005, 64, 55–65. [Google Scholar] [CrossRef]
- Hoek, E.; Kaiser, P.K.; Bawden, W.F. Support of Underground Excavations in Hard Rock; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-0-429-07889-7. [Google Scholar]
- Brown, E.T.; Hoek, E. Underground Excavations in Rock; CRC Press: Boca Raton, FL, USA, 1980; ISBN 978-1-4822-8892-6. [Google Scholar]
- Hoek, E.; Brown, E.T. Practical Estimates of Rock Mass Strength. Int. J. Rock Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Menouillard, T.; Belytschko, T. Dynamic Fracture with Meshfree Enriched XFEM. Acta Mech. 2010, 213, 53–69. [Google Scholar] [CrossRef]
- Belytschko, T.; Lu, Y.Y.; Gu, L.; Tabbara, M. Element-Free Galerkin Methods for Static and Dynamic Fracture. Int. J. Solids Struct. 1995, 32, 2547–2570. [Google Scholar] [CrossRef]
- Belytschko, T.; Tabbara, M. Dynamic Fracture Using Element-Free Galerkin Methods. Int. J. Numer. Meth. Eng. 1996, 39, 923–938. [Google Scholar] [CrossRef]
- Cundall, P.A. A Discontinuous Future for Numerical Modelling in Geomechanics? Proc. Inst. Civ. Eng.-Geotech. Eng. 2001, 149, 41–47. [Google Scholar] [CrossRef]
- Scavia, C.; Comina, C.; Ferrero, A.M.; Ferrero, A.M.; Bonetto, S. Continuous and discontinuous approaches in rock mechanics and rock engineering. Riv. Ital. Geotecnica 2019, 1169, 8–36. [Google Scholar] [CrossRef]
- Alnaggar, M.; Pelessone, D.; Cusatis, G. Lattice Discrete Particle Modeling of Reinforced Concrete Flexural Behavior. J. Struct. Eng. 2019, 145, 04018231. [Google Scholar] [CrossRef]
- Del Prete, C.; Boumakis, I.; Wan-Wendner, R.; Vorel, J.; Buratti, N.; Mazzotti, C. A Lattice Discrete Particle Model to Simulate the Viscoelastic Behaviour of Macro–Synthetic Fibre Reinforced Concrete. Constr. Build. Mater. 2021, 295, 123630. [Google Scholar] [CrossRef]
- Jia, D.; Brigham, J.C.; Fascetti, A. An Efficient Static Solver for the Lattice Discrete Particle Model. Comput. Aided Civil. Eng. 2024, 39, 3531–3551. [Google Scholar] [CrossRef]
- He, W.; Zhang, Z. Modeling Creep Fracture in Rock by Using Kelvin Discretized Virtual Internal Bond. Adv. Civ. Eng. 2018, 2018, 8042965. [Google Scholar] [CrossRef]
- Ju, Y.; Chen, J.; Wang, Y.; Gao, F.; Xie, H. Numerical Analysis of Hydrofracturing Behaviors and Mechanisms of Heterogeneous Reservoir Glutenite, Using the Continuum-Based Discrete Element Method While Considering Hydromechanical Coupling and Leak-Off Effects. J. Geophys. Res. Solid Earth 2018, 123, 3621–3644. [Google Scholar] [CrossRef]
- Jenq, Y.; Shah, S.P. Two Parameter Fracture Model for Concrete. J. Eng. Mech. 1985, 111, 1227–1241. [Google Scholar] [CrossRef]
- Arslan, A.; Ince, R.; Karihaloo, B.L. Improved Lattice Model for Concrete Fracture. J. Eng. Mech. 2002, 128, 57–65. [Google Scholar] [CrossRef]
- Buehler, M.J.; Abraham, F.F.; Gao, H. Hyperelasticity Governs Dynamic Fracture at a Critical Length Scale. Nature 2003, 426, 141–146. [Google Scholar] [CrossRef]
- Ostoja-Starzewski, M.; Sheng, P.Y.; Alzebdeh, K. Spring Network Models in Elasticity and Fracture of Composites and Polycrystals. Comput. Mater. Sci. 1996, 7, 82–93. [Google Scholar] [CrossRef]
- Wang, G.; Al-Ostaz, A.; Cheng, A.H.-D.; Mantena, P.R. Hybrid Lattice Particle Modeling: Theoretical Considerations for a 2D Elastic Spring Network for Dynamic Fracture Simulations. Comput. Mater. Sci. 2009, 44, 1126–1134. [Google Scholar] [CrossRef]
- Zhao, S.-F.; Zhao, G.-F. Implementation of a High Order Lattice Spring Model for Elasticity. Int. J. Solids Struct. 2012, 49, 2568–2581. [Google Scholar] [CrossRef]
- Zhao, G.; Fang, J.; Zhao, J. A 3D Distinct Lattice Spring Model for Elasticity and Dynamic Failure. Int. J. Numer. Anal. Methods Geomech. 2011, 35, 859–885. [Google Scholar] [CrossRef]
- Wang, G.; Al-Ostaz, A.; Cheng, A.H.-D.; Mantena, P.R. Hybrid Lattice Particle Modeling of Wave Propagation Induced Fracture of Solids. Comput. Methods Appl. Mech. Eng. 2009, 199, 197–209. [Google Scholar] [CrossRef]
- Zhang, Z. Discretized Virtual Internal Bond Model for Nonlinear Elasticity. Int. J. Solids Struct. 2013, 50, 3618–3625. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, J.; Li, H. Finite Hyperelastic–Plastic Constitutive Equations for Atomistic Simulation of Dynamic Ductile Fracture. Int. J. Plast. 2014, 59, 15–29. [Google Scholar] [CrossRef]
- Zapperi, S.; Vespignani, A.; Stanley, H.E. Plasticity and Avalanche Behaviour in Microfracturing Phenomena. Nature 1997, 388, 658–660. [Google Scholar] [CrossRef]
- Seppälä, E.T.; Räisänen, V.I.; Alava, M.J. Scaling of Interfaces in Brittle Fracture and Perfect Plasticity. Phys. Rev. E 2000, 61, 6312–6319. [Google Scholar] [CrossRef] [PubMed]
- Picallo, C.B.; López, J.M.; Zapperi, S.; Alava, M.J. From Brittle to Ductile Fracture in Disordered Materials. Phys. Rev. Lett. 2010, 105, 155502. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, Z.; Yang, F.; Zhao, Y.; Ge, X. Plastic Fracture Simulation by Using Discretized Virtual Internal Bond. Eng. Fract. Mech. 2017, 178, 169–183. [Google Scholar] [CrossRef]
- Hrennikoff, A. Solution of Problems of Elasticity by the Framework Method. J. Appl. Mech. 1941, 8, A169–A175. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Tabbara, M.R.; Kazemi, M.T.; Pijaudier-Cabot, G. Random Particle Model for Fracture of Aggregate or Fiber Composites. J. Eng. Mech. 1990, 116, 1686–1705. [Google Scholar] [CrossRef]
- Karihaloo, B.L.; Shao, P.F.; Xiao, Q.Z. Lattice Modelling of the Failure of Particle Composites. Eng. Fract. Mech. 2003, 70, 2385–2406. [Google Scholar] [CrossRef]
- Zhang, Z.N.; Ge, X.R. Micromechanical Consideration of Tensile Crack Behavior Based on Virtual Internal Bond in Contrast to Cohesive Stress. Theor. Appl. Fract. Mech. 2005, 43, 342–359. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Zheng, H. A Modified Stillinger–Weber Potential-Based Hyperelastic Constitutive Model for Nonlinear Elasticity. Int. J. Solids Struct. 2014, 51, 1542–1554. [Google Scholar] [CrossRef]
- Tadmor, E.B. The Quasicontinuum Method. Ph.D. Thesis, Brown University, Providence, RI, USA, 1996. [Google Scholar]
- Curtin, W.A.; Miller, R.E. Atomistic/Continuum Coupling in Computational Materials Science. Model. Simul. Mater. Sci. Eng. 2003, 11, R33–R68. [Google Scholar] [CrossRef]
- Umeno, Y.; Kubo, A.; Albina, J.-M. Coarse-Grained Molecular Dynamics Simulation of Deformation and Fracture in Polycarbonate: Effect of Molar Mass and Entanglement. Theor. Appl. Fract. Mech. 2020, 109, 102699. [Google Scholar] [CrossRef]
- Wagner, G.J.; Liu, W.K. Coupling of Atomistic and Continuum Simulations Using a Bridging Scale Decomposition. J. Comput. Phys. 2003, 190, 249–274. [Google Scholar] [CrossRef]
- Park, H.S.; Karpov, E.G.; Liu, W.K.; Klein, P.A. The Bridging Scale for Two-Dimensional Atomistic/Continuum Coupling. Philos. Mag. 2005, 85, 79–113. [Google Scholar] [CrossRef]
- Shilkrot, L.E.; Curtin, W.A.; Miller, R.E. A Coupled Atomistic/Continuum Model of Defects in Solids. J. Mech. Phys. Solids 2002, 50, 2085–2106. [Google Scholar] [CrossRef]
- Yang, Y.; Shao, Z.; Wu, K.; Wang, Y. A Plastic Stillinger-Weber Potential-Based Discretized Virtual Internal Bond Approach for Modeling Soft Rock Fracture and Its Application in Tunnel Failure. Eng. Fract. Mech. 2024, 301, 110056. [Google Scholar] [CrossRef]
- Kon, D.; Kakanda, A.; Mbako, D.; Jisen, S. Elastoplastic Discretized Virtual Internal Bond Model and Its Application to Dynamic Fracture Simulation in Rock. In Proceedings of the Rocscience International Conference (RIC 2023), Toronto, ON, Canada, 24–26 April 2023; Atlantis Press: Paris, France, 2023; pp. 720–730. [Google Scholar]
- Stillinger, F.H.; Weber, T.A. Computer Simulation of Local Order in Condensed Phases of Silicon. Phys. Rev. B 1985, 31, 5262, Erratum in Phys. Rev. B 1986, 33, 1451. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, J.; Ghassemi, A.; Ge, X. A Hyperelastic-Bilinear Potential for Lattice Model with Fracture Energy Conservation. Eng. Fract. Mech. 2015, 142, 220–235. [Google Scholar] [CrossRef]
- Feng, Y.; Zou, J.; Zheng, X. No AccessAnalysis of an Elliptical Tunnel Affected by Surcharge Loading. Proc. Inst. Civ. Eng.-Geotech. Eng. 2019, 172, 312–319. [Google Scholar]
- Li, S.; Li, M.; Zhang, N. Influences of 3D Internal Crack Dip Angle on Tensile Mechanical Properties and Fracture Features of Rock-like Material. Chin. J. Rock. Mech. Eng. 2009, 28, 281–289. [Google Scholar]
- Ghazvinian, A.; Nejati, H.R.; Sarfarazi, V.; Hadei, M.R. Mixed Mode Crack Propagation in Low Brittle Rock-like Materials. Arab. J. Geosci. 2013, 6, 4435–4444. [Google Scholar] [CrossRef]
- Dehestani, A.; Kazemi, F.; Abdi, R.; Nitka, M. Prediction of Fracture Toughness in Fibre-Reinforced Concrete, Mortar, and Rocks Using Various Machine Learning Techniques. Eng. Fract. Mech. 2022, 276, 108914. [Google Scholar] [CrossRef]
- Jing, F.; Yang, H.P.; Liu, Y.K. In-Situ Stress Measurement and Rock Burst Prediction Analysis in Deep and Long Tunnels. Yangtze River 2008, 39, 80–93. (In Chinese) [Google Scholar]
- Chan, K.; Ke, W.; Im, S. Particle–Mesh Coupling in the Interaction of Fluid and Deformable Bodies with Screen Space Refraction Rendering. Comput. Animat. Virtual 2018, 29, e1787. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kon, D.; Jisen, S.; Kakanda, A.; Mbako, D. Analysis of Tunnel Deformation Using Elastoplastic Stillinger Weber (SW) Potential Embedded Discretized Virtual Internal Bond (DVIB) Method. Appl. Sci. 2025, 15, 6595. https://doi.org/10.3390/app15126595
Kon D, Jisen S, Kakanda A, Mbako D. Analysis of Tunnel Deformation Using Elastoplastic Stillinger Weber (SW) Potential Embedded Discretized Virtual Internal Bond (DVIB) Method. Applied Sciences. 2025; 15(12):6595. https://doi.org/10.3390/app15126595
Chicago/Turabian StyleKon, Dina, Shu Jisen, Alphonse Kakanda, and Dave Mbako. 2025. "Analysis of Tunnel Deformation Using Elastoplastic Stillinger Weber (SW) Potential Embedded Discretized Virtual Internal Bond (DVIB) Method" Applied Sciences 15, no. 12: 6595. https://doi.org/10.3390/app15126595
APA StyleKon, D., Jisen, S., Kakanda, A., & Mbako, D. (2025). Analysis of Tunnel Deformation Using Elastoplastic Stillinger Weber (SW) Potential Embedded Discretized Virtual Internal Bond (DVIB) Method. Applied Sciences, 15(12), 6595. https://doi.org/10.3390/app15126595