Association Between the History of Fall and the Fear of Falling on Stair Descent and Gait Transition Spatiotemporal Parameters and Lower-Limb Kinematics in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Ethical Considerations
2.4. Testing Protocol
2.5. Data Processing
2.6. Statistical Analysis
3. Results
3.1. Spatiotemporal Parameters
3.2. Stair- and Gait-Cycle Kinematic Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HoF | History of fall; |
FoF | Fear of falling; |
CoM | Center of mass; |
FP | Foot placement; |
FC | Foot clearance; |
STROBE | Strengthening the Reporting of Observational Studies in Epidemiology; |
ADLs | Activities of daily living; |
ACQ | Assessment and Characterization Questionnaire; |
IPAQ | International Physical Activity Questionnaire; |
MMSE | Portuguese Version of Mini-Mental State Examination; |
BI | Barthel Index; |
HGS | Hand grip strength; |
HS | Heel-strike; |
TO | Toe-off; |
MANOVA | Multivariate analysis of variance; |
BMI | Body mass index; |
FRID’s | Fall-risk-increasing drugs. |
References
- United Nations. United Nations Decade of Healthy Ageing. Resolution Adopted by the General Assembly. 2020, 75th Sess. pp. 948–972. Available online: https://digitallibrary.un.org/record/3895802?v=pdf (accessed on 14 December 2020).
- Ambrose, A.F.; Paul, G.; Hausdorff, J.M. Risk factors for falls among older adults: A review of the literature. Maturitas 2013, 75, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Bastidas, P.; Gómez, B.; Aqueveque, P.; Luarte-Martínez, S.; Cano-de-la-Cuerda, R. Instrumented Timed Up and Go Test (iTUG)—More Than Assessing Time to Predict Falls: A Systematic Review. Sensors 2023, 23, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.J.; Lee, Y.M.; Kim, D.Y.; Kim, E.J.; Ahn, J.A. Prevalence and Risk Factors of Self-Reported Sarcopenia and Its Association With Multimorbidity in Community-Dwelling Older Adults: A Cross-Sectional Study. Nurs. Heal. Sci. 2024, 26, e13190. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Cao, C.; Zhang, T.; Zheng, H.; Song, Q.; Zhang, C.; Wang, J. The Lower Limb Stiffness, Moments, and Work Mode during Stair Descent among the Older Adults. Am. J. Phys. Med. Rehabil. 2023, 102, 222–228. [Google Scholar] [CrossRef]
- Morfis, P.; Gkaraveli, M. Effects of aging on biomechanical gait parameters in the healthy elderly and the risk of falling. J. Res. Pract. Musculoskelet Syst. 2021, 5, 59–64. [Google Scholar] [CrossRef]
- Colón-Emeric, C.S.; McDermott, C.L.; Lee, D.S.; Berry, S.D. Risk Assessment and Prevention of Falls in Older Community-Dwelling Adults: A Review. JAMA 2024, 331, 1397–1406. [Google Scholar] [CrossRef]
- Ackermans, T.M.A.; Francksen, N.C.; Casana-Eslava, R.V.; Lees, C.; Baltzopoulos, V.; Lisboa, P.J.G.; Hollands, M.A.; O’Brien, T.D.; Maganaris, C.N. A novel multivariate approach for biomechanical profiling of stair negotiation. Exp. Gerontol. 2019, 124, 110646. [Google Scholar] [CrossRef]
- Solaiman, R.H.; Irfanullah, E.; Navarro, S.M.; Keil, E.J.; Onizuka, N.; Tompkins, M.A.; Harmon, J.V., Jr. Rising incidence of stair-related upper extremity fractures among older adults in the United States: A 10-year nationwide analysis. Osteoporos. Int. 2023, 34, 1241–1248. [Google Scholar] [CrossRef]
- Li, Y.; Hou, L.; Zhao, H.; Xie, R.; Yi, Y.; Ding, X. Risk factors for falls among community-dwelling older adults: A systematic review and meta-analysis. Front. Med. 2023, 9, 1019094. [Google Scholar] [CrossRef]
- Alcock, L.; O’Brien, T.D.; Vanicek, N. Biomechanical demands of the 2-step transitional gait cycles linking level gait and stair descent gait in older women. J. Biomech. 2015, 48, 4191–4197. [Google Scholar] [CrossRef]
- Kováčiková, Z.; Sarvestan, J.; Zemková, E. Age-related differences in stair descent balance control: Are women more prone to falls than men? PLoS ONE 2021, 16, e0244990. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.E.; Pate, G.A.; Hill, R.D.; DeVita, P.; Messier, S.P. The association between obesity, knee pain, and gait during stair descent in older adults with knee osteoarthritis. Clin. Biomech. 2024, 114, 106228. [Google Scholar] [CrossRef]
- Bosse, I.; Oberländer, K.D.; Savelberg, H.H.; Meijer, K.; Brüggemann, G.P.; Karamanidis, K. Dynamic stability control in younger and older adults during stair descent. Hum. Mov. Sci. 2012, 31, 1560–1570. [Google Scholar] [CrossRef]
- Buckley, J.G.; Cooper, G.; Maganaris, C.N.; Reeves, N.D. Is stair descent in the elderly associated with periods of high centre of mass downward accelerations? Exp. Gerontol. 2013, 48, 283–289. [Google Scholar] [CrossRef]
- Francksen, N.C.; Ackermans, T.M.A.; Holzer, D.; Ebner, S.A.; Maganaris, C.N.; Hollands, M.A.; O’Brien, T.D. Negotiating stairs with an inconsistent riser: Implications for stepping safety. Appl. Ergon. 2020, 87, 103131. [Google Scholar] [CrossRef] [PubMed]
- Moniz-Pereira, V.; Kepple, T.M.; Cabral, S.; João, F.; Veloso, A.P. Joint moments’ contributions to vertically accelerate the center of mass during stair ambulation in the elderly: An induced acceleration approach. J. Biomech. 2018, 79, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Kunzler, M.R.; Da Rocha, E.S.; Dos Santos, C.S.; Ceccon, F.G.; Priario, L.A.; Carpes, F.P. Should we consider steps with variable height for a safer stair negotiation in older adults? Work 2018, 59, 15–21. [Google Scholar] [CrossRef]
- Di Giulio, I.; Reeves, N.D.; Roys, M.; Buckley, J.G.; Jones, D.A.; Gavin, J.P.; Maganaris, C.N. Stair Gait in Older Adults Worsens With Smaller Step Treads and When Transitioning Between Level and Stair Walking. Front. Sports Act. Living 2020, 2, 63. [Google Scholar] [CrossRef]
- Jacobs, J.V. A review of stairway falls and stair negotiation: Lessons learned and future needs to reduce injury. Gait Posture 2016, 49, 159–167. [Google Scholar] [CrossRef]
- Tanaka, T.; Hase, K.; Mori, K.; Wakida, M.; Arima, Y.; Kubo, T.; Taguchi, M. Stair-descent phenotypes in community-dwelling older adults determined using high-level balance tasks. Aging Clin. Exp. Res. 2025, 37, 34. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, C.Y.; Baek, C.Y.; Kim, S.W.; Je, H.D.; Jeong, J.H.; Kim, H.D. The effects of various stair-climbing exercises on functional mobility and trunk muscle activation in community-dwelling older adults: A pilot randomized controlled trial. Medicine 2024, 103, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Reeves, N.D.; Spanjaard, M.; Mohagheghi, A.A.; Baltzopoulos, V.; Maganaris, C.N. The demands of stair descent relative to maximum capacities in elderly and young adults. J. Electromyogr. Kinesiol. 2008, 18, 218–227. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Sember, V.; Meh, K.; Sorić, M.; Jurak, G.; Starc, G.; Rocha, P. Validity and reliability of international physical activity questionnaires for adults across eu countries: Systematic review and meta analysis. Int. J. Environ. Res. Public Health 2020, 17, 1–23. [Google Scholar] [CrossRef]
- Tombaugh, T.N.; Mclntyre, N.J. The Mini-Mental State Examination: A Comprehensive Review. Am. Geriatr. Soc. 1992, 40, 922–935. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional Evalutation: The Barthel Index. Md. State Med. J. 1965, 14, 56–65. [Google Scholar]
- Fess, E.E. ‘Grip strength’. In Clinical Assessment Recommendations, 3rd ed.; American Society for Hand Therapists: Mt Laurel, NJ, USA, 1992; pp. 41–45. [Google Scholar]
- Moreira, J.; Cunha, B.; Félix, J.; Santos, R.; Sousa, A.S.P. Kinematic and Kinetic Gait Principal Component Domains in Older Adults With and Without Functional Disability: A Cross-Sectional Study. J. Funct. Morphol. Kinesiol. 2025, 10, 140. [Google Scholar] [CrossRef] [PubMed]
- King, S.L.; Underdown, T.; Reeves, N.D.; Baltzopoulos, V.; Maganaris, C.N. Alternate stair descent strategies for reducing joint moment demands in older individuals. J. Biomech. 2018, 78, 126–133. [Google Scholar] [CrossRef]
- Meurisse, G.M.; Bastien, G.J.; Schepens, B. Effect of age and speed on the step-to-step transition phase during walking. J. Biomech. 2019, 83, 253–259. [Google Scholar] [CrossRef]
- Foster, R.J.; Maganaris, C.N.; Reeves, N.D.; Buckley, J.G. Centre of mass control is reduced in older people when descending stairs at an increased riser height. Gait Posture 2019, 73, 305–314. [Google Scholar] [CrossRef]
- Singhal, K.; Kim, J.; Casebolt, J.; Lee, S.; Han, K.H.; Kwon, Y.H. Gender difference in older adult’s utilization of gravitational and ground reaction force in regulation of angular momentum during stair descent. Hum. Mov. Sci. 2015, 41, 230–239. [Google Scholar] [CrossRef]
- Marques, N.R.; Laroche, D.P.; Hallal, C.Z.; Crozara, L.F.; Morcelli, M.H.; Karuka, A.H.; Gonçalves, M. Association between energy cost of walking, muscle activation, and biomechanical parameters in older female fallers and non-fallers. Clin. Biomech. 2013, 28, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Ackermans, T.; Francksen, N.; Lees, C.; Papatzika, F.; Arampatzis, A.; Baltzopoulos, V.; Lisboa, P.; Hollands, M.; O’Brien, T.M.C. Prediction of balance perturbations and falls on stairs in older people using a biomechanical profiling approach: A 12-month longitudinal study. Biomedgerontology 2020, 76, 638–646. [Google Scholar] [CrossRef]
- Kang, H. Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health Prof. 2021, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.S.; Kwon, Y.R.; Park, Y.S.; Kim, J.W. Comparison of gait patterns in elderly fallers and non-fallers. Technol. Health Care 2018, 26 (Suppl. S1), S427–S436. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive statistics and normality tests for statistical data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [PubMed]
- Alkarkhi, A.F.M.; Alqaraghuli, W.A.A. Multivariate Analysis of Variance. In Applied Statistics for Environmental Science with R; Elsevier: Amsterdam, The Netherlands, 2020; pp. 87–112. [Google Scholar]
- Curtis, K.; Youngquist, S.T. Part 21: Categoric analysis: Pearson chi-square test. Air Med. J. 2013, 32, 179–180. [Google Scholar] [CrossRef]
- Jung, S.H. Stratified Fisher’s exact test and its sample size calculation. Biom. J. 2014, 56, 129–140. [Google Scholar] [CrossRef]
- Andrade, C. The P Value and Statistical Significance: Misunderstandings, Explanations, Challenges, and Alternatives. Indian J. Psychol. Med. 2019, 41, 210. [Google Scholar] [CrossRef]
- Huang, L.; Shen, X.; Zou, Y.; Wang, Y. Effects of BMI and grip strength on older adults’ falls—A longitudinal study based on CHARLS. Front. Public Health 2024, 12, 1415360. [Google Scholar] [CrossRef]
- Lee, J.; Negm, A.; Peters, R.; Wong, E.K.C.; Holbrook, A. Deprescribing fall-risk increasing drugs (FRIDs) for the prevention of falls and fall-related complications: A systematic review and meta-analysis. BMJ Open 2021, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Benton, M.J.; Spicher, J.M.; Silva-Smith, A.L. Validity and reliability of handgrip dynamometry in older adults: A comparison of two widely used dynamometers. PLoS ONE 2022, 17, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mendes, J.; Amaral, T.F.; Borges, N.; Santos, A.; Padrão, P.; Moreira, P.; Negrão, R. Handgrip strength values of Portuguese older adults: A population based study. BMC Geriatr. 2017, 17, e0270132. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.B.; Mackintosh, S.; Jones, S.; Thewlis, D. Differences in foot kinematics between young and older adults during walking. Gait Posture 2014, 39, 689–694. [Google Scholar] [CrossRef]
- Ackermans, T.M.A.; Francksen, N.C.; Casana-Eslava, R.V.; Lees, C.; Baltzopoulos, V.; Lisboa, P.J.G.; Hollands, M.A.; O’Brien, T.D.; Maganaris, C.N. Stair negotiation behaviour of older individuals: Do step dimensions matter? J. Biomech. 2020, 101, 109616. [Google Scholar] [CrossRef]
Characteristics | NHOF (n = 38) | HOF (n = 22) | NFOF (n = 41) | FOF (n = 19) | Between-Subject Comparison p Value (Observed Power) | ||
---|---|---|---|---|---|---|---|
HOF | FOF | FOF | |||||
Age (y) | 66.34 ± 5.11 | 68.91 ± 7.51 | 66.68 ± 6.47 | 68.58 ± 5.37 | 0.228 (0.224) | 0.421 (0.125) | 0.691 (0.068) |
Gender | |||||||
Men | 17 (44.7%) | 5 (22.7%) | 18 (43.9%) | 4 (21.1%) | 0.104 b | 0.149 b | - |
Women | 21 (55.3%) | 17 (77.3%) | 23 (56.1%) | 15 (78.9%) | |||
Height (m) | 1.63 ± 0.08 | 1.57 ± 0.07 | 1.62 ± 0.08 | 1.58 ± 0.07 | 0.061 (0.468) | 0.151 (0.299) | 0.347 (0.154) |
Weight (kg) | 67.92 ± 10.20 | 63.01 ± 9.45 | 65.92 ± 10.56 | 66.54 ± 9.40 | 0.114 (0.352) | 0.557 (0.089) | 0.557 (0.089) |
Body Mass Index (kg/m2) | 25.68 ± 3.11 | 25.34 ± 2.59 | 25.03 ± 2.84 | 26.67 ± 2.83 | 0.496 (0.103) | 0.037 (0.558) | 0.899 (0.052) |
Health Condition | |||||||
Yes | 29 (76.3%) | 17 (77.3%) | 31 (75.6%) | 15 (78.9%) | 0.597 a | 0.526 a | - |
No | 9 (23.7%) | 5 (22.7%) | 10 (24.4%) | 4 (21.1%) | |||
Number of Health Conditions | 1.61 ± 1.26 | 1.45 ± 1.10 | 1.39 ± 1.13 | 1.89 ± 1.29 | 0.268 (0.196) | 0.173 (0.273) | 0.158 (0.290) |
Medication | |||||||
Yes | 32 (84.2%) | 21 (95.5%) | 35 (85.4%) | 18 (94.7%) | 0.246 a | 0.414 a | - |
No | 6 (15.8%) | 1 (4.5%) | 6 (14.6%) | 1 (5.3%) | |||
Number of Medications | 2.42 ± 2.06 | 4.14 ± 2.59 | 2.88 ± 2.42 | 3.42 ± 2.36 | 0.018 (0.666) | 0.720 (0.065) | 0.672 (0.070) |
History of Fall | |||||||
Yes | 0 | 100% | 13 (31.7%) | 9 (47.4%) | - | 0.264 a | - |
No | 100% | 0 | 28 (68.3%) | 10 (52.6%) | |||
Number of Falls | 0 | 1.50 ± 0.86 | 0.44 ± 0.74 | 0.79 ± 1.13 | |||
Fear of Fall | |||||||
Yes | 10 (26.3%) | 12 (54.5%) | 0 | 100% | 0.104 b | - | - |
No | 28 (73.7%) | 10 (45.5%) | 100% | 0 | |||
Mini-Mental State Examination | 29.16 ± 1.27 | 28.27 ± 1.42 | 28.95 ± 1.43 | 28.58 ± 1.26 | 0.014 (0.701) | 0.437 (0.120) | 0.355 (0.151) |
IPAQ (MET min/week) | 3279.78 ± 2857.65 | 3403.91 ± 3002.25 | 3426.68 ± 3047.40 | 3106.50 ± 2569.57 | 0.653 (0.073) | 0.776 (0.059) | 0.429 (0.123) |
Barthel Index | 19.92 ± 0.27 | 19.82 ± 0.40 | 20 ± 0.00 | 19.63 ± 0.50 | 0.365 (0.146) | 0.000 (0.996) | 0.365 (0.146) |
Hand Grip Strength | 29.57 ± 8.00 | 25.00 ± 9.00 | 29.09 ± 9.28 | 25.30 ± 6.35 | 0.067 (0.451) | 0.167 (0.280) | 0.634 (0.076) |
Spatiotemporal Parameters | NHOF (n = 38) | HOF (n = 22) | NFOF (n = 41) | FOF (n = 19) | Between-Subject Comparison p Value (Observed Power) | ||
---|---|---|---|---|---|---|---|
HOF | FOF | HOF × FOF | |||||
Task Velocity (m/s) | 0.87 ±0.15 | 0.81 ±0.28 | 0.88 ±0.22 | 0.79 ±0.16 | 0.488 (0.106) | 0.257 (0.203) | 0.417 (0.127) |
Task Time (s) | 1.13 ±0.18 | 1.18 ±0.25 | 1.09 ±0.18 | 1.26 ±0.22 | 0.689 (0.068) | 0.009 (0.764) | 0.586 (0.084) |
Double-Support Time (s) | 0.28 ±0.06 | 0.28 ±0.09 | 0.26 ±0.06 | 0.30 ±0.09 | 0.705 (0.066) | 0.047 (0.513) | 0.873 (0.053) |
Single-Support Time (s) | 0.70 ±0.11 | 0.71 ±0.16 | 0.68 ±0.11 | 0.77 ±0.14 | 0.710 (0.066) | 0.009 (0.755) | 0.476 (0.109) |
Peak downward CoM Velocity (m/s) | −0.54 ±0.09 | −0.49 ±0.14 | −0.54 ±0.11 | −0.47 ±0.11 | 0.287 (0.185) | 0.043 (0.530) | 0.668 (0.071) |
Stair-Cycle Kinematics | Limb | NHO (n = 38) | HOF (n = 22) | NFOF (n = 41) | FOF (n = 19) | Between-Subject Comparison p Value (Observed Power) | ||
---|---|---|---|---|---|---|---|---|
HOF | FOF | HOF × FOF | ||||||
Foot Placement (m) | Ipsi | 0.20 ± 0.01 | 0.20 ± 0.02 | 0.20 ± 0.01 | 0.20 ± 0.01 | 0.855 (0.054) | 0.882 (0.052) | 0.622 (0.078) |
Contra | 0.19 ± 0.01 | 0.19 ± 0.02 | 0.19 ± 0.01 | 0.20 ± 0.02 | 0.594 (0.082) | 0.349 (0.153) | 0.644 (0.074) | |
Foot Clearance (m) | Ipsi | 0.19 ± 0.04 | 0.20 ± 0.03 | 0.20 ± 0.04 | 0.19 ± 0.04 | 0.747 (0.062) | 0.066 (0.453) | 0.074 (0.432) |
Contra | 0.06 ± 0.01 | 0.06 ± 0.02 | 0.06 ± 0.01 | 0.06 ± 0.01 | 0.282 (0.187) | 0.884 (0.052) | 0.385 (0.138) | |
Hip Angle (degrees) | ||||||||
At Foot Placement | Ipsi | 29.38 ± 10.99 | 29.41 ± 10.73 | 29.28 ± 11.49 | 29.60 ± 9.44 | 0.877 (0.053) | 0.984 (0.050) | 0.623 (0.077) |
Contra | 28.47 ± 10.56 | 31.66 ± 10.60 | 31.07 ± 10.18 | 26.56 ± 11.10 | 0.272 (0.194) | 0.071 (0.441) | 0.485 (0.106) | |
At Foot Clearance | Ipsi | 32.67 ± 10.84 | 32.20 ± 10.83 | 31.72 ± 10.92 | 34.17 ± 10.46 | 0.687 (0.068) | 0.451 (0.116) | 0.665 (0.071) |
Contra | 30.30 ± 10.98 | 32.80 ± 9.99 | 32.24 ± 10.22 | 29.01 ± 11.37 | 0.362 (0.147) | 0.211 (0.237) | 0.785 (0.058) | |
Knee Angle (degrees) | ||||||||
At Foot Placement | Ipsi | 19.14 ± 7.01 | 19.71 ± 6.99 | 19.76 ± 7.44 | 18.46 ± 5.83 | 0.901 (0.052) | 0.398 (0.133) | 0.393 (0.135) |
Contra | 19.73 ± 6.48 | 20.40 ± 7.00 | 20.37 ± 7.11 | 19.11 ± 5.54 | 0.970 (0.050) | 0.337 (0.158) | 0.167 (0.280) | |
At Foot Clearance | Ipsi | 15.30 ± 7.24 | 14.41 ± 6.87 | 14.81 ± 6.90 | 15.33 ± 7.58 | 0.483 (0.107) | 0.836 (0.055) | 0.466 (0.111) |
Contra | 20.14 ± 7.06 | 19.82 ± 5.99 | 20.19 ± 6.94 | 19.67 ± 6.09 | 0.658 (0.072) | 0.675 (0.070) | 0.299 (0.178) | |
Ankle Angle (degrees) | ||||||||
At Foot Placement | Ipsi | −40.44 ± 8.02 | −39.42 ± 6.58 | −39.97 ± 8.10 | −40.27 ± 6.12 | 0.625 (0.077) | 0.829 (0.055) | 0.983 (0.050) |
Contra | −38.50 ± 6.54 | −38.72 ± 4.69 | −38.44 ± 5.86 | −38.89 ± 6.09 | 0.974 (0.050) | 0.826 (0.055) | 0.850 (0.054) | |
At Foot Clearance | Ipsi | −46.55 ± 5.62 | −44.23 ± 6.30 | −45.88 ± 6.13 | −45.31 ± 5.60 | 0.235 (0.218) | 0.960 (0.050) | 0.629 (0.076) |
Contra | −41.26 ± 5.22 | −42.35 ± 4.17 | −41.18 ± 4.93 | −42.71 ± 4.64 | 0.463 (0.112) | 0.299 (0.178) | 0.750 (0.061) | |
Gait-Cycle Kinematics | ||||||||
Hip Angle (degrees) | ||||||||
At Heel-Strike | Ipsi | 27.68 ± 10.43 | 26.36 ± 10.40 | 26.84 ± 10.57 | 27.97 ± 10.09 | 0.522 (0.007) | 0.705 (0.003) | 0.652 (0.004) |
Contra | 43.02 ± 10.96 | 42.66 ± 10.51 | 42.56 ± 10.78 | 43.58 ± 10.81 | 0.845 (0.001) | 0.739 (0.002) | 0.924 (0.000) | |
At Toe-Off | Ipsi | 8.55 ± 10.22 | 9.18 ± 11.62 | 9.11 ± 9.90 | 8.06 ± 12.41 | 0.732 (0.002) | 0.738 (0.002) | 0.782 (0.001) |
Contra | 8.95 ± 9.33 | 9.10 ± 10.36 | 9.25 ± 9.83 | 8.47 ± 9.45 | 0.837 (0.001) | 0.818 (0.001) | 0.715 (0.002) | |
Knee Angle (degrees) | ||||||||
At Heel-Strike | Ipsi | 16.45 ± 4.62 | 15.67 ± 5.97 | 15.81 ± 5.21 | 16.92 ± 4.98 | 0.563 (0.006) | 0.379 (0.014) | 0.815 (0.001) |
Contra | 14.28 ± 6.38 | 16.27 ± 7.47 | 14.21 ± 6.98 | 16.72 ± 6.27 | 0.483 (0.009) | 0.285 (0.020) | 0.621 (0.004) | |
At Toe-Off | Ipsi | 47.24 ± 6.08 | 46.81 ± 10.47 | 46.76 ± 7.71 | 47.78 ± 8.43 | 0.991 (0.000) | 0.529 (0.007) | 0.380 (0.014) |
Contra | 48.82 ± 7.33 | 47.88 ± 8.80 | 48.64 ± 8.09 | 48.12 ± 7.46 | 0.794 (0.001) | 0.921 (0.000) | 0.768 (0.003) | |
Ankle Angle (degrees) | ||||||||
At Heel-Strike | Ipsi | −39.98 ± 6.66 | −38.80 ± 7.09 | −40.87 ± 6.37 | −36.68 ± 6.91 | 0.870 (0.000) | 0.041 (0.072) | 0.604 (0.005) |
Contra | −23.84 ± 5.85 | −25.32 ± 5.97 | −24.35 ± 4.97 | −24.46 ± 7.66 | 0.224 (0.026) | 0.910 (0.000) | 0.260 (0.023) | |
At Toe-Off | Ipsi | −30.61 ± 6.17 | −29.68 ± 7.04 | −31.66 ± 6.59 | −27.26 ± 5.11 | 0.015 (0.000) | 0.026 (0.085) | 0.280 (0.021) |
Contra | −27.50 ± 4.83 | −26.89 ± 5.96 | −28.38 ± 4.96 | −24.90 ± 5.13 | 0.980 (0.000) | 0.022 (0.091) | 0.868 (0.000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teles, I.; Moreira, J.; Sousa, A.S.P. Association Between the History of Fall and the Fear of Falling on Stair Descent and Gait Transition Spatiotemporal Parameters and Lower-Limb Kinematics in Older Adults. Appl. Sci. 2025, 15, 6689. https://doi.org/10.3390/app15126689
Teles I, Moreira J, Sousa ASP. Association Between the History of Fall and the Fear of Falling on Stair Descent and Gait Transition Spatiotemporal Parameters and Lower-Limb Kinematics in Older Adults. Applied Sciences. 2025; 15(12):6689. https://doi.org/10.3390/app15126689
Chicago/Turabian StyleTeles, Ivone, Juliana Moreira, and Andreia S. P. Sousa. 2025. "Association Between the History of Fall and the Fear of Falling on Stair Descent and Gait Transition Spatiotemporal Parameters and Lower-Limb Kinematics in Older Adults" Applied Sciences 15, no. 12: 6689. https://doi.org/10.3390/app15126689
APA StyleTeles, I., Moreira, J., & Sousa, A. S. P. (2025). Association Between the History of Fall and the Fear of Falling on Stair Descent and Gait Transition Spatiotemporal Parameters and Lower-Limb Kinematics in Older Adults. Applied Sciences, 15(12), 6689. https://doi.org/10.3390/app15126689