Effective Adsorption of Phenoxyacetic Herbicides by Tomato Stem-Derived Activated Carbons
Abstract
1. Introduction
2. Experimental Section
2.1. Reagents and Raw Materials
2.2. Synthesis and Characterization of Activated Carbons from Tomato Stems (TS-AC)
- wAC—dry activated carbon weight (g);
- wB—dry carbonizate weight (g).
- Gx—content of selected oxygen surface groups (mmol/g);
- V0, Vx—amount of the HCl/NaOH solution used for titration of the supernatant sample (Vx) and the blank sample (V0) (mL);
- c—concentration of hydrochloric acid or sodium hydroxide (mol/L);
- MAC—a mass of tomato stem-derived activated carbon (TS-AC) (g).
- V0—the volume of sodium thiosulfate solution used in the blank (mL);
- Vp—the volume of sodium thiosulfate solution used in the actual determination (mL);
- ctio—titer of sodium thiosulfate solution (mol/L);
- MAC—mass of the activated carbons (TS-AC) (g);
- 126.92—the mass of 0.5 moles of iodine (g).
2.3. Batch Adsorption Experiments
3. Results and Discussion
3.1. Properties of the Obtained Tomato Stem-Derived Activated Carbon (TS-AC)
3.2. Adsorption Study
3.2.1. Adsorption Kinetics
- The plot of qt = f(t0.5) is a straight line over the whole range—the adsorption rate is controlled by only one step (film diffusion or intra-particle diffusion).
- The plot of qt = f(t0.5) is not linear over the whole range (broken line)—the adsorption is more complex, and both stages, film diffusion and intra-particle diffusion, control its rate.
- The plot of qt = f(t0.5) passes through the origin (intercept = 0)—intra-particle diffusion is the primary rate-limiting step in adsorption.
- The plot of qt = f(t0.5) does not pass through the origin (intercept ≠ 0)—pore diffusion plays a secondary role, and the rate of the overall adsorption process is controlled by film diffusion.
3.2.2. Adsorption Isotherms
3.2.3. Effects of Solution pH and Ionic Strength
3.2.4. Regeneration of the Activated Carbons
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wanner, N.; Alcibiade, A.; Tubiello, F.N. Pesticides Use and Trade, 1990–2022. In FAOSTAT Analytical Briefs; FAO: Rome, Italy, 2024; p. 13. Available online: https://openknowledge.fao.org/handle/20.500.14283/cd1486en (accessed on 10 May 2025).
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An Extensive Review on the Consequences of Chemical Pesticides on Human Health and Environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Błachnio, M.; Kuśmierek, K.; Świątkowski, A.; Deryło-Marczewska, A. Waste-Based Adsorbents for the Removal of Phenoxyacetic Herbicides from Water: A Comprehensive Review. Sustainability 2023, 15, 16516. [Google Scholar] [CrossRef]
- von Stackelberg, K. A Systematic Review of Carcinogenic Outcomes and Potential Mechanisms from Exposure to 2,4-D and MCPA in the Environment. J. Toxicol. 2013, 2013, 371610. [Google Scholar] [CrossRef]
- Saleh, I.A.; Zouari, N.; Al-Ghouti, M.A. Removal of Pesticides from Water and Wastewater: Chemical, Physical and Biological Treatment Approaches. Environ. Technol. Innov. 2020, 19, 101026. [Google Scholar] [CrossRef]
- Ponnuchamy, M.; Kapoor, A.; Senthil Kumar, P.; Vo, D.-V.N.; Balakrishnan, A.; Mariam Jacob, M.; Sivaraman, P. Sustainable Adsorbents for the Removal of Pesticides from Water: A Review. Environ. Chem. Lett. 2021, 19, 2425–2463. [Google Scholar] [CrossRef]
- Błachnio, M.; Kuśmierek, K.; Świątkowski, A.; Deryło-Marczewska, A. Adsorption of Phenoxyacetic Herbicides from Water on Carbonaceous and Non-Carbonaceous Adsorbents. Molecules 2023, 28, 5404. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Ojukwu, V.E.; Umeh, C.T.; Aniagor, C.O.; Chinyelu, C.E.; Ajala, O.J.; Dulta, K.; Adeola, A.O.; Rangabhashiyam, S. Recent Advances in the Adsorptive Removal of 2,4-Dichlorophenoxyacetic Acid from Water. J. Water Process Eng. 2023, 56, 104514. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and Non-Conventional Adsorbents for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- González-García, P. Activated Carbon from Lignocellulosics Precursors: A Review of the Synthesis Methods, Characterization Techniques and Applications. Renew. Sustain. Energy Rev. 2018, 82, 1393–1414. [Google Scholar] [CrossRef]
- Ukanwa, K.; Patchigolla, K.; Sakrabani, R.; Anthony, E.; Mandavgane, S. A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass. Sustainability 2019, 11, 6204. [Google Scholar] [CrossRef]
- Zhi, Y.; Shao, J.; Liu, C.; Xiao, Q.; Demir, M.; Al Mesfer, M.K.; Danish, M.; Wang, L.; Hu, X. High-Performance CO2 Adsorption with P-Doped Porous Carbons from Lotus Petiole Biomass. Sep. Purif. Technol. 2025, 361, 131253. [Google Scholar] [CrossRef]
- Bhungthong, S.; Aussawasathien, D.; Hrimchum, K.; Sriphalang, S.-N. Preparation and Properties of Activated Carbon from Palm Shell by Potassium Hydroxide Impregnation: Effects of Processing Parameters. Chiang Mai J. Sci. 2018, 45, 462–473. Available online: https://www.thaiscience.info/Journals/Article/CMJS/10989307.pdf (accessed on 10 May 2025).
- Suhdi; Wang, S.-C. Fine Activated Carbon from Rubber Fruit Shell Prepared by Using ZnCl2 and KOH Activation. Appl. Sci. 2021, 11, 3994. [Google Scholar] [CrossRef]
- Habeeb, O.A.; Kanthasamy, R.; Sethupathib, S.; Yunus, R.M. Optimization and Characterization Study of Preparation Factors of Activated Carbon Derived from Coconut Shell to Remove of H2S from Wastewater. In Activated Carbon: Prepared from Various Precursors; Ideal International E-Publication Pvt Ltd.: Indore, India, 2017; pp. 44–61. ISBN 978-93-86675-07-1. [Google Scholar]
- Shao, J.; Wang, Y.; Liu, C.; Xiao, Q.; Demir, M.; Al Mesfer, M.K.; Danish, M.; Wang, L.; Hu, X. Advanced Microporous Carbon Adsorbents for Selective CO2 Capture: Insights into Heteroatom Doping and Pore Structure Optimization. J. Anal. Appl. Pyrolysis 2025, 186, 106946. [Google Scholar] [CrossRef]
- Tiryaki, B.; Yagmur, E.; Banford, A.; Aktas, Z. Comparison of Activated Carbon Produced from Natural Biomass and Equivalent Chemical Compositions. J. Anal. Appl. Pyrolysis 2014, 105, 276–283. [Google Scholar] [CrossRef]
- Yagmur, E. Preparation of Low Cost Activated Carbons from Various Biomasses with Microwave Energy. J. Porous Mater. 2012, 19, 995–1002. [Google Scholar] [CrossRef]
- Dasgupta, J.; Kumar, A.; Mandal, D.D.; Mandal, T.; Datta, S. Removal of Phenol from Aqueous Solutions Using Adsorbents Derived from Low-Cost Agro-Residues. Desalin. Water Treat. 2016, 57, 14188–14212. [Google Scholar] [CrossRef]
- Fu, K.; Yue, Q.; Gao, B.; Wang, Y.; Li, Q. Activated Carbon from Tomato Stem by Chemical Activation with FeCl2. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 842–849. [Google Scholar] [CrossRef]
- Miziołek, D.; Pytkowska, R.; Serafin, K.; Zaremba, Ł. Production of Agricultural and Horticultural Crops in 2023. In Statistical Information; Statistics Poland, Agriculture and Environment Department: Warsaw, Poland, 2024; p. 10. Available online: https://stat.gov.pl/en/topics/agriculture-forestry/agricultural-and-horticultural-crops/production-of-agricultural-and-horticultural-crops-in-2023,2,8.html (accessed on 11 May 2025).
- Boehm, H.P. Surface Oxides on Carbon and Their Analysis: A Critical Assessment. Carbon 2002, 40, 145–149. [Google Scholar] [CrossRef]
- D1510-24B; Standard Test Method for Carbon Black—Iodine Adsorption Number. ASTM International: West Conshohocken, PA, USA, 2024. [CrossRef]
- D4607-14; Standard Test Method for Determination of Iodine Number of Activated Carbon. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- Figueiredo, J.L.; Pereira, M.F.R.; Freitas, M.M.A.; Órfão, J.J.M. Modification of the Surface Chemistry of Activated Carbons. Carbon 1999, 37, 1379–1389. [Google Scholar] [CrossRef]
- Lagergren, S. Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe. Kungl. Sven. Vetenskapsakad. Handl. 1898, 24, 1–39. Available online: https://weburn.kb.se/metadata/824/EOD_2758824.htm (accessed on 11 May 2025).
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Ullah, S.; Shah, S.S.A.; Altaf, M.; Hossain, I.; El Sayed, M.E.; Kallel, M.; El-Bahy, Z.M.; Rehman, A.U.; Najam, T.; Nazir, M.A. Activated Carbon Derived from Biomass for Wastewater Treatment: Synthesis, Application and Future Challenges. J. Anal. Appl. Pyrolysis 2024, 179, 106480. [Google Scholar] [CrossRef]
- Nasser, S.M.; Abbas, M.; Trari, M. Understanding the Rate-Limiting Step Adsorption Kinetics onto Biomaterials for Mechanism Adsorption Control. Prog. React. Kinet. Mech. 2024, 49, 1–26. [Google Scholar] [CrossRef]
- Morris, J.C.; Weber, W.J. Removal of Biologically Resistant Pollutants from Wastewaters by Adsorption. In Advances in Water Pollution Research: Proceedings of the International Conference Held in London, September 1962; Southgate, B.A., Ed.; Pergamon Press: Oxford, UK, 1964; Volume 2, pp. 231–266. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Initial Behavior of Intraparticle Diffusion Model Used in the Description of Adsorption Kinetics. Chem. Eng. J. 2009, 153, 1–8. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H. Über Die Adsorption in Lösungen/Over the Adsorption in Solution. Z. Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Hamdaoui, O.; Naffrechoux, E. Modeling of Adsorption Isotherms of Phenol and Chlorophenols onto Granular Activated Carbon. Part I. Two-Parameter Models and Equations Allowing Determination of Thermodynamic Parameters. J. Hazard. Mater. 2007, 147, 381–394. [Google Scholar] [CrossRef]
- Gibbs, J.W. A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces. Trans. Conn. Acad. 1873, 2, 382–404. Available online: https://www3.nd.edu/~powers/ame.20231/gibbs1873b.pdf (accessed on 11 May 2025).
- Zhou, X.; Zhou, X. The Unit Problem in the Thermodynamic Calculation of Adsorption Using the Langmuir Equation. Chem. Eng. Commun. 2014, 201, 1459–1467. [Google Scholar] [CrossRef]
- Buczek, B.; Biniak, S.; Świątkowski, A. Oxygen Distribution within Oxidised Active Carbon Granules. Fuel 1999, 78, 1443–1448. [Google Scholar] [CrossRef]
- Deryło-Marczewska, A.; Świątkowski, A.; Buczek, B.; Biniak, S. Adsorption Equilibria in the Systems: Aqueous Solutions of Organics—Oxidized Activated Carbon Samples Obtained from Different Parts of Granules. Fuel 2006, 85, 410–417. [Google Scholar] [CrossRef]
- Kuśmierek, K.; Świątkowski, A.; Skrzypczyńska, K.; Błażewicz, S.; Hryniewicz, J. The Effects of the Thermal Treatment of Activated Carbon on the Phenols Adsorption. Korean J. Chem. Eng. 2017, 34, 1081–1090. [Google Scholar] [CrossRef]
- Essandoh, M.; Wolgemuth, D.; Pittman, C.U.; Mohan, D.; Mlsna, T. Phenoxy Herbicide Removal from Aqueous Solutions Using Fast Pyrolysis Switchgrass Biochar. Chemosphere 2017, 174, 49–57. [Google Scholar] [CrossRef]
- Deryło-Marczewska, A.; Błachnio, M.; Marczewski, A.W.; Świątkowski, A.; Tarasiuk, B. Adsorption of Selected Herbicides from Aqueous Solutions on Activated Carbon. J. Therm. Anal. Calorim. 2010, 101, 785–794. [Google Scholar] [CrossRef]
- Błachnio, M.; Deryło-Marczewska, A.; Charmas, B.; Zienkiewicz-Strzałka, M.; Bogatyrov, V.; Galaburda, M. Activated Carbon from Agricultural Wastes for Adsorption of Organic Pollutants. Molecules 2020, 25, 5105. [Google Scholar] [CrossRef] [PubMed]
- Nyazi, K.; Baçaoui, A.; Yaacoubi, A.; Darmstadt, H.; Adnot, A.; Roy, C. Influence of Carbon Black Surface Chemistry on the Adsorption of Model Herbicides from Aqueous Solution. Carbon 2005, 43, 2218–2221. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Park, S.-S.; Kim, S.-J.; Cho, S.-Y. Separation Characteristics of Some Phenoxy Herbicides from Aqueous Solution. Adsorption 2008, 14, 611–619. [Google Scholar] [CrossRef]
- Abdel Daiem, M.M.; Rivera-Utrilla, J.; Sánchez-Polo, M.; Ocampo-Pérez, R. Single, Competitive, and Dynamic Adsorption on Activated Carbon of Compounds Used as Plasticizers and Herbicides. Sci. Total Environ. 2015, 537, 335–342. [Google Scholar] [CrossRef]
- Cansado, I.P.P.; Mourão, P.A.M.; Gomes, J.; Almodôvar, V. Adsorption of MCPA, 2,4-D and Diuron onto Activated Carbons from Wood Composites. Ciência Tecnol. Dos Mater. 2017, 29, e224–e228. [Google Scholar] [CrossRef]
- Doczekalska, B.; Kuśmierek, K.; Świątkowski, A.; Bartkowiak, M. Adsorption of 2,4-Dichlorophenoxyacetic Acid and 4-Chloro-2-Metylphenoxyacetic Acid onto Activated Carbons Derived from Various Lignocellulosic Materials. J. Environ. Sci. Health Part B 2018, 53, 290–297. [Google Scholar] [CrossRef]
- Abdel Daiem, M.M.; Sánchez-Polo, M.; Rashed, A.S.; Kamal, N.; Said, N. Adsorption Mechanism and Modelling of Hydrocarbon Contaminants onto Rice Straw Activated Carbons. Pol. J. Chem. Technol. 2019, 21, 1–12. [Google Scholar] [CrossRef]
- da Paixão Cansado, I.P.; Belo, C.R.; Mourão, P.A.M. Pesticides Abatement Using Activated Carbon Produced from a Mixture of Synthetic Polymers by Chemical Activation with KOH and K2CO3. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100261. [Google Scholar] [CrossRef][Green Version]
- Kuśmierek, K.; Dąbek, L.; Świątkowski, A. Removal of Phenoxy Herbicides from Aqueous Solutions Using Lignite as a Low-Cost Adsorbent. Desalin. Water Treat. 2022, 260, 111–118. [Google Scholar] [CrossRef]
- Ocampo-Pérez, R.; Abdel Daiem, M.M.; Rivera-Utrilla, J.; Méndez-Díaz, J.D.; Sánchez-Polo, M. Modeling Adsorption Rate of Organic Micropollutants Present in Landfill Leachates onto Granular Activated Carbon. J. Colloid Interface Sci. 2012, 385, 174–182. [Google Scholar] [CrossRef]
- Doczekalska, B.; Ziemińska, N.; Kuśmierek, K.; Świątkowski, A. Activated Carbons Derived from Different Parts of Corn Plant and Their Ability to Remove Phenoxyacetic Herbicides from Polluted Water. Sustainability 2024, 16, 7341. [Google Scholar] [CrossRef]
- Kuśmierek, K.; Białek, A.; Świątkowski, A. Effect of Activated Carbon Surface Chemistry on Adsorption of Phenoxy Carboxylic Acid Herbicides from Aqueous Solutions. Desalin. Water Treat. 2020, 186, 450–459. [Google Scholar] [CrossRef]
Adsorbate | CAS No. | Molecular Formula | Molecular Weight (g/mol) | Solubility in Water (g/L) | Acid Dissociation Constant, pKa |
---|---|---|---|---|---|
2,4-D | 94-75-7 | 221.04 | 0.682 | 2.98 | |
MCPA | 94-74-6 | 200.62 | 0.825 | 3.14 |
Activated Carbons | Total Acidic Groups (mmol/g) | Total Basic Groups (mmol/g) | Point of Zero Charge (pHpzc) |
---|---|---|---|
AC-KOH-550 | 3.03 | 1.66 | 6.65 |
AC-KOH-650 | 2.18 | 1.75 | 6.75 |
AC-KOH-750 | 1.23 | 3.28 | 7.15 |
AC-NaOH-550 | 1.84 | 2.02 | 7.00 |
AC-NaOH-650 | 1.23 | 4.18 | 7.20 |
AC-NaOH-750 | 0.82 | 4.92 | 7.25 |
TS-AC | Mass Loss (%) | |||
---|---|---|---|---|
200–500 °C | 500–700 °C | 700–950 °C | 200–950 °C | |
AC-KOH-550 | 3.6 | 5.6 | 5.9 | 15.1 |
AC-KOH-650 | 2.7 | 4.3 | 4.8 | 11.8 |
AC-KOH-750 | 1.7 | 2.6 | 3.2 | 7.5 |
AC-NaOH-550 | 2.3 | 3.9 | 4.4 | 10.6 |
AC-NaOH-650 | 1.8 | 3.0 | 3.4 | 8.2 |
AC-NaOH-750 | 1.2 | 2.2 | 2.9 | 6.3 |
TS-AC Sample | Chemical Composition (% wt.) | |||||||
---|---|---|---|---|---|---|---|---|
C | O | Ca | Mg | Al | Si | P | Zn | |
AC-KOH-550 | 84.3 | 12.7 | 1.7 | 0.4 | 0.1 | 0.1 | 0.4 | 0.2 |
AC-KOH-650 | 85.5 | 11.5 | 1.6 | 0.4 | 0.1 | 0.1 | 0.5 | 0.3 |
AC-KOH-750 | 88.6 | 9.2 | 1.2 | 0.4 | 0.1 | 0.1 | 0.4 | - |
AC-NaOH-550 | 83.0 | 13.5 | 2.2 | 0.4 | 0.1 | 0.1 | 0.4 | 0.2 |
AC-NaOH-650 | 86.8 | 10.1 | 1.7 | 0.4 | 0.1 | 0.3 | 0.3 | 0.2 |
AC-NaOH-750 | 88.3 | 9.8 | 1.0 | 0.3 | 0.1 | 0.1 | 0.2 | 0.1 |
TS-AC | BET Surface Areas, SBET (m2/g) | Micropore Volume, Vmi (cm3/g) | Total Pore Volume, Vt (cm3/g) | Mesopore Volume, Vme (cm3/g) | Vmi/Vt (%) | Average Pore Diameters, Dh (nm) | Iodine Number (mg/g) | Yield (%) |
---|---|---|---|---|---|---|---|---|
AC-KOH-550 | 575 | 0.268 | 0.323 | 0.055 | 82.97 | 2.25 | 940 | 56.4 |
AC-KOH-650 | 1445 | 0.677 | 0.798 | 0.121 | 84.84 | 2.21 | 1260 | 45.9 |
AC-KOH-750 | 1810 | 0.788 | 1.082 | 0.294 | 72.83 | 2.39 | 1290 | 39.8 |
AC-NaOH-550 | 790 | 0.369 | 0.455 | 0.086 | 81.10 | 2.30 | 1060 | 42.5 |
AC-NaOH-650 | 1565 | 0.723 | 0.903 | 0.180 | 80.07 | 2.31 | 1280 | 30.6 |
AC-NaOH-750 | 2085 | 0.928 | 1.211 | 0.283 | 76.63 | 2.32 | 1320 | 22.2 |
TS-AC | 2,4-D | MCPA | ||||
---|---|---|---|---|---|---|
Pseudo-First-Order (PFO) Kinetic Model | ||||||
k1 (1/min) | R2 | χ2 | k1 (1/min) | R2 | χ2 | |
AC-KOH-550 | 0.0299 | 0.991 | 0.185 | 0.0356 | 0.981 | 0.045 |
AC-KOH-650 | 0.0368 | 0.958 | 0.522 | 0.0396 | 0.971 | 0.089 |
AC-KOH-750 | 0.0342 | 0.911 | 0.711 | 0.0472 | 0.941 | 0.258 |
AC-NaOH-550 | 0.0502 | 0.955 | 0.369 | 0.0391 | 0.990 | 0.029 |
AC-NaOH-650 | 0.0472 | 0.927 | 0.412 | 0.0386 | 0.953 | 0.337 |
AC-NaOH-750 | 0.0504 | 0.978 | 0.089 | 0.0327 | 0.901 | 0.679 |
Pseudo-second-order (PSO) kinetic model | ||||||
k2 (g/mmol∙min) | R2 | χ2 | k2 (g/mmol∙min) | R2 | χ2 | |
AC-KOH-550 | 0.130 | 0.997 | 0.023 | 0.128 | 0.998 | 0.029 |
AC-KOH-650 | 0.187 | 0.999 | 0.011 | 0.181 | 0.999 | 0.017 |
AC-KOH-750 | 0.235 | 0.999 | 0.019 | 0.259 | 0.999 | 0.014 |
AC-NaOH-550 | 0.145 | 0.998 | 0.038 | 0.151 | 0.999 | 0.015 |
AC-NaOH-650 | 0.208 | 0.999 | 0.018 | 0.193 | 0.998 | 0.027 |
AC-NaOH-750 | 0.218 | 0.999 | 0.028 | 0.211 | 0.999 | 0.020 |
TS-AC | 2,4-D | MCPA | ||||||
---|---|---|---|---|---|---|---|---|
Langmuir Isotherm Model | ||||||||
qm | KL | R2 | χ2 | qm | KL | R2 | χ2 | |
AC-KOH-550 | 0.840 | 1.530 | 0.996 | 0.0013 | 0.830 | 6.136 | 0.996 | 0.0024 |
AC-KOH-650 | 1.417 | 5.468 | 0.999 | 0.0012 | 1.302 | 8.972 | 0.995 | 0.0068 |
AC-KOH-750 | 1.806 | 8.201 | 0.998 | 0.0025 | 1.721 | 11.08 | 0.999 | 0.0045 |
AC-NaOH-550 | 0.904 | 2.398 | 0.993 | 0.0011 | 1.056 | 3.244 | 0.993 | 0.0016 |
AC-NaOH-650 | 1.637 | 3.030 | 0.997 | 0.0012 | 1.513 | 7.466 | 0.994 | 0.0062 |
AC-NaOH-750 | 1.960 | 9.129 | 0.999 | 0.0029 | 1.902 | 11.78 | 0.998 | 0.0034 |
Freundlich isotherm model | ||||||||
KF | 1/n | R2 | χ2 | KF | 1/n | R2 | χ2 | |
AC-KOH-550 | 0.534 | 0.584 | 0.990 | 0.0033 | 0.766 | 0.314 | 0.914 | 0.0079 |
AC-KOH-650 | 1.311 | 0.357 | 0.990 | 0.0281 | 1.247 | 0.251 | 0.992 | 0.0091 |
AC-KOH-750 | 1.831 | 0.326 | 0.979 | 0.0058 | 1.778 | 0.276 | 0.982 | 0.0075 |
AC-NaOH-550 | 0.682 | 0.501 | 0.972 | 0.0063 | 0.857 | 0.424 | 0.990 | 0.0049 |
AC-NaOH-650 | 1.377 | 0.497 | 0.973 | 0.0088 | 1.451 | 0.300 | 0.987 | 0.0090 |
AC-NaOH-750 | 2.057 | 0.329 | 0.980 | 0.0079 | 2.002 | 0.280 | 0.990 | 0.0071 |
TS-AC | 2,4-D | MCPA | ||||
---|---|---|---|---|---|---|
ΔG° (kJ/mol) | Separation Factor (RL) | ΔG° (kJ/mol) | Separation Factor (RL) | |||
Min. | Max. | Min. | Max. | |||
AC-KOH-550 | −27.9 | 0.395 | 0.685 | −31.4 | 0.140 | 0.352 |
AC-KOH-650 | −31.1 | 0.154 | 0.379 | −32.3 | 0.101 | 0.271 |
AC-KOH-750 | −32.1 | 0.109 | 0.289 | −32.8 | 0.083 | 0.231 |
AC-NaOH-550 | −29.1 | 0.294 | 0.581 | −29.8 | 0.236 | 0.506 |
AC-NaOH-650 | −29.6 | 0.248 | 0.523 | −31.8 | 0.118 | 0.308 |
AC-NaOH-750 | −32.3 | 0.098 | 0.267 | −33.0 | 0.078 | 0.221 |
Adsorbent | SBET (m2/g) | Adsorption Capacity, qm (mmol/g) | Reference | |
---|---|---|---|---|
2,4-D | MCPA | |||
AC-KOH-550 | 574 | 0.840 | 0.830 | This paper |
AC-KOH-650 | 1445 | 1.417 | 1.302 | This paper |
AC-KOH-750 | 1801 | 1.806 | 1.721 | This paper |
AC-NaOH-550 | 791 | 0.904 | 1.056 | This paper |
AC-NaOH-650 | 1565 | 1.637 | 1.513 | This paper |
AC-NaOH-750 | 2087 | 1.960 | 1.902 | This paper |
AC from pistachio shell/CD | 556 | 2.051 | 1.565 | [42] |
AC from rice straw/ZnCl2 | 771 | 1.270 | 1.640 | [48] |
AC from rice straw/H3PO4 | 613 | 1.230 | 1.640 | [48] |
AC from particleboard | 1211 | 1.370 | 1.870 | [46] |
F-400 | 800 | 1.860 | 1.940 | [44] |
Sorbo Norit AC | 1225 | 1.490 | 2.080 | [45] |
Ceca AC40 AC | 1201 | 1.560 | 2.599 | [45] |
AC from PET (K2CO3) | 1206 | 1.949 | 2.450 | [49] |
AC from willow | 1280 | 2.310 | 2.413 | [47] |
AC from hemp shives | 1324 | 2.446 | 2.460 | [47] |
AC from miscanthus | 1420 | 2.577 | 2.677 | [47] |
AC from flax shives | 1587 | 2.682 | 2.725 | [47] |
AC from PAN (KOH) | 2828 | 2.490 | 2.630 | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuśmierek, K.; Doczekalska, B.; Sydor, M.; Świątkowski, A. Effective Adsorption of Phenoxyacetic Herbicides by Tomato Stem-Derived Activated Carbons. Appl. Sci. 2025, 15, 6816. https://doi.org/10.3390/app15126816
Kuśmierek K, Doczekalska B, Sydor M, Świątkowski A. Effective Adsorption of Phenoxyacetic Herbicides by Tomato Stem-Derived Activated Carbons. Applied Sciences. 2025; 15(12):6816. https://doi.org/10.3390/app15126816
Chicago/Turabian StyleKuśmierek, Krzysztof, Beata Doczekalska, Maciej Sydor, and Andrzej Świątkowski. 2025. "Effective Adsorption of Phenoxyacetic Herbicides by Tomato Stem-Derived Activated Carbons" Applied Sciences 15, no. 12: 6816. https://doi.org/10.3390/app15126816
APA StyleKuśmierek, K., Doczekalska, B., Sydor, M., & Świątkowski, A. (2025). Effective Adsorption of Phenoxyacetic Herbicides by Tomato Stem-Derived Activated Carbons. Applied Sciences, 15(12), 6816. https://doi.org/10.3390/app15126816