Innovative Suspension Structures: The Role of Straight Elements Under Asymmetric Loads
Abstract
1. Introduction
2. Analytical Solutions of Asymmetrically Loaded Suspension System with Stiffness in Bending Elements
2.1. Calculation of Suspension Structure with Two Straight Elements
2.2. Analysis of Asymmetrically Loaded Innovative Single-Level Suspension System
2.2.1. Calculation of Asymmetrically Loaded Upper Chord Elements
2.2.2. Calculation of the Asymmetrically Loaded Lower Chord
2.2.3. Calculation of the Asymmetrically Loaded Suspension System
3. Numerical Analysis of Suspension System Under Asymmetric Loads
4. Conclusions
- A novel two-level suspension system has been developed, integrating straight, “rigid” elements in the upper chord and a specially shaped lower chord. This configuration stabilizes the initial geometry of the flat roof under both symmetrical and asymmetrical loads, while simultaneously enhancing operational performance.
- The behavior of the lower chord under asymmetric loading was analyzed, leading to a revised calculation method for structural forces and displacements by dividing the displacements into kinematic and elastic. This approach minimizes the volume of iterative calculations required under asymmetric loading conditions. The axial force in the struts of the suspension system was found to be variable, depending on the bending stiffness of the upper chord, and the axial stiffness of the lower chord.
- The Finite Element Method (FEM) analysis demonstrated that increasing the bending stiffness of the upper chord significantly decreases both the total displacements and internal stresses in the asymmetrically loaded system. Increasing the stiffness from P1 to I1 not only reduces deflections of the upper chord elements but also minimizes displacements at the nodes throughout the entire suspension structure. Notably, by selecting an appropriate bending stiffness for the upper chord, it is possible to prevent upward displacements or negative values of displacements in the central node and the unloaded part of the system even at high load ratios γ.
- Under asymmetric loading, the suspended strut system redistributes stresses between the upper and lower chords, effectively stabilizing displacements. The stresses in the loaded and unloaded parts of the upper and lower chords differ significantly. For a load ratio of γ = 1.5, the axial forces in the loaded part of the upper chord are approximately 2.17 times smaller than those in the unloaded part. Conversely, the axial forces in the loaded part of the lower chord are about 2.66 times greater than in the unloaded part. The bending moments in the upper chord also vary substantially: those in the loaded part are approximately 2.5 times greater than in the unloaded part. At maximum stiffness (I1), the total stresses in the loaded upper chord approach those in the unloaded part. Furthermore, the stresses in the most rigid element (I1) are approximately 3.67 times lower than in the least rigid element (P1), confirming the efficiency and rationale of employing rigid elements in this suspension system.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krishna, P.; Godbole, P. M. Cable-Suspended Roofs, 2nd ed.; McGraw-Hill Education Private Limited: Chennai, India, 2013. [Google Scholar]
- Engel, H. Tragsysteme: Structure Systems; Hatje Cantz Verlag GmbH: Berlin, Germany, 2009. [Google Scholar]
- Gimsing, N.J.; Georgakis, C. Cable Supported Bridges: Concept and Design, 3rd ed.; John Wiley & Sons: Chichester, UK, 2012. [Google Scholar] [CrossRef]
- Ramsden, J. A critical analysis of the proposed bridge over the strait of Messina. In Proceedings of the Bridge Engineering 2 Conference, Bath, UK, 16–23 April 2009; pp. 199–208. [Google Scholar]
- Irvine, H.M. Cable Structures; Dover Publications: New York, NY, USA, 1992. [Google Scholar]
- Bucholdt, H.A. An Introduction to Cable Roof Structures, 2nd ed.; Thomas Telford: London, UK, 1999. [Google Scholar]
- Lewis, W. Tension Structures: Form and Behavior; Thomas Telford: London, UK, 2003. [Google Scholar]
- González Quelle, I. Cable roofs. Evolution, classification and future trends. In Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium, Valencia, Spain, 28 September 2009. [Google Scholar]
- Schlaich, J.; Bergermann, R.; Leich, W. Light Structures, 2nd ed.; Prestel: Munich, Germany, 2005. [Google Scholar]
- Otto, F. Gestalt Finden; Edition Axel Menges: Stuttgart, Germany, 2001. (In German) [Google Scholar]
- Kulbach, V. Cable Structures. Design and Analysis; Estonian Academy Publisher: Tallinn, Estonia, 2007. [Google Scholar]
- Pakrastinsh, L.; Rocens, K.; Serdjuks, D. Deformability of hierarchic cable roof. J. Constr. Steel Res. 2006, 62, 1295–1301. [Google Scholar] [CrossRef]
- Sophianopoulos, D.S.; Michaltsos, G.T. Nonlinear stability of a simplified model for the simulation of double suspension roofs. Eng. Struct. 2001, 23, 705–714. [Google Scholar] [CrossRef]
- Ma, S.; Lu, K.; Hu, S.; Tang, J.; Liu, H.; Yuan, X. Design and experimental study of a clustered cable-truss retractable roof structure. Structures 2025, 72, 108237. [Google Scholar] [CrossRef]
- Beivydas, E.; Juozapaitis, A. Experimental and numerical analysis of an innovative combined string–cable bridge. Appl. Sci. 2024, 14, 7542. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Sun, X.; Sun, Y. Improvement of the flexible support photovoltaic module system: A new type of cable-truss support structure system. Structures 2025, 71, 108203. [Google Scholar] [CrossRef]
- The European Union. Eurocode 3, Design of Steel Structures-Part 1–11: Design of structures with tension components; CEN: Brussels, Belgium, 2005. [Google Scholar]
- Shimoda, M.; Yamane, K.; Shi, J.X. Non-parametric shape optimization method for designing cable net structures in form finding and stiffness maximization problems. Int. J. Solids Struct. 2018, 146, 167–179. [Google Scholar] [CrossRef]
- Xu, J.; Chen, W. Behavior of wires in parallel wire stayed cable under general corrosion effects. J. Constr. Steel Res. 2013, 85, 40–47. [Google Scholar] [CrossRef]
- Li, R.; Miao, C.; Feng, Z.; Wei, T. Experimental study on the fatigue behavior of corroded steel wire. J. Constr. Steel Res. 2021, 176, 106375. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, K.; Zhu, H.-P. Nonlinear shape analysis for constructional multiwire cable structures with clamps considering multi-stiffness properties. Eng. Struct. 2024, 302, 117428. [Google Scholar] [CrossRef]
- Jennings, A. Deflection theory analysis of different cable profiles for suspension bridges. Eng. Struct. 1987, 9, 84–94. [Google Scholar] [CrossRef]
- Juozapaitis, A.; Norkus, A. Displacement analysis of asymmetrically loaded cable. J. Civ. Eng. Manag. 2004, 10, 277–284. [Google Scholar] [CrossRef]
- Rizzo, F.; D’Asdia, P.; Lazzari, M.; Procino, L. Wind action evaluation on tension roofs of hyperbolic paraboloid shape. Eng. Struct. 2011, 33, 445–461. [Google Scholar] [CrossRef]
- Ernst, H.J. Der E-Modul von Seilen unter Berücksichtigung des Durchhanges. Der. Bauingenieu 1965, 40, 52–55. [Google Scholar]
- Siavashi, S.; Rostami, M. Study of the concept of cable structures and structural behavior in wide span system. In Proceedings of the International Conference on Research in Science and Technology, Kualalumpur, Malaisya, 14 December 2015; pp. 1–21. [Google Scholar]
- Ludescher, G.; Braun, F.; Bachmann, U. Stress-ribbon roof structures of the new Stuttgart trade fair exhibition halls. Struct. Eng. Int. 2007, 1, 22–27. [Google Scholar] [CrossRef]
- Zimmermann, M.; Deillon, A. A new roof for the Émile Cohl Art School in Lyon. Struct. Eng. Int. 2018, 28, 171–177. [Google Scholar] [CrossRef]
- Farkas, J.; Jármai, K. 5-Large-span suspended roof members. In Design and Optimization of Metal Structures; Harwood Publishing: Chichester, UK, 2008; pp. 47–56. [Google Scholar] [CrossRef]
- Grigorigeva, T.; Juozapaitis, A.; Kamaitis, Z. Finite element modelling for static behavior analysis of suspension bridges with varying rigidity of main cables. Balt. J. Road Bridge Eng. 2008, 3, 121–128. [Google Scholar] [CrossRef]
- Juozapaitis, A.; Sandovič, G.; Jakubovskis, R.; Gribniak, V. Effects of flexural stiffness on deformation behaviour of steel and FRP stress-ribbon bridges. Appl. Sci. 2021, 11, 2585. [Google Scholar] [CrossRef]
- Petersen, C. Stahlbau: Grundlagen der Berechnung und Baulichen Ausbildung von Stahlbauten, 4th ed.; Springer: Wiesbaden, Germany, 2013; (In German). [Google Scholar] [CrossRef]
- Daniunas, A.; Urbonas, K. Influence of the semi-rigid bolted steel joints on the frame behaviour. J. Civ. Eng. Manag. 2010, 16, 237–241. [Google Scholar] [CrossRef]
- Šaraškinas, V.; Kvedaras, A.K. Course and results of testing a suspended composite structure. Statyba 2000, 6, 315–321. (In Lithuanian) [Google Scholar] [CrossRef]
- Juozapaitis, A.; Sharaskin, V.; Grigorjeva, T.; Valiunas, B. Analysis and arrangement of suspension structures from straight-line elements of finite flexural stiffness. In Theoretical Foundations of Civil Engineering—Polish-Ukrainian Transactions; Szczesniak, W.E., Ed.; J. Ross Publishing: Plantation, FL, USA, 2002; Volume 2, pp. 887–896. [Google Scholar]
- Skelton, R.E.; de Oliveira, M.C. Tensegrity Systems; Springer: Berlin/Heidelberg, Germany, Dortrech, Germany; London, UK; New York, NY, USA; 2009; p. 262. [Google Scholar]
- Skelton, R.E.; Montuori, R.; Pecoraro, V. Globally stable minimal mass compressive tensegrity structures. Compos. Struct. 2016, 141, 346–354. [Google Scholar] [CrossRef]
- Montuori, R.; Skelton, R.E. Globally stable tensegrity compressive structures for arbitrary complexity. Compos. Struct. 2017, 179, 682–694. [Google Scholar] [CrossRef]
- Peil, U. Statik der Dachtragwerke von Stadien. Stahlbau 2005, 74, 159–177. [Google Scholar] [CrossRef]
- Pałkowski, S. Statik der Seilkonstruktionen; Springer: Berlin/Heidelberg, Germany, 1990; (In German). [Google Scholar] [CrossRef]
- Rezaiee-Pajand, M.; Mokhtari, M.; Masoodi, A.R. A novel cable element for nonlinear thermo-elastic analysis. Eng. Struct. 2018, 167, 431–444. [Google Scholar] [CrossRef]
- Costa, R.S.; Lavall, A.C.C.; da Silva, R.G.L.; dos Santos, A.P.; Viana, H.F. Cable structures: An exact geometric analysis using catenary curve and considering the material nonlinearity and temperature effect. Eng. Struct. 2022, 253, 113738. [Google Scholar] [CrossRef]
- Fürst, A.; Marti, P.; Ganz, H.R. Bending of stay cables. Struct. Eng. Int. 2018, 11, 42–46. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X.; Chen, Z. A simplified finite element model for structural cable bending mechanism. Int. J. Mech. Sci. 2016, 113, 196–210. [Google Scholar] [CrossRef]
- Shimanovsky, A.V.; Shilinsky, V.V.; Shaban, N.A. Mechanics of Suspension System; Stal: Kiyv, Russia, 2010. (In Russian) [Google Scholar]
- Kmet, S.; Tomko, M.; Bin, M. Experimental and theoretical behaviour analysis of steel suspension members subjected to tension and bending. Steel Compos. Struct. 2012, 13, 343–365. [Google Scholar] [CrossRef]
- Juozapaitis, A.; Daniūnas, A.; Ustinovichius, L. Non-Linear behaviour and analysis of innovative suspension steel roof structures. Buildings 2024, 14, 661. [Google Scholar] [CrossRef]
- Beivydas, E.; Juozapaitis, A.; Paeglite, I. Experimental and analytical studies of string steel structure for bridges. Balt. J. Road Bridge Eng. 2023, 18, 145–165. [Google Scholar] [CrossRef]
- EN 10365:2017; Hot Rolled Steel Channels, I and H Sections—Dimensions and Masses. European Committee for Standardization: Brussels, Belgium, 2017.
Structural Element | Suspension Structure Scheme (Figure 1) | Cross-Section Label | Cross-Section Type (EN 10365) [49] |
---|---|---|---|
Upper Chord | SK-1, SK-2, SK-3 | I1 | IPE 360 |
R1 | RHS 250 × 250 × 10 | ||
R2 | SHS 400 × 200 × 6.3 | ||
R3 | SHS 250 × 150 × 10 | ||
R4 | SHS 300 × 100 × 10 | ||
P1 | Plate—180 × 40 | ||
Lower Chord | SK-2 | 32 mm | |
SK-3 | 25 mm | ||
Strut | SK-2, SK-3 | RHS 60 × 60 × 4 |
1.00 | 5.130 | 5.130 |
1.50 | 4.400 | 6.600 |
2.00 | 3.850 | 7.700 |
Stiffness | |||||
---|---|---|---|---|---|
Bar 1–6 | Bar 6–3 | Bar 3–7 | Bar 7–5 | ||
I1 | 1.00 | 1.008 | 1.008 | 0.518 | 0.518 |
1.50 | 1.011 | 1.011 | 0.418 | 0.418 | |
2.00 | 1.012 | 1.012 | 0.351 | 0.351 | |
P1 | 1.00 | 0.950 | 0.950 | 0.532 | 0.532 |
1.50 | 0.935 | 0.935 | 0.444 | 0.444 | |
2.00 | 0.923 | 0.923 | 0.364 | 0.365 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juozapaitis, A.; Daniūnas, A. Innovative Suspension Structures: The Role of Straight Elements Under Asymmetric Loads. Appl. Sci. 2025, 15, 7009. https://doi.org/10.3390/app15137009
Juozapaitis A, Daniūnas A. Innovative Suspension Structures: The Role of Straight Elements Under Asymmetric Loads. Applied Sciences. 2025; 15(13):7009. https://doi.org/10.3390/app15137009
Chicago/Turabian StyleJuozapaitis, Algirdas, and Alfonsas Daniūnas. 2025. "Innovative Suspension Structures: The Role of Straight Elements Under Asymmetric Loads" Applied Sciences 15, no. 13: 7009. https://doi.org/10.3390/app15137009
APA StyleJuozapaitis, A., & Daniūnas, A. (2025). Innovative Suspension Structures: The Role of Straight Elements Under Asymmetric Loads. Applied Sciences, 15(13), 7009. https://doi.org/10.3390/app15137009