Advances in Neural Network-Based Image, Thermal, Infrared, and X-Ray Technologies
Abstract
1. Introduction
2. Literature Review Methodology and State-of-the-Art
2.1. Article Selection and Research Category Definition
- A combined field that searches abstracts by: neural network
- Years: between 2005 and 2024
- Limited by language: English
- Limited by publication stage: final
- Limited by subject areas: computer science, engineering
- Limited by main keywords: image sensors OR thermal imaging OR infrared detectors OR X-ray.
|
|
|
2.2. Artificial Neural Networks Overview
2.3. State-of-the-Art: A Technology Review from 2005 to 2024
2.3.1. Image Sensors
2.3.2. Thermal Imaging
2.3.3. Infrared Detectors
2.3.4. X-Rays
2.4. Neural Network Algorithms
3. Results
4. Discussion
4.1. Current Trends in Technologies Powered by Artificial Neural Networks
4.2. Hybrid Networks
4.3. Optimisation of Neural Networks for a Class of Images
4.4. Neural Networks and Platforms
- Edge devices:
- Applications: Fast recognition (e.g., number of people, simple monitoring, mobile robots, data acquisition directly from sensors).
- Solutions: Lightweight CNN models (e.g., small, optimised networks), simplified machine learning algorithms, classifiers with low resource requirements.
- Hardware architectures: microcontrollers, DSP (Digital Signal Processor), low-power ARM processors, dedicated PCB systems (e.g., energy metres, simple IoT sensors), often with ZigBee or WiFi wireless communication.
- Example: Reading physical metres using a CMOS image sensor + DSP + neural network, sending results through ZigBee to the concentrator [55].
- Embedded industrial systems:
- Applications: Advanced monitoring systems, autonomous robots, real-time control, industrial inspection systems (e.g., production lines, mobile robots, autonomous vehicles).
- Solutions: Medium-sized CNN models, sensor fusion (e.g., IR, cameras, radar), low-latency processing, sometimes recurrent networks, or Spiking Neural Networks (SNNs).
- Hardware architectures: FPGA, System-on-Chip (SoC) systems with their own hardware acceleration for AI, sometimes embedded GPU (e.g., Nvidia Jetson).
- Stand-alone Desktop Computers:
- Applications: Advanced image processing, data mining, scientific experiments, simulations, algorithm development and testing, more complex analyses (e.g., segmentation, multiclass classification, transfer learning).
- Solutions: Full-scale CNN architectures (e.g., ResNet, U-Net), GAN for image quality improvement, advanced autoencoder networks, classic MLP networks for signal analysis.
- Hardware architectures: PC-class CPU, GPU (Nvidia, AMD), workstations, standard laboratory equipment.
- Example: Training and testing networks in the Matlab environment on a PC with CPU/GPU [12].
- Cloud computing:
- Applications: Complex operations on large datasets, large-scale modelling and prediction, remote medical diagnostics, big data analysis, large-scale deep learning, model servicing for clients.
- Solutions: Very large deep networks (Deep CNN, GAN, transformers), high-performance transfer learning techniques, hybrid and multi-type models, training and inference on distributed clusters.
- Hardware architectures: GPU clusters, TPU (Google), distributed cloud environments (AWS, Azure, Google Cloud), containerisation (Docker, Kubernetes).
- Supercomputers:
- Applications: Training very large AI models, processing massive datasets from many sources (e.g., genetic projects, medical imaging studies), multiscale simulations, data mining from many sensors simultaneously.
- Solutions: Very complex deep networks, hybrid networks, advanced classifiers and segmenters, multi-stage simulations using many models.
- Hardware architectures: Multithreaded CPU+GPU/TPU clusters, dedicated AI supercomputers (e.g., El Capitan, Summit, Fugaku) (top500.org, accessed on 18 June 2025).
4.5. Noticeable New Trends
- Fingerprint identification—Only one article describes this solution, stating that much better results were obtained compared to previous methods [47].
- Identification of tissues—It is important not only to identify its type, but also to assess its condition and suggest possible treatment [4].
- Assistance in agriculture—In [100], a method was presented to check the proper level of soil moisture. However, it can be expected that this technology can be used to detect the presence of pests or parasites as well.
- Hybrid approaches involving ANNs are finding more and more practical applications and are one of the most important fields of deep learning development in image processing.
5. Conclusions
- Object recognition
- Person security and detection
- Road sign recognition
- Respiratory disease detection.
- Detection of various diseases, especially rare ones
- Development of expert systems
- Improvement of security systems
- Improvement of autonomous systems.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018; pp. 63–79. [Google Scholar] [CrossRef]
- Donahue, J.; Hendricks, L.A.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Darrell, T.; Saenko, K. Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 2625–2634. [Google Scholar] [CrossRef]
- Veredas, F.J.; Mesa, H.; Morente, L. A hybrid learning approach to tissue recognition in wound images. Int. J. Intell. Comput. Cybern. 2009, 2, 327–347. [Google Scholar] [CrossRef]
- Smith, L.; Smith, M.; Farooq, A.; Sun, J.; Ding, Y.; Warr, R. Machine vision 3D skin texture analysis for detection of melanoma. Sens. Rev. 2011, 31, 111–119. [Google Scholar] [CrossRef]
- Kristo, M.; Ivasic-Kos, M. An overview of thermal face recognition methods. In Proceedings of the 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 1098–1103. [Google Scholar] [CrossRef]
- Veranyurt, O.; Sakar, C.O. Concealed pistol detection from thermal images with deep neural networks. Multimed. Tools Appl. 2023, 82, 44259–44275. [Google Scholar] [CrossRef]
- Ko, J.H.; Na, T.; Mukhopadhyay, S. An Energy-Quality Scalable Wireless Image Sensor Node for Object-Based Video Surveillance. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 591–602. [Google Scholar] [CrossRef]
- Datta, G.; Liu, Z.; Yin, Z.; Sun, L.; Jaiswal, A.R.; Beerel, P.A. Enabling ISPless Low-Power Computer Vision. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2–7 January 2023; pp. 2429–2438. [Google Scholar] [CrossRef]
- Li, Y.; Hussain, H.; Yang, C.; Hu, S.; Zhao, J. High-Resolution Image Reconstruction Array of Based on Low-Resolution Infrared Sensor; Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST (LNICST, Volume 303); Springer: Cham, Switzerland, 2019; pp. 118–132. [Google Scholar] [CrossRef]
- Kamal, U.; Ahmed, S.; Toha, T.R.; Islam, N.; Alim Al Islam, A. Intelligent Human Counting through Environmental Sensing in Closed Indoor Settings. Mob. Netw. Appl. 2020, 25, 474–490. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Doll’ar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25, pp. 1097–1105. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar] [CrossRef]
- Jin, K.H.; McCann, M.T.; Froustey, E.; Unser, M. Deep Convolutional Neural Network for Inverse Problems in Imaging. IEEE Trans. Image Process. 2017, 26, 4509–4522. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International Conference on Learning Representations (ICLR), Vienna, Austria, 4 May 2021. [Google Scholar] [CrossRef]
- Pan, C.; Xia, B. Comparison of pixels unmixing approaches and application to MODIS. In Proceedings of the 2009 International Conference on Artificial Intelligence and Computational Intelligence, Shanghai, China, 7–8 November 2009; Volume 2, pp. 65–68. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Yang, H.; Zhu, H.; Ren, E.; Liu, Z.; Jia, K.; Luo, L.; Zhang, X.; Wei, Q.; et al. Processing near sensor architecture in mixed-signal domain with CMOS image sensor of convolutional-kernel-readout method. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 389–400. [Google Scholar] [CrossRef]
- Kisku, W.; Kaur, A.; Mishra, D. On-chip Pixel Reconstruction using Simple CNN for Sparsely Read CMOS Image Sensor. In Proceedings of the 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS), Washington, DC, USA, 6–9 June 2021. [Google Scholar] [CrossRef]
- Jeong, B.; Lee, J.; Lee, S.; Lee, S.; Son, Y.; Kim, S.Y. A 240-FPS In-Column Binarized Neural Network Processing in CMOS Image Sensors. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 3907–3911. [Google Scholar] [CrossRef]
- Rojas, R.A.; Luo, W.; Murray, V.; Lu, Y.M. Learning optimal parameters for binary sensing image reconstruction algorithms. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 2791–2795. [Google Scholar] [CrossRef]
- Chen, H.G.; Jayasuriya, S.; Yang, J.; Stephen, J.; Sivaramakrishnan, S.; Veeraraghavan, A.; Molnar, A. ASP vision: Optically computing the first layer of convolutional neural networks using angle sensitive pixels. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 903–912. [Google Scholar] [CrossRef]
- Guo, J.; Gu, H.; Potkonjak, M. Efficient image sensor subsampling for DNN-based image classification. In Proceedings of the ISLPED ’18: International Symposium on Low Power Electronics and Design, Seattle, WA, USA, 23–25 July 2018. [Google Scholar] [CrossRef]
- Ahmad, J.; Warren, A. FPGA based Deterministic Latency Image Acquisition and Processing System for Automated Driving Systems. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018. [Google Scholar] [CrossRef]
- Camuñas-Mesa, L.; Zamarreño-Ramos, C.; Linares-Barranco, A.; Acosta-Jiménez, A.J.; Serrano-Gotarredona, T.; Linares-Barranco, B. An event-driven multi-kernel convolution processor module for event-driven vision sensors. IEEE J. Solid-State Circuits 2012, 47, 504–517. [Google Scholar] [CrossRef]
- Benjilali, W.; Guicquero, W.; Jacques, L.; Sicard, G. Hardware-Compliant Compressive Image Sensor Architecture Based on Random Modulations and Permutations for Embedded Inference. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1218–1231. [Google Scholar] [CrossRef]
- Kaur, A.; Mishra, D.; Amogh, K.; Sarkar, M. On-Array Compressive Acquisition in CMOS Image Sensors Using Accumulated Spatial Gradients. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 523–532. [Google Scholar] [CrossRef]
- Lai, J.L.; Guan, Z.X.; Chen, Y.T.; Tai, C.F.; Chen, R.J. Implementation of fuzzy cellular neural network with image sensor in CMOS technology. In Proceedings of the 2008 International Conference on Communications, Circuits and Systems, Fujian, China, 25–27 May 2008; pp. 982–986. [Google Scholar] [CrossRef]
- Yang, X.; Yao, C.; Kang, L.; Luo, Q.; Qi, N.; Dou, R.; Yu, S.; Feng, P.; Wei, Z.; Liu, J.; et al. A Bio-Inspired Spiking Vision Chip Based on SPAD Imaging and Direct Spike Computing for Versatile Edge Vision. IEEE J. Solid-State Circuits 2024, 59, 1883–1898. [Google Scholar] [CrossRef]
- Stow, E.; Ahsan, A.; Li, Y.; Babaei, A.; Murai, R.; Saeedi, S.; Kelly, P.H.J. Compiling CNNs with Cain: Focal-plane processing for robot navigation. Auton. Robot. 2022, 46, 893–910. [Google Scholar] [CrossRef]
- Micheloni, C.; Foresti, G.L. Active tuning of intrinsic camera parameters. IEEE Trans. Autom. Sci. Eng. 2009, 6, 577–587. [Google Scholar] [CrossRef]
- Hofmann, M.; Mader, P. Synaptic Scaling—An Artificial Neural Network Regularization Inspired by Nature. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 3094–3108. [Google Scholar] [CrossRef]
- Costilla-Reyes, O.; Scully, P.; Ozanyan, K.B. Deep Neural Networks for Learning Spatio-Temporal Features From Tomography Sensors. IEEE Trans. Ind. Electron. 2018, 65, 645–653. [Google Scholar] [CrossRef]
- Cao, D.; Guo, P. Residual error based approach to classification of multisource remote sensing images. In Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, Jian, China, 16–18 October 2006; Volume 2, pp. 406–411. [Google Scholar] [CrossRef]
- Cracan, A.M.; Teodoru, C.; Dobrea, D.M. Techniques to implement an embedded laser sensor for pattern recognition. In Proceedings of the EUROCON 2005—The International Conference on “Computer as a Tool”, Belgrade, Serbia, 21–24 November 2005; Volume II, pp. 1417–1420. [Google Scholar] [CrossRef]
- Alonso-Fernandez, F.; Hernandez-Diaz, K.; Ramis, S.; Perales, F.J.; Bigun, J. Facial masks and soft-biometrics: Leveraging face recognition CNNs for age and gender prediction on mobile ocular images. IET Biom. 2021, 10, 562–580. [Google Scholar] [CrossRef]
- Lin, C.; Kumar, A. A CNN-Based Framework for Comparison of Contactless to Contact-Based Fingerprints. IEEE Trans. Inf. Forensics Secur. 2019, 14, 662–676. [Google Scholar] [CrossRef]
- Chen, C.Y.; Feng, H.M. Hybrid intelligent vision-based car-like vehicle backing systems design. Expert Syst. Appl. 2009, 36, 7500–7509. [Google Scholar] [CrossRef]
- Rahmat, M.; Abdul Rahim, R.; Sabit, H. Application of neural network and electrodynamic sensor as flow pattern identifier. Sens. Rev. 2010, 30, 137–141. [Google Scholar] [CrossRef]
- Son, H.; Kim, C. Integrated worker detection and tracking for the safe operation of construction machinery. Autom. Constr. 2021, 126, 103670. [Google Scholar] [CrossRef]
- Massoud, Y.; Laganiere, R. Learnable fusion mechanisms for multimodal object detection in autonomous vehicles. IET Comput. Vis. 2024, 18, 499–511. [Google Scholar] [CrossRef]
- Nguwi, Y.Y.; Kouzani, A.Z. Automatic road sign recognition using neural networks. In Proceedings of the 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, BC, Canada, 16–21 July 2006; pp. 3955–3962. [Google Scholar] [CrossRef]
- Wang, J.; Lin, T.; Chen, S. Obtaining weld pool vision information during aluminium alloy TIG welding. Int. J. Adv. Manuf. Technol. 2005, 26, 219–227. [Google Scholar] [CrossRef]
- Chen, B.; Wang, J.; Chen, S. Modeling of pulsed GTAW based on multi-sensor fusion. Sens. Rev. 2009, 29, 223–232. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Bai, Q.; Qi, Z.; Zhang, X. Research of digital meter identifier based on DSP and neural network. In Proceedings of the 2009 IEEE International Workshop on Imaging Systems and Techniques, Shenzhen, China, 11–12 May 2009; pp. 402–406. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Bai, Q.; Qi, Z.; Zhang, X. Design and research of digital meter identifier based on image and wireless communication. In Proceedings of the 2009 International Conference on Industrial Mechatronics and Automation, Chengdu, China, 15–16 May 2009; pp. 101–104. [Google Scholar] [CrossRef]
- El Hafi, L.; Ding, M.; Takamatsu, J.; Ogasawara, T. STARE: Realtime, wearable, simultaneous gaze tracking and object recognition from eye images. SMPTE Motion Imaging J. 2017, 126, 37–46. [Google Scholar] [CrossRef]
- Torghabeh, F.A.; Modaresnia, Y.; Hosseini, S.A. An Efficient Approach for Breast Abnormality Detection through High-Level Features of Thermography Images. In Proceedings of the 2023 13th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 1–2 November 2023; pp. 54–59. [Google Scholar] [CrossRef]
- Naz, M.; Sakarkar, G. Arthritis Detection Using Thermography and Artificial Intelligence. In Proceedings of the 2022 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-22), Nagpur, India, 29–30 April 2022. [Google Scholar] [CrossRef]
- Sharma, N.; Mirza, S.; Rastogi, A.; Singh, S.; Mahapatra, P.K. Region-wise severity analysis of diabetic plantar foot thermograms. Biomedizinische Technik 2023, 68, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Selvathi, D.; Suganya, K.; Menaka, M.; Venkatraman, B. Deep convolutional neural network-based diabetic eye disease detection and classification using thermal images. Int. J. Reason.-Based Intell. Syst. 2021, 13, 106–114. [Google Scholar] [CrossRef]
- Kyal, C.; Poddar, H.; Reza, M. Thermal Biometric Face Recognition (TBFR): A Noncontact Face Biometry; Elsevier: Amsterdam, The Netherlands, 2022; pp. 29–46. [Google Scholar] [CrossRef]
- Pons, G.; El Ali, A.; Cesar, P. ET-CycleGAN: Generating thermal images from images in the visible spectrum for facial emotion recognition. In Proceedings of the ICMI ’20: International Conference On Multimodal Interaction, Virtual Event, The Netherlands, 25–29 October 2020; pp. 87–91. [Google Scholar] [CrossRef]
- Lin, S.; Chen, L.; Chen, W.; Chang, B. Face Recognition via Thermal Imaging: A Comparative Study of Traditional and CNN-Based Approaches. In Proceedings of the ICMLSC ’24: Proceedings of the 2024 8th International Conference on Machine Learning and Soft Computing; Singapore, 26–28 January 2024, pp. 132–138. [CrossRef]
- Rathore, S.; Bhalerao, S. Implementation of neuro-fuzzy based portable thermographic system for detection of Rheumatoid Arthritis. In Proceedings of the 2015 Global Conference on Communication Technologies (GCCT), Thuckalay, India, 23–24 April 2015; pp. 902–905. [Google Scholar] [CrossRef]
- Nascimento, J.P.; Araujo, B.V.; Rodrigues, G.A.; Xavier, G.V.; Freire, E.O.; Sales, G.; Ferreira, T.V. Detection of electrical equipment using an artificial neural network with visual spectrum images and thermal images. IET Conf. Proc. 2023, 2023, 177–183. [Google Scholar] [CrossRef]
- Muthu, V.; Kavitha, S. Detection of Covid-19 Using an Infrared Fever Screening System (IFSS) Based on Deep Learning Technology. Lect. Notes Netw. Syst. 2023, 672, 217–228. [Google Scholar] [CrossRef]
- Liyanarachchi, R.; Wijekoon, J.; Premathilaka, M.; Vidhanaarachchi, S. COVID-19 symptom identification using Deep Learning and hardware emulated systems. Eng. Appl. Artif. Intell. 2023, 125, 106709. [Google Scholar] [CrossRef]
- Kostadinov, G. AI-Enabled Infrared Thermography: Machine Learning Approaches in Detecting Peripheral Arterial Disease; Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST (LNICST, Volume 514); Springer: Cham, Switzerland, 2023; pp. 159–170. [Google Scholar] [CrossRef]
- Senalp, F.M.; Ceylan, M. Deep learning based super resolution and classification applications for neonatal thermal images. Trait. Signal 2021, 38, 1361–1368. [Google Scholar] [CrossRef]
- Bouallal, D.; Douzi, H.; Harba, R. Diabetic foot thermal image segmentation using Double Encoder-ResUnet (DE-ResUnet). J. Med Eng. Technol. 2022, 46, 378–392. [Google Scholar] [CrossRef]
- Dickens, J.; Van Wyk, M.; Green, J. Pedestrian detection for underground mine vehicles using thermal images. In Proceedings of the IEEE Africon ’11, Victoria Falls, Zambia, 13–15 September 2011. [Google Scholar] [CrossRef]
- Sneha, M.; Aravindakshan, G.; Varsha Vardini, S.; Akshayaa Rajeshwari, D.; Sastika Var, R.; Selvi, J.T.; Sathiyanarayanan, M. An effective drone surveillance system using thermal imaging. In Proceedings of the 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), Bengaluru, India, 9–10 October 2020; pp. 477–482. [Google Scholar] [CrossRef]
- Elgohary, A.A.; Badr, M.M.; Elmalhy, N.A.; Hamdy, R.A.; Ahmed, S.; Mordi, A.A. Transfer of learning in convolutional neural networks for thermal image classification in Electrical Transformer Rooms. Alex. Eng. J. 2024, 105, 423–436. [Google Scholar] [CrossRef]
- Gorska, A.; Guzal, P.; Namiotko, I.; Wedolowska, A.; Wloszczynska, M.; Ruminski, J. Pedestrian detection in low-resolution thermal images. In Proceedings of the 2022 15th International Conference on Human System Interaction (HSI), Melbourne, Australia, 28–31 July 2022. [Google Scholar] [CrossRef]
- Ivašić-Kos, M.; Krišto, M.; Pobar, M. Human detection in thermal imaging using YOLO. In Proceedings of the ICCTA 2019: 2019 5th International Conference on Computer and Technology Applications, Istanbul, Turkey, 16–17 April 2019; pp. 20–24. [Google Scholar] [CrossRef]
- Ganesh, K.; Umapathy, S.; Thanaraj Krishnan, P. Deep learning techniques for automated detection of autism spectrum disorder based on thermal imaging. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 1113–1127. [Google Scholar] [CrossRef]
- Kuo, H.H.; Barik, D.S.; Zhou, J.Y.; Hong, Y.K.; Yan, J.J.; Yen, M.H. Design and Implementation of AI aided Fruit Grading Using Image Recognition. In Proceedings of the 2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Taichung, Taiwan, 7–9 December 2022; pp. 194–199. [Google Scholar] [CrossRef]
- Purcaru, C.; Precup, R.E.; Iercan, D.; Fedorovici, L.O.; Dohangie, B.; Dragan, F. Nrobotic mobile robot navigation using traffic signs in unknown indoor environments. In Proceedings of the 2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 23–25 May 2013; pp. 29–34. [Google Scholar] [CrossRef]
- Adarsh, S.; Ramachandran, K. Design of Sensor Data Fusion Algorithm for Mobile Robot Navigation Using ANFIS and Its Analysis Across the Membership Functions. Autom. Control Comput. Sci. 2018, 52, 382–391. [Google Scholar] [CrossRef]
- Crnokić, B. Use of Artificial Neural Networks for Fusion of Infrared and Vision Sensors in a Mobile Robot Navigation System; DAAAM International: Vienna, Austria, 2020; Volume 31, pp. 80–87. [Google Scholar] [CrossRef]
- Gavrilut, I.; Tiponut, V.; Gacsadi, A. Mobile robot navigation based on CNN images processing—An experimental setup. WSEAS Trans. Syst. 2009, 8, 947–956. [Google Scholar]
- He, R.; Xu, P.; Chen, Z.; Luo, W.; Su, Z.; Mao, J. A non-intrusive approach for fault detection and diagnosis of water distribution systems based on image sensors, audio sensors and an inspection robot. Energy Build. 2021, 243, 110967. [Google Scholar] [CrossRef]
- Zhang, X.X.; Zhang, Y.H.; Sun, H.X.; Nian, S.C. Detection and control of flexible peristaltic pipeline robot in elbow. Appl. Mech. Mater. 2013, 389, 789–795. [Google Scholar] [CrossRef]
- Koval, V.; Adamiv, O.; Kapura, V. The local area map building for mobile robot navigation using ultrasound and infrared sensors. In Proceedings of the 2007 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Dortmund, Germany, 6–8 September 2007; pp. 454–459. [Google Scholar] [CrossRef]
- Greenwald, L.; Artz, D.; Mehta, Y.; Shirmohammadi, B. Using educational robotics to motivate complete AI solutions. AI Mag. 2006, 27, 83–95. [Google Scholar]
- Nigam, P.; Biswas, K.; Gupta, S.; Khandagre, Y.; Dubey, A.K. Radar-infrared sensor track correlation algorithm based on neural network fusion system. In Proceedings of the 2011 3rd International Conference on Electronics Computer Technology, Kanyakumari, India, 8–10 April 2011; Volume 3, pp. 202–206. [Google Scholar] [CrossRef]
- Kim, T.; Kim, S.; Lee, E.; Park, M. Comparative analysis of RADAR-IR sensor fusion methods for object detection. In Proceedings of the 2017 17th International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 18–21 October 2017; pp. 1576–1580. [Google Scholar] [CrossRef]
- Liu, W.; Qiao, Y.; Zhao, Y.; Xing, Z.; He, H. Maritime vessel classification based on a dual network combining EfficientNet with a hybrid network MPANet. IET Image Process. 2024, 18, 3093–3107. [Google Scholar] [CrossRef]
- He, Z.; Zhuge, X.; Wang, J.; Yu, S.; Xie, Y.; Zhao, Y. Half space object classification via incident angle based fusion of radar and infrared sensors. J. Syst. Eng. Electron. 2022, 33, 1025–1031. [Google Scholar] [CrossRef]
- Lawley, A.; Hampson, R.; Worrall, K.; Dobie, G. Using positional tracking to improve abdominal ultrasound machine learning classification. Mach. Learn. Sci. Technol. 2024, 5, 025002. [Google Scholar] [CrossRef]
- Avuthu, B.; Yenuganti, N.; Kasikala, S.; Viswanath, A.; Sarath. A Deep Learning approach for detection and analysis of respiratory infections in covid-19 patients using RGB and infrared images. In Proceedings of the IC3-2022: 2022 Fourteenth International Conference on Contemporary Computing, Noida, India, 4–6 August 2022; pp. 367–371. [Google Scholar] [CrossRef]
- Zhang, J.; Song, C.; Hu, Y.; Yu, B. Improving robustness of robotic grasping by fusing multi-sensor. In Proceedings of the 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Hamburg, Germany, 13–15 September 2012; pp. 126–131. [Google Scholar] [CrossRef]
- Yatim, N.M.; Jamaludin, A.; Noh, Z.M.; Buniyamin, N. Rao-Blackwellized Particle Filter with Neural Network using Low-Cost Range Sensor in Indoor Environment. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 840–848. [Google Scholar] [CrossRef]
- Jeffril, M.A.; Sariff, N. The integration of fuzzy logic and artificial neural network methods for mobile robot obstacle avoidance in a static environment. In Proceedings of the 2013 IEEE 3rd International Conference on System Engineering and Technology, Shah Alam, Malaysia, 19–20 August 2013; pp. 325–330. [Google Scholar] [CrossRef]
- Savage, J.; Cruz, J.; Matamoros, M.; Rosenblueth, D.A.; Muñoz, S.; Negrete, M. Configurable Mobile Robot Behaviors Implemented on FPGA Based Architectures. In Proceedings of the 2016 International Conference on Autonomous Robot Systems and Competitions (ICARSC), Bragança, Portugal, 4–6 May 2016; pp. 317–322. [Google Scholar] [CrossRef]
- Fouladvand, S.; Salavati, S.; Masajedi, P.; Ghanbarzadeh, A. A modified neuro-evolutionary algorithm for mobile robot navigation: Using fuzzy systems and combination of artificial neural networks. Int. J. Knowl.-Based Intell. Eng. Syst. 2015, 19, 125–133. [Google Scholar] [CrossRef]
- Hofer, E.; Rahman, T.; Myers, R.; Hamieh, I. Training a Neural Network for Lane Demarcation Detection in the Infrared Spectrum. In Proceedings of the 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), London, ON, Canada, 30 August–2 September 2020. [Google Scholar] [CrossRef]
- Roy, A.; Noel, M.M. Design of a high-speed line following robot that smoothly follows tight curves. Comput. Electr. Eng. 2016, 56, 732–747. [Google Scholar] [CrossRef]
- Sobayo, R.; Wu, H.H.; Ray, R.; Qian, L. Integration of convolutional neural network and thermal images into soil moisture estimation. In Proceedings of the 2018 1st International Conference on Data Intelligence and Security (ICDIS), South Padre Island, TX, USA, 8–10 April 2018; pp. 207–210. [Google Scholar] [CrossRef]
- Farooq, U.; Arif, H.; Amar, M.; Tahir, B.M.; Qasim, M.; Ahmad, N. Comparative analysis of fuzzy logic and neural network based controllers for line tracking task in mobile robots. In Proceedings of the 2010 2nd International Conference on Signal Processing Systems, Dalian, China, 5–7 July 2010; Volume 2, pp. V2733–V2739. [Google Scholar] [CrossRef]
- Liu, X.; Yang, T.; Li, J.; Wang, M.; Zhang, Y. Rapid ground car detection on aerial infrared images. In Proceedings of the ICIGP 2018: 2018 International Conference on Image and Graphics Processing, Hong Kong, 24–26 February 2018; pp. 33–37. [Google Scholar] [CrossRef]
- Feng, H.; Tang, W.; Xu, H.; Jiang, C.; Ge, S.S.; He, J. Meta-learning based infrared ship object detection model for generalization to unknown domains. Appl. Soft Comput. 2024, 159, 111633. [Google Scholar] [CrossRef]
- He, W.; Han, L.; Zhang, X. Study on characteristics analysis and recognition for infrared absorption spectrum of foreign fibers in cotton. In Proceedings of the 2008 IEEE International Conference on Automation and Logistics, Qingdao, China, 1–3 September 2008; pp. 397–400. [Google Scholar] [CrossRef]
- He, F.; Guo, Y.; Gao, C. Human segmentation of infrared image for mobile robot search. Multimed. Tools Appl. 2018, 77, 10701–10714. [Google Scholar] [CrossRef]
- Yin, C.; Miao, X.; Chen, J.; Jiang, H.; Chen, D.; Tong, Y.; Zheng, S. Human Activity Recognition With Low-Resolution Infrared Array Sensor Using Semi-Supervised Cross-Domain Neural Networks for Indoor Environment. IEEE Internet Things J. 2023, 10, 11761–11772. [Google Scholar] [CrossRef]
- Elliott, M.; Ma, X.; Brett, P. A smart sensing platform for the classification of ambulatory patterns. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2009, 223, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Wang, D.; Li, Z.; Dey, N.; Sherratt, R.S.; Shi, F. Infrared imaging segmentation employing an explainable deep neural network. Turk. J. Electr. Eng. Comput. Sci. 2023, 31, 1021–1038. [Google Scholar] [CrossRef]
- Saifullah, S.; Drezewski, R. Modified Histogram Equalization for Improved CNN Medical Image Segmentation; Elsevier B.V.: Amsterdam, The Netherlands, 2023; Volume 225, pp. 3021–3030. [Google Scholar] [CrossRef]
- Srivastava, K.; Garg, P.; Sharma, V.; Gupta, N. Comparative Analysis of Various Machine Learning Techniques to Predict Breast Cancer. In Proceedings of the 2022 3rd International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad, India, 11–12 November 2022. [Google Scholar] [CrossRef]
- Nessipkhanov, D.; Davletova, V.; Kurmanbekkyzy, N.; Omarov, B. Deep CNN for the Identification of Pneumonia Respiratory Disease in Chest X-Ray Imagery. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 652–661. [Google Scholar] [CrossRef]
- Hemalatha, T.; Barve, A.; Sivakumar, T. Automatic Chest X Ray Pathology Detection using Convolutional Neural Network. In Proceedings of the 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bengaluru, India, 21–23 December 2023; pp. 331–340. [Google Scholar] [CrossRef]
- Zainab, A.S.N.; Soesanti, I.; Utomo, D.R. Detection of COVID-19 using CNN’s Deep Learning Method: Review. In Proceedings of the 2022 4th International Conference on Biomedical Engineering (IBIOMED), Yogyakarta, Indonesia, 18–19 October 2022; pp. 59–64. [Google Scholar] [CrossRef]
- Dzhaynakbaev, N.; Kurmanbekkyzy, N.; Baimakhanova, A.; Mussatayeva, I. 2D-CNN Architecture for Accurate Classification of COVID-19 Related Pneumonia on X-Ray Images. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 905–917. [Google Scholar] [CrossRef]
- Novamizanti, L.; Rajab, T.L.E. A Survey of Deep Learning on COVID-19 Identification Through X-Ray Images. Lect. Notes Electr. Eng. 2022, 898, 35–57. [Google Scholar] [CrossRef]
- Elghamrawy, S. An H2O’s Deep Learning-Inspired Model Based on Big Data Analytics for Coronavirus Disease (COVID-19) Diagnosis. Stud. Big Data 2020, 78, 263–279. [Google Scholar] [CrossRef]
- Yan, S.; Chen, B. Coronavirus Disease (COVID-19) X-Ray Film Classification Based on Convolutional Neural Network. Lect. Notes Electr. Eng. 2021, 653, 508–515. [Google Scholar] [CrossRef]
- Saraiva, A.; Fonseca Ferreira, N.; De Sousa, L.L.; Costa, N.C.; Sousa, J.V.M.; Santos, D.; Valente, A.; Soares, S. Classification of Images of Childhood Pneumonia Using Convolutional Neural Networks; SciTePress: Setúbal, Portugal, 2019; pp. 112–119. [Google Scholar] [CrossRef]
- Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [PubMed]
- Valada, A.; Oliveira, G.L.; Brox, T.; Burgard, W. Deep Multispectral Semantic Scene Understanding of Forested Environments Using Multimodal Fusion. In Proceedings of the 2016 International Symposium on Experimental Robotics, Tokyo, Japan, 3–6 October 2016; Kulić, D., Nakamura, Y., Khatib, O., Venture, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 465–477. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [Google Scholar] [CrossRef]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.c. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28. Available online: https://proceedings.neurips.cc/paper/2015/hash/07563a3fe3bbe7e3ba84431ad9d055af-Abstract.html (accessed on 19 June 2025).
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar] [CrossRef]
- Ivanov, S.; Stankov, S.; Wilk-Jakubowski, J.; Stawczyk, P. The Using of Deep Neural Networks and Acoustic Waves Modulated by Triangular Waveform for Extinguishing Fires. In Proceedings of the New Approaches for Multidimensional Signal Processing; Kountchev, R., Mironov, R., Li, S., Eds.; Singapore: Singapore, 2021; pp. 207–218. [Google Scholar] [CrossRef]
- Wilk-Jakubowski, J.L.; Loboichenko, V.; Divizinyuk, M.; Wilk-Jakubowski, G.; Shevchenko, R.; Ivanov, S.; Strelets, V. Acoustic Waves and Their Application in Modern Fire Detection Using Artificial Vision Systems: A Review. Sensors 2025, 25, 935. [Google Scholar] [CrossRef]
- Wilk-Jakubowski, J.; Stawczyk, P.; Ivanov, S.; Stankov, S. The using of deep neural networks and natural mechanisms of acoustic wave propagation for extinguishing flames. Int. J. Comput. Vis. Robot. 2022, 12, 101–119. [Google Scholar] [CrossRef]
- Stankov, S.; Ivanov, S. Intelligent Sensor for Fire Detection with Deep Neural Networks. J. Inform. Innov. Technol. (JIIT) 2020, 25–28. Available online: https://journal.iiit.bg/wp-content/uploads/2020/08/4_INTELLIGENT-SENSOR-FOR-FIRE-DETECTION.pdf (accessed on 19 June 2025).
- Wilk-Jakubowski, G.; Harabin, R.; Ivanov, S. Robotics in crisis management: A review. Technol. Soc. 2022, 68, 101935. [Google Scholar] [CrossRef]
- Wilk-Jakubowski, J.L.; Stawczyk, P.; Ivanov, S.; Stankov, S. Control of Acoustic Extinguisher with Deep Neural Networks for Fire Detection. Elektron. Elektrotechnika 2022, 28, 52–59. [Google Scholar] [CrossRef]
- Mrunalini, M.; Balakrishna, M.; Kalkur, A.; Savanur, A.; Penchalaiah, T. IoT-Based Automatic Forest Fire Extinguisher. In Proceedings of the 1st International Conference on Intelligent Healthcare and Computational Neural Modelling; Singh, N., Bashir, A.K., Kadry, S., Hu, Y.C., Eds.; Springer: Singapore, 2024; pp. 45–50. [Google Scholar]
- Foley, D.; O’Reilly, R. An Evaluation of Convolutional Neural Network Models for Object Detection in Images on Low-End Devices. AICS 2018, 2259, 1–12. [Google Scholar]
- Li, X.; Liu, Y.; Zheng, L.; Zhang, W. A Lightweight Convolutional Spiking Neural Network for Fires Detection Based on Acoustics. Electronics 2024, 13, 2948. [Google Scholar] [CrossRef]
Task | Classical Method | Neural Networks |
---|---|---|
Denoising [12] | Median filter, wavelet denoising, BM3D | Autoencoders, DnCNN, U-Net |
Object Detection [1,13] | Haar cascades, HOG + SVM | YOLO, SSD, Faster R-CNN, |
RetinaNet | ||
Image Segmentation [14,15] | Thresholding, watershed, region growing | U-Net, FCN, DeepLab, Mask R-CNN |
Image Classification [16,17] | SIFT + SVM, k-NN, PCA | LeNet, AlexNet, VGGNet, ResNet, |
EfficientNet | ||
Super-resolution [2,18] | Bicubic interpolation, Lanczos filter | SRCNN, EDSR, ESRGAN, RCAN |
Image Reconstruction [19,20] | Filtered back projection, iterative methods | Autoencoders, GANs, U-Net |
Name | Year | Important Features | Typical Applications |
---|---|---|---|
LeNet-5 [21] | 1998 | Early CNN, small depth, handwritten digit recognition | Digit classification, OCR |
AlexNet [16] | 2012 | Deep CNN, ReLU, dropout, large-scale training | Image classification |
GoogLeNet [22] | 2015 | Inception modules, parallel convolutions, reduced parameters | Image classification, object detection |
VGGNet [23] | 2014 | Deep, simple stacked convolutional layers, small filters | Image classification, feature extraction |
ResNet [17] | 2016 | Residual (skip) connections, very deep networks | Classification, detection, segmentation |
DenseNet [24] | 2017 | Dense connections between layers, improved gradient flow | Classification, feature extraction |
U-Net [14] | 2015 | Encoder-decoder with skip connections | Biomedical segmentation, image segmentation |
GAN [19] | 2014 | Generative adversarial training, generator and discriminator | Image generation, super-resolution, style transfer |
MobileNet [25] | 2017 | Efficient, lightweight, depthwise separable convolutions | Mobile and edge deployment, classification |
Vision Transformer (ViT) [26] | 2021 | Transformer blocks, self-attention, patch embeddings | Image classification, segmentation, detection |
Algorithm | Example Architectures | Purpose |
---|---|---|
Classic convolutional analysis (CNN) [16,17,23] | LeNet, AlexNet, VGGNet, ResNet | Image classification, automatic feature extraction |
Object detection [1] | YOLO, Faster R-CNN, SSD | Object detection, localization in real time |
Image segmentation [14] | U-Net, Mask R-CNN | Object segmentation, e.g., in medicine or technical applications |
Autoencoders/denoising algorithms [12] | Autoencoder, DnCNN | Noise removal from images, image reconstruction |
Sequence analysis (CNN + RNN/LSTM) [3] | CNN+RNN, CNN+LSTM | Temporal changes analysis, motion detection, gesture recognition |
Transfer learning [119] | ResNet, VGG, Inception (fine-tuning) | Adaptation to new data using pre-trained networks |
Multi-sensor fusion [120] | Hybrid networks, late fusion CNN | Combining data from different sensors (e.g., image + IR + radar) |
Super-resolutionand enhancement [121,122] | SRGAN, EDSR | Increasing resolution and quality of images |
Name | 2005–2014 | 2015–2024 | All Years | Share [%] | Chi-Square |
---|---|---|---|---|---|
Total | 27 | 71 | 98 | 100.0 | |
Document type | |||||
Conference paper | 16 | 33 | 49 | 50.0 | 1.8 (df = 3 p = 0.41) |
Journal article | 11 | 36 | 47 | 47.96 | |
Book chapter | 0 | 2 | 2 | 2.04 | |
Technology | |||||
Image sensors | 15 | 20 | 35 | 35.71 | 14.72 (df = 3 p = 0.0) |
Thermal imaging | 1 | 21 | 22 | 22.45 | |
Infrared detectors | 11 | 20 | 31 | 31.63 | |
X-ray | 0 | 10 | 10 | 10.2 | |
Application | |||||
Image processing | 12 | 31 | 43 | 43.88 | 7.83 (df = 4 p = 0.1) |
Robotics and design | 8 | 8 | 16 | 16.33 | |
Object recognition | 11 | 34 | 45 | 45.92 | |
Medical imaging | 2 | 19 | 21 | 21.43 | |
Security systems | 2 | 6 | 8 | 8.16 | |
Research methodology | |||||
Experiment | 14 | 40 | 54 | 55.1 | 2.84 (df = 3 p = 0.42) |
Literature analysis | 4 | 21 | 25 | 25.51 | |
Case study | 13 | 24 | 37 | 37.76 | |
Conceptual | 12 | 34 | 46 | 46.94 |
Location | 2005–2014 | 2015–2024 | All Years | Share [%] | Chi-Square |
---|---|---|---|---|---|
All locations | 27 | 71 | 98 | 100.0 | 31.53 (df = 13 p = 0.0) |
China | 9 | 11 | 20 | 20.41 | |
India | 1 | 16 | 17 | 17.35 | |
United Kingdom | 1 | 16 | 17 | 17.35 | |
United States | 1 | 9 | 10 | 10.2 | |
Taiwan | 2 | 2 | 4 | 4.08 | |
Canada | 0 | 3 | 3 | 3.06 | |
Indonesia | 0 | 3 | 3 | 3.06 | |
Malaysia | 2 | 1 | 3 | 3.06 | |
Romania | 3 | 0 | 3 | 3.06 | |
Singapore | 1 | 2 | 3 | 3.06 | |
South Korea | 0 | 3 | 3 | 3.06 | |
Spain | 2 | 1 | 3 | 3.06 | |
Other | 6 | 24 | 30 | 30.61 |
Name | Image Sensors | Thermal Imaging | Infrared Detectors | X-Ray | Total | Chi-Square |
---|---|---|---|---|---|---|
Total | 35 | 22 | 31 | 10 | 98 | |
Application | ||||||
Image processing | 22 | 9 | 8 | 4 | 43 | 78.35 (df = 16 p = 0.0) |
Robotics and design | 1 | 0 | 15 | 0 | 16 | |
Object recognition | 22 | 8 | 14 | 1 | 45 | |
Medical imaging | 1 | 9 | 2 | 9 | 21 | |
Security systems | 3 | 4 | 1 | 0 | 8 | |
Research Methodology | ||||||
Experiment | 22 | 12 | 16 | 4 | 54 | 8.24 (df = 12 p = 0.77) |
Literature analysis | 7 | 5 | 8 | 5 | 25 | |
Case study | 16 | 10 | 9 | 2 | 37 | |
Conceptual | 15 | 8 | 19 | 4 | 46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilk-Jakubowski, J.; Pawlik, Ł.; Ciopiński, L.; Wilk-Jakubowski, G. Advances in Neural Network-Based Image, Thermal, Infrared, and X-Ray Technologies. Appl. Sci. 2025, 15, 7198. https://doi.org/10.3390/app15137198
Wilk-Jakubowski J, Pawlik Ł, Ciopiński L, Wilk-Jakubowski G. Advances in Neural Network-Based Image, Thermal, Infrared, and X-Ray Technologies. Applied Sciences. 2025; 15(13):7198. https://doi.org/10.3390/app15137198
Chicago/Turabian StyleWilk-Jakubowski, Jacek, Łukasz Pawlik, Leszek Ciopiński, and Grzegorz Wilk-Jakubowski. 2025. "Advances in Neural Network-Based Image, Thermal, Infrared, and X-Ray Technologies" Applied Sciences 15, no. 13: 7198. https://doi.org/10.3390/app15137198
APA StyleWilk-Jakubowski, J., Pawlik, Ł., Ciopiński, L., & Wilk-Jakubowski, G. (2025). Advances in Neural Network-Based Image, Thermal, Infrared, and X-Ray Technologies. Applied Sciences, 15(13), 7198. https://doi.org/10.3390/app15137198