Artificial Intelligence-Driven Identification of Favorable Geothermal Sites Based on Radioactive Heat Production: Case Study from Western Türkiye
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sampling and Analytical Methods
3.2. Laboratory Analyses
3.2.1. Magnetic Susceptibility Measurement
3.2.2. Radioactive Heat Production (RHP)
RHP | [14] | (4) | |
[15] | |||
[16] | |||
[17] | |||
[18,19] | |||
[17,18] | |||
[19,20] |
3.3. Cluster Analysis
3.3.1. Cluster Analysis Using Statistical Models
3.3.2. Cluster Analysis Using Unsupervised Artificial Models
3.4. Performance Metrics for Cluster Analysis
4. Discussion and Results
4.1. Regional Distribution of Radioactive Elements
4.2. Regional Distribution of Magnetic Susceptibility
4.3. Regional Radioactive Heat Production
4.4. Cluster Analysis-Based Identification of Favorable Geothermal Energy Zones
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACM | Agglomerative Clustering Model |
ABDC | Autoencoder-Based Deep Clustering |
AI | Artificial Intelligence |
DBSCAN | Density-Based Spatial Clustering of Applications with Noise |
DEC | Deep Embedded Clustering |
GMM | Gaussian Mixture Model |
PCA | Principal Component Analysis |
RHP | Radioactive Heat Production |
SOM | Self-Organizing Maps |
Appendix A. Summary Statistics of Geochemical Measurements
Chemical | Mean | Std * | Min | Max | Median |
---|---|---|---|---|---|
Ag (ppm) | 0.590 | 0.193 | 0.500 | 1.000 | 0.500 |
A (%) | 16.759 | 6.013 | 0.042 | 27.445 | 17.541 |
As (ppm) | 6.285 | 16.691 | 0.500 | 108.000 | 1.000 |
Au (ppm) | 9.950 | 5.720 | 1.500 | 28.000 | 9.000 |
BaO (%) | 0.039 | 0.024 | 0.008 | 0.135 | 0.034 |
CaO (%) | 4.517 | 13.179 | 0.015 | 62.187 | 0.652 |
Cd (ppm) | 1.035 | 0.147 | 1.000 | 2.000 | 1.000 |
Cl (ppm) | 59.770 | 149.412 | 16.000 | 1034.000 | 20.000 |
Co (ppm) | 21.860 | 13.012 | 6.500 | 89.000 | 18.250 |
C (%) | 0.007 | 0.007 | 0.000 | 0.042 | 0.004 |
Cu (ppm) | 6.415 | 10.328 | 0.000 | 73.000 | 2.000 |
FeO (%) | 2.159 | 1.969 | 0.029 | 7.495 | 1.269 |
F (%) | 2.399 | 2.189 | 0.032 | 8.330 | 1.410 |
Hg (ppm) | 2.480 | 0.953 | 1.000 | 6.000 | 2.500 |
O (%) | 3.819 | 1.731 | 0.001 | 9.834 | 4.100 |
MgO (%) | 3.318 | 4.480 | 0.110 | 27.128 | 1.737 |
MnO (%) | 0.044 | 0.105 | 0.001 | 0.898 | 0.016 |
Mo (ppm) | 0.855 | 1.315 | 0.500 | 9.000 | 0.500 |
Nb (ppm) | 12.210 | 7.424 | 0.500 | 43.000 | 11.000 |
Ni (ppm) | 21.035 | 27.744 | 3.000 | 194.000 | 9.000 |
(%) | 0.109 | 0.079 | 0.011 | 0.275 | 0.114 |
Pb (ppm) | 23.260 | 39.259 | 0.000 | 289.000 | 15.000 |
Pd (ppm) | 0.535 | 0.147 | 0.500 | 1.500 | 0.500 |
Rb (ppm) | 117.570 | 74.112 | 0.000 | 435.000 | 106.500 |
Re (ppm) | 2.020 | 7.557 | 0.000 | 38.000 | 0.000 |
S (ppm) | 190.325 | 599.044 | 17.500 | 5552.000 | 51.000 |
Sb (ppm) | 2.690 | 3.229 | 1.500 | 27.000 | 2.000 |
Se (ppm) | 1.520 | 0.224 | 1.000 | 2.000 | 1.500 |
Si (%) | 52.978 | 15.849 | 0.155 | 83.413 | 56.225 |
Sn (ppm) | 5.610 | 3.981 | 1.500 | 18.000 | 5.000 |
SrO (%) | 0.014 | 0.020 | 0.000 | 0.199 | 0.010 |
Ta (ppm) | 3.670 | 14.745 | 0.000 | 75.000 | 0.000 |
Th (ppm) | 9.790 | 10.304 | 1.000 | 65.000 | 7.000 |
Ti (%) | 0.421 | 0.375 | 0.003 | 1.416 | 0.262 |
U (ppm) | 2.620 | 2.876 | 0.500 | 21.000 | 2.000 |
V (ppm) | 54.220 | 53.808 | 2.500 | 201.000 | 27.500 |
W (ppm) | 352.950 | 202.094 | 0.000 | 1001.000 | 331.500 |
Y (ppm) | 16.455 | 10.085 | 0.000 | 37.000 | 17.000 |
Zn (ppm) | 28.450 | 27.730 | 0.000 | 136.000 | 17.000 |
Zr (ppm) | 118.245 | 72.023 | 0.500 | 318.000 | 111.000 |
References
- Nkinyam, C.M.; Ujah, C.O.; Asadu, C.O.; Kallon, D.V. Exploring geothermal energy as a sustainable source of energy: A systemic review. Unconv. Resour. 2025, 6, 100149. [Google Scholar] [CrossRef]
- Ouerghi, F.H.; Omri, M.; Nisar, K.S.; Abd El-Aziz, R.M.; Taloba, A.I. Investigating the potential of geothermal energy as a sustainable replacement for fossil fuels in commercial buildings. Alex. Eng. J. 2024, 97, 215–229. [Google Scholar] [CrossRef]
- Kanoğlu, M.; Çengel, Y.A. Economic evaluation of geothermal power generation, heating, and cooling. Energy 1999, 24, 501–509. [Google Scholar] [CrossRef]
- Pazuki, M.M.; Kolahi, M.R.; Ebadollahi, M.; Amidpour, M. Enhancing efficiency in an innovative geothermal poly-generation system for electricity, cooling, and freshwater production through integrated multi-objective optimization: A holistic approach to energy, exergy, and enviroeconomic effects. Energy 2024, 313, 133862. [Google Scholar] [CrossRef]
- Vitorello, I.; Pollack, H.N. On the variation of continental heat flow with age and the thermal evolution of continents. J. Geophys. Res. Solid Earth 1980, 85, 983–995. [Google Scholar] [CrossRef]
- Cuney, M. Uranium and Thorium: The Extreme Diversity of the Resources of the World’s Energy Minerals. In Non-Renewable Resource Issues; Sinding-Larsen, R., Wellmer, F.W., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–252. [Google Scholar] [CrossRef]
- Bruhn, D.; Manzella, A.; Vuataz, F.; Faulds, J.; Moeck, I.; Erbas, K. Exploration methods. In Geothermal Energy Systems: Exploration, Development, and Utilization; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 37–112. [Google Scholar]
- Kana, J.D.; Djongyang, N.; Raïdandi, D.; Nouck, P.N.; Dadjé, A. A review of geophysical methods for geothermal exploration. Renew. Sustain. Energy Rev. 2015, 44, 87–95. [Google Scholar] [CrossRef]
- AlGaiar, M.; Hossain, M.; Petrovski, A.; Lashin, A.; Faisal, N. Applications of artificial intelligence in geothermal resource exploration: A review. Deep Undergr. Sci. Eng. 2024, 3, 269–285. [Google Scholar] [CrossRef]
- Aden, A.H. Hydrothermal Reservoir and Electrical Anisotropy Investigated by Magnetotelluric Data, Case Study of Asal Rift, Republic of Djibouti. Appl. Sci. 2023, 13, 1157. [Google Scholar] [CrossRef]
- Duan, Y.; Liang, Y.; Ji, Q.; Wang, Z. A Machine Learning Approach for the Clustering and Classification of Geothermal Reservoirs in the Ying-Qiong Basin. J. Mar. Sci. Eng. 2025, 13, 415. [Google Scholar] [CrossRef]
- Naseer, Z.; Ehsan, M.; Ali, M.; Amjad, M.R.; Latif, M.A.U.; Abdelrahman, K. Lithofacies and sandstone reservoir characterization for geothermal assessment through artificial intelligence. Results Eng. 2025, 26, 105173. [Google Scholar] [CrossRef]
- Rafiq, J.; Abu-Mahfouz, I.S.; Whattam, S. Petrogenesis, radiogenic heat production, and geothermal potential of host rocks in the Al-Lith geothermal system, Western Saudi Arabia. Renew. Energy 2025, 250, 123362. [Google Scholar] [CrossRef]
- Birch, F. Heat from radioactivity. Nucl. Geol. 1954, 148, 174. [Google Scholar]
- Hamza, V.E.; Beck, A. Terrestrial heat flow, the neutrino problem, and a possible energy source in the Core. Nature 1972, 240, 343–344. [Google Scholar] [CrossRef]
- Emsley, J. The Elements; Oxford University Press: New York, NY, USA, 1998; p. 300. [Google Scholar]
- Rybach, L. Radioactive heat production in rocks and its relation to other petrophysical parameters. Pure Appl. Geophys. 1976, 114, 309–317. [Google Scholar] [CrossRef]
- Rybach, L. Determination of heat production rate. Handb. Terr. Heat-Flow Density Determ. 1988, 4, 125–142. [Google Scholar]
- Rybach, L.; Buntebarth, G. Relationships between the petrophysical properties density, seismic velocity, heat generation, and mineralogical constitution. Earth Planet. Sci. Lett. 1982, 57, 367–376. [Google Scholar] [CrossRef]
- Ilkişik, O.M. Regional heat flow in western Anatolia using silica temperature estimates from thermal springs. Tectonophysics 1995, 244, 175–184. [Google Scholar] [CrossRef]
- Uyanık, N.A.; Kurt, H.B.; Uyanık, O. Potansiyel jeotermal kaynaklar için radyojenik ısı üretiminden sıcak kuru kayanın belirlenmesi ve Isparta-Yakaören örneği. Pamukkale Üniversitesi Mühendislik Bilim. Derg. 2020, 26, 1170–1177. [Google Scholar] [CrossRef]
- Uyanık, N.A.; Öncü, Z.; Uyanık, O.; Bozcu, M. Determination of alteration zones and geological unit limits using natural radioactivity properties of Sandıklı-Suhut areas. J. Appl. Geophys. 2022, 196, 104525. [Google Scholar] [CrossRef]
- Hasozbek, A.; Satir, M.; Erdogan, B.; Akay, E.; Siebel, W. Magmatic evolution of the northwestern edge of Tauride-Anatolide Platform: Geochronological and isotopic implications. Geochim. Cosmochim. Acta Suppl. 2009, 73, A499. [Google Scholar]
- Hasözbek, A.; Akay, E.; Erdoğan, B.; Satır, M.; Siebel, W. Early Miocene granite formation by detachment tectonics or not? A case study from the northern Menderes Massif (Western Turkey). J. Geodyn. 2010, 50, 67–80. [Google Scholar] [CrossRef]
- Hasözbek, A.; Satır, M.; Erdoğan, B.; Akay, E.; Siebel, W. Early Miocene post-collisional magmatism in NW Turkey: Geochemical and geochronological constraints. Int. Geol. Rev. 2011, 53, 1098–1119. [Google Scholar] [CrossRef]
- Ersoy, Y.E.; Helvacı, C.; Palmer, M.R. Stratigraphic, structural and geochemical features of the NE–SW trending Neogene volcano-sedimentary basins in western Anatolia: Implications for associations of supra-detachment and transtensional strike-slip basin formation in extensional tectonic setting. J. Asian Earth Sci. 2011, 41, 159–183. [Google Scholar] [CrossRef]
- Catlos, E.; Jacob, L.; Oyman, T.; Sorensen, S. Long-term exhumation of an Aegean metamorphic core complex granitoids in the Northern Menderes Massif, western Turkey. Am. J. Sci. 2012, 312, 534–571. [Google Scholar] [CrossRef]
- Cenki-Tok, B.; Expert, M.; Işık, V.; Candan, O.; Monié, P.; Bruguier, O. Complete Alpine reworking of the northern Menderes Massif, western Turkey. Int. J. Earth Sci. 2016, 105, 1507–1524. [Google Scholar] [CrossRef]
- Gemici, Ü.; Tarcan, G. Distribution of boron in thermal waters of western Anatolia, Turkey, and examples of their environmental impacts. Environ. Geol. 2002, 43, 87–98. [Google Scholar] [CrossRef]
- Karakuş, H.; Özkul, C.; Ergüler, Z.A.; Kibici, Y.; Yanık, G. Geothermal Resource Estimation of the Simav Field Using Monte Carlo Simulation. Pamukkale Univ. J. Eng. Sci. 2017, 23, 323–329. [Google Scholar] [CrossRef]
- Okay, A.I.; Tüysüz, O. Tethyan sutures of northern Turkey. Geol. Soc. Lond. Spec. Publ. 1999, 156, 475–515. [Google Scholar] [CrossRef]
- Barbot, S.; Weiss, J. Connecting subduction, extension and shear localization across the Aegean Sea and Anatolia. Geophys. J. Int. 2021, 226, 422–445. [Google Scholar] [CrossRef]
- Akdeniz, N.; Konak, N. Geology of Simav-Taşanlı-Emet-Dursunbey Areas; General Directorate of Mineral Research and Exploration: Ankara, Turkey, 1979. (In Turkish) [Google Scholar]
- Bilgic, T. 1/100,000 Scale Kutahya—J21 Quadrangle, Turkey Geological Maps Series, No: 248; General Directorate of Mineral Research and Exploration: Ankara, Turkey, 2018; pp. 1–18. (In Turkish) [Google Scholar]
- Doğdu, N.; Aydoğdu, O.; Şahan, M.; Akar, M.; Duran, Y. Simav Municipality Kütahya-Simav-Eynal Geothermal Area December 2014–December 2018 Corporate Consultancy Studies Technical Inspection Report; Technical Report; General Directorate of Mineral Research and Exploration: Ankara, Turkey, 2019; unpublished. (In Turkish) [Google Scholar]
- Işık, V.; Seyitoğlu, G.; Cemen, I. Ductile–brittle transition along the Alaşehir detachment fault and its structural relationship with the Simav detachment fault, Menderes massif, western Turkey. Tectonophysics 2003, 374, 1–18. [Google Scholar] [CrossRef]
- Işık, V. Kuzey Menderes Masifinde Simav Makaslama Zonunun Mikro-tektonik Özellikleri, Batı Anadolu, Türkiye. Türkiye Jeol. Bülteni 2004, 47, 49–91. [Google Scholar]
- Burçak, M.; Kılıç, A.R.; Hacısalihoğlu, Ö. Simav Sahası Jeotermal Etüt (Jeoloji-Jeofizik) Raporu; Teknik Rapor 11524; T.C. Maden Tetkik ve Arama Genel Müdürlüğü: Simav, Türkiye, 2008. [Google Scholar]
- Kaya, O. Tavşanlı Yöresi’Ofiolit’Sorununun Ana Çizgileri. Türkiye Jeol. Bülteni 1972, 15, 26–108. [Google Scholar]
- Akdeniz, N.; Konak, N. The rock units of the Simav region of Menderes Massive and the situation of metabazic and metaultramafic rocks. Bull. Geol. Soc. Turk. 1979, 22, 175–184. [Google Scholar]
- Seyitoğlu, G. The Simav Graben: An example of young E-W trending structures in the Late Cenozoic extensional system of Western Turkey. Turk. J. Earth Sci. 1997, 6, 135–141. [Google Scholar] [CrossRef]
- Bozkurt, E. Origin of NE-trending basins in western Turkey. Geodin. Acta 2003, 16, 61–81. [Google Scholar] [CrossRef]
- Ersoy, Y.E.; Helvacı, C.; Sözbilir, H. Tectono-stratigraphic evolution of the NE–SW-trending superimposed Selendi basin: Implications for late Cenozoic crustal extension in Western Anatolia, Turkey. Tectonophysics 2010, 488, 210–232. [Google Scholar] [CrossRef]
- Kose, R. Geothermal energy potential for power generation in Turkey: A case study in Simav, Kutahya. Renew. Sustain. Energy Rev. 2007, 11, 497–511. [Google Scholar] [CrossRef]
- Emre, O.; Duman, T.Y.; Özalp, S.; Elmacı, H.; Olgun, Ş. Active Fault Map of Turkey; Special Publication Series; General Directorate of Mineral Research and Exploration (MTA): Ankara, Turkey, 2013. [Google Scholar]
- Dearing, J.A.; Dann, R.J.L.; Hay, K.; Lees, J.A.; Loveland, P.J.; Maher, B.A.; O’Grady, K. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int. 1996, 124, 228–240. [Google Scholar] [CrossRef]
- Gaber, G.; Saleh, S.; Kotb, A. Integrating radiometric and aeromagnetic data for assessment of geothermal potential: A case study in Central Eastern Desert, Egypt. Acta Geophys. 2025, 73, 235–251. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 1977, 39, 1–22. [Google Scholar] [CrossRef]
- Leiber, C.; Miklautz, L.; Plant, C.; Böhm, C. An Introductory Survey to Autoencoder-Based Deep Clustering: Sandboxes for Combining Clustering with Deep Learning. arXiv 2025, arXiv:2504.02087. [Google Scholar] [CrossRef]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Xie, J.; Girshick, R.; Farhadi, A. Unsupervised deep embedding for clustering analysis. In Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML) PMLR, New York, NY, USA, 19–24 June 2016; pp. 478–487. [Google Scholar]
- Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
Model | ||||||
---|---|---|---|---|---|---|
Metric | DBSCAN | GMM | ACM | ABDC | SOM | DEC |
Silhouette Score | 0.717 | 0.433 | 0.445 | 0.340 | 0.177 | 0.134 |
Davies–Bouldin Index | 0.392 | 0.732 | 0.684 | 1.333 | 1.680 | 2.447 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
İlkimen, E.M.; Çolak, C.; Pisheh Var, M.; Başağaoğlu, H.; Chakraborty, D.; Aydın, A. Artificial Intelligence-Driven Identification of Favorable Geothermal Sites Based on Radioactive Heat Production: Case Study from Western Türkiye. Appl. Sci. 2025, 15, 7842. https://doi.org/10.3390/app15147842
İlkimen EM, Çolak C, Pisheh Var M, Başağaoğlu H, Chakraborty D, Aydın A. Artificial Intelligence-Driven Identification of Favorable Geothermal Sites Based on Radioactive Heat Production: Case Study from Western Türkiye. Applied Sciences. 2025; 15(14):7842. https://doi.org/10.3390/app15147842
Chicago/Turabian Styleİlkimen, Elif Meriç, Cihan Çolak, Mahrad Pisheh Var, Hakan Başağaoğlu, Debaditya Chakraborty, and Ali Aydın. 2025. "Artificial Intelligence-Driven Identification of Favorable Geothermal Sites Based on Radioactive Heat Production: Case Study from Western Türkiye" Applied Sciences 15, no. 14: 7842. https://doi.org/10.3390/app15147842
APA Styleİlkimen, E. M., Çolak, C., Pisheh Var, M., Başağaoğlu, H., Chakraborty, D., & Aydın, A. (2025). Artificial Intelligence-Driven Identification of Favorable Geothermal Sites Based on Radioactive Heat Production: Case Study from Western Türkiye. Applied Sciences, 15(14), 7842. https://doi.org/10.3390/app15147842