Concurrent Adaptive Control for a Robotic Leg Prosthesis via a Neuromuscular-Force-Based Impedance Method and Human-in-the-Loop Optimization
Abstract
1. Introduction
2. Materials and Methods
2.1. Dynamic Model of the Lower Limb Prosthesis
2.2. Human-in-the-Loop Optimization
2.3. Control Development
2.3.1. Neuromuscular Force Based Impedance Method
2.3.2. Controller Design
2.3.3. Stability Analysis
3. Experiments and Results
3.1. Experiment Setup
3.1.1. Study Volunteers
3.1.2. Robotic Leg Prosthesis
3.2. Case 1: Various Walking Speed Experiment
3.2.1. Experimental Protocol
3.2.2. Results
3.3. Case 2: Various Walking Stride Experiment
3.3.1. Experimental Protocol
3.3.2. Results
3.4. Case 3: Various Walking Uphill Experiment
3.4.1. Experimental Protocol
3.4.2. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, X.; Zhang, X.; Xu, J. Robotic leg prosthesis: A survey from dynamic model to adaptive control for gait coordination. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 607–624. [Google Scholar] [CrossRef]
- Cheng, S.; Laubscher, C.A.; Gregg, R.D. Controlling powered prosthesis kinematics over continuous inter-leg transitions between walking and stair ascent/descent. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 3891–3901. [Google Scholar] [CrossRef]
- Fagioli, I.; Mazzarini, A.; Livolsi, C.; Gruppioni, E.; Vitiello, N.; Crea, S.; Trigili, E. Advancements and challenges in the development of robotic lower limb prostheses: A systematic review. IEEE Trans. Med. Robot. Bionics 2024, 6, 1409–1422. [Google Scholar] [CrossRef]
- Anderson, A.J.; Hudak, Y.F.; Muir, B.C.; Aubin, P.M. Design, control, and evaluation of a robotic ankle-foot prosthesis emulator. IEEE Trans. Med. Robot. Bionics 2023, 5, 741–752. [Google Scholar] [CrossRef]
- Pi, M.; Li, Z.; Li, Q.; Kan, Z.; Xu, C.; Kang, Y.; Su, C.Y.; Yang, C. Biologically inspired deadbeat control of robotic leg prostheses. IEEE/ASME Trans. Mechatronics 2020, 25, 2733–2742. [Google Scholar] [CrossRef]
- Woodward, R.B.; Simon, A.M.; Seyforth, E.A.; Hargrove, L.J. Real-time adaptation of an artificial neural network for transfemoral amputees using a powered prosthesis. IEEE Trans. Biomed. Eng. 2022, 69, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Pi, M.; Li, Z.; Li, Q.; Kang, Y.; Kan, Z.; Song, R. Human-in-the-loop control of robotic leg prostheses with sensory feedback. IEEE/ASME Trans. Mechatron. 2024, 224, 995–1008. [Google Scholar] [CrossRef]
- Yin, K.; Xiang, K.; Pang, M.; Chen, J.; Anderson, P.; Yang, L. Personalised control of robotic ankle exoskeleton through experience-based adaptive fuzzy inference. IEEE Access 2019, 7, 72221–72233. [Google Scholar] [CrossRef]
- Raziyev, Y.; Garifulin, R.; Shintemirov, A.; Do, T.D. Development of a power assist lifting device with a fuzzy PID speed regulator. IEEE Access 2019, 7, 30724–30731. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Yao, X. Adaptive fuzzy containment and vibration control for multiple flexible manipulators with model uncertainties. IEEE Trans. Fuzzy Syst. 2023, 31, 1315–1326. [Google Scholar] [CrossRef]
- Wen, Y.; Si, J.; Gao, X.; Huang, S.; Huang, H.H. A new powered lower limb prosthesis control framework based on adaptive dynamic programming. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2215–2220. [Google Scholar] [CrossRef]
- Welker, C.G.; Best, T.K.; Gregg, R.D. Improving sit/stand loading symmetry and timing through unified variable impedance control of a powered knee-ankle prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 4146–4155. [Google Scholar] [CrossRef]
- Best, T.K.; Welker, C.G.; Rouse, E.J.; Gregg, R.D. Data-driven variable impedance control of a powered knee–ankle prosthesis for adaptive speed and incline walking. IEEE Trans. Robot. 2023, 39, 2151–2169. [Google Scholar] [CrossRef]
- Cao, W.; Chen, C.; Hu, H.; Fang, K.; Wu, X. Effect of hip assistance modes on metabolic cost of walking with a soft exoskeleton. IEEE Trans. Autom. Sci. Eng. 2021, 18, 426–436. [Google Scholar] [CrossRef]
- Gordon, D.F.N.; McGreavy, C.; Christou, A.; Vijayakumar, S. Human-in-the-loop optimization of exoskeleton assistance via online simulation of metabolic cost. IEEE Trans. Robot. 2022, 38, 1410–1429. [Google Scholar] [CrossRef]
- Zhang, J.; Fiers, P.; Witte, K.A.; Jackson, R.W.; Poggensee, K.L.; Atkeson, C.G.; Collins, S.H. Human-in-the-loop optimization of exoskeleton assistance during walking. Science 2017, 356, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Mao, C.; Zhang, W.; Wang, Q. Gait-symmetry-based human-in-the-loop optimization for unilateral transtibial amputees with robotic prostheses. IEEE Trans. Med. Robot. Bionics 2022, 4, 744–753. [Google Scholar] [CrossRef]
- Kantharaju, P.; Vakacherla, S.S.; Jacobson, M.; Jeong, H.; Mevada, M.N.; Zhou, X.; Major, M.J.; Kim, M. Framework for personalizing wearable devices using real-time physiological measures. IEEE Access 2023, 11, 81389–81400. [Google Scholar] [CrossRef]
- Mazzarini, A.; Fagioli, I.; Eken, H.; Livolsi, C.; Ciapetti, T.; Maselli, A.; Piazzini, M.; Macchi, C.; Davalli, A.; Gruppioni, E.; et al. Improving walking energy efficiency in transtibial amputees through the integration of a low-power actuator in an ESAR foot. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 1397–1406. [Google Scholar] [CrossRef]
- Hunt, G.R.; Hood, S.; Lenzi, T. Stand-up, squat, lunge, and walk with a robotic knee and ankle prosthesis under shared neural control. IEEE Open J. Eng. Med. Biol. 2021, 2, 267–277. [Google Scholar] [CrossRef]
- Posh, R.R.; Barry, E.C.; Schmiedeler, J.P.; Wensing, P.M. Lower-limb myoelectric calibration postures for transtibial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 1210–1220. [Google Scholar] [CrossRef]
- Lyons, K.R.; Joshi, S.S. Upper limb prosthesis control for high-level amputees via myoelectric recognition of leg gestures. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1056–1066. [Google Scholar] [CrossRef]
- Reddy, V.M.; Pandian, P.S.; Karthick, P.A. Multiclass gait phase classification from the temporal convolutional network of wireless surface electromyography measurements. IEEE Sens. Lett. 2021, 29, 2467–2478. [Google Scholar] [CrossRef]
- Yeon, S.H.; Shu, T.; Song, H.; Hsieh, T.H.; Qiao, J.; Rogers, E.A.; Gutierrez-Arango, S.; Israel, E.; Freed, L.E.; Herr, H.M. Acquisition of surface EMG using flexible and low-profile electrodes for lower extremity neuroprosthetic control. IEEE Trans. Med. Robot. Bionics 2021, 3, 563–572. [Google Scholar] [CrossRef]
- Iqbal, N.; Khan, T.; Khan, M.; Hussain, T.; Hameed, T.; Bukhari, S.A.C. Neuromechanical signal-based parallel and scalable model for lower limb movement recognition. IEEE Sens. J. 2021, 21, 16213–16221. [Google Scholar] [CrossRef]
- Meng, R.; Hua, C.; Li, K.; Ning, P. A multifilters approach to adaptive event-triggered control of uncertain nonlinear systems with global output constraint. IEEE Trans. Cybern. 2024, 54, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, A.; Roy, S.B.; Bhasin, S. Initial-excitation-based robust adaptive observer for MIMO LTI systems. IEEE Trans. Autom. Control 2023, 68, 2536–2543. [Google Scholar] [CrossRef]
- Casas, J.; Chang, C.H.; Duenas, V.H. Switched concurrent learning adaptive control for treadmill walking using a lower limb hybrid exoskeleton. IEEE Trans. Control Syst. Technol. 2024, 32, 174–188. [Google Scholar] [CrossRef]
- Liu, W.; Duan, G.; Hou, M. Concurrent learning adaptive command filtered backstepping control for high-order strict-feedback systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 1696–1709. [Google Scholar] [CrossRef]
- Allen, B.C.; Stubbs, K.J.; Dixon, W.E. Data-based and opportunistic integral concurrent learning for adaptive trajectory tracking during switched FES-induced biceps curls. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2557–2566. [Google Scholar] [CrossRef] [PubMed]
- Azimi, V.; Shu, T.; Zhao, H.; Gehlhar, R.; Simon, D.; Ames, A.D. Model-based adaptive control of transfemoral prostheses: Theory, simulation, and experiments. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 1174–1191. [Google Scholar] [CrossRef]
Notations | Definitions | Notations | Definitions | Notations | Definitions |
---|---|---|---|---|---|
M | inertia matrix | angle for ankle joint | amplitude | ||
C | centripetal–Coriolis matrix | angle for knee joint | constant | ||
G | gravitational torque | g | the gravity | total offset | |
q | real angle of joints | desired trajectory | raw trajectory | ||
control torque | desired trajectory | T | gait cycle | ||
of i-th joint | |||||
interaction torque | total offset | J | cost function | ||
mass of 1-th limb | amplitude | weight | |||
mass of 2-th limb | frequency | estimation error | |||
distance from joint | t | time | gradient descent | ||
to center of 1-th limb | |||||
distance from joint | phase | gain | |||
to center of 2-th limb | |||||
distance from ankle | constant | auxiliary output | |||
joint to knee joint | |||||
distance from knee | frequency | auxiliary regressor | |||
joint to mass center of | |||||
human body | |||||
moment of inertia | phase | auxiliary regressor | |||
of 1-th limb | |||||
moment of inertia | initial value | L | observer gain | ||
of 2-th limb | |||||
previous parameter | damping matric | observer gain | |||
previous cost function | stiffness matric | A | constant matrix | ||
suitable parameter | reference trajectory | upper bound | |||
neural activation | e | tracking error | upper bound | ||
amplitude of sEMG | r | assistant variable | convergence rate | ||
constant | upper bound | estimation error | |||
constant | upper bound | Lyapunov function | |||
constant | constant | V | Lyapunov function | ||
constant | Y | regressor matrix | Lyapunov function error | ||
constant | constant gain matrix | pennation angle | |||
neuromuscular force | estimation | initial value | |||
length | estimation | extension speed |
Subject | Walking Speed (m/s) | MEAN (Degree) | MSE (Degree) |
---|---|---|---|
0.5 | 3.6 | 2.3 | |
1 | 0.7 | 2.9 | 2.3 |
1.0 | 3.4 | 2.6 | |
0.5 | 3.3 | 2.8 | |
2 | 0.7 | 2.8 | 1.7 |
1.0 | 3.1 | 2.2 |
Subject | Walking Stride | MEAN (Degree) | MSE (Degree) |
---|---|---|---|
small | 2.7 | 1.8 | |
1 | normal | 2.9 | 2.3 |
large | 3.4 | 2.6 | |
small | 3.1 | 2.4 | |
2 | normal | 2.8 | 1.7 |
large | 3.1 | 2.2 |
Subject | Up Slop Angle (Degree) | MEAN (Degree) | MSE (Degree) |
---|---|---|---|
3.0 | 2.4 | 1.6 | |
1 | 5.0 | 2.9 | 2.3 |
7.0 | 3.4 | 2.6 | |
3.0 | 2.2 | 1.3 | |
2 | 5.0 | 2.8 | 1.7 |
7.0 | 3.1 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pi, M. Concurrent Adaptive Control for a Robotic Leg Prosthesis via a Neuromuscular-Force-Based Impedance Method and Human-in-the-Loop Optimization. Appl. Sci. 2025, 15, 8126. https://doi.org/10.3390/app15158126
Pi M. Concurrent Adaptive Control for a Robotic Leg Prosthesis via a Neuromuscular-Force-Based Impedance Method and Human-in-the-Loop Optimization. Applied Sciences. 2025; 15(15):8126. https://doi.org/10.3390/app15158126
Chicago/Turabian StylePi, Ming. 2025. "Concurrent Adaptive Control for a Robotic Leg Prosthesis via a Neuromuscular-Force-Based Impedance Method and Human-in-the-Loop Optimization" Applied Sciences 15, no. 15: 8126. https://doi.org/10.3390/app15158126
APA StylePi, M. (2025). Concurrent Adaptive Control for a Robotic Leg Prosthesis via a Neuromuscular-Force-Based Impedance Method and Human-in-the-Loop Optimization. Applied Sciences, 15(15), 8126. https://doi.org/10.3390/app15158126