Research on Wellbore Trajectory Prediction Based on a Pi-GRU Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Preprocessing
2.2. Feature Encoding for Nontime Series Data
2.3. Constructing the Pi-GRU Model
2.4. Evaluation Metrics and Hyperparameter Optimization Scheme
2.5. Dataset
3. Experiments and Analysis
3.1. Experimental Design
3.2. Results
3.3. Multimodel Comparison
3.4. Empirical Analysis of Computational Efficiency
3.5. Ablation Experiment
- Only GRU branch: Remove the BP branch and geological feature input, and retain the temporal path;
- Only BP branch: Remove the GRU branch, and only use non-temporal features;
- Complete Pi-GRU: Include the dual-path fusion architecture.
3.6. Additional Applications
4. Conclusions
- 1.
- Innovation and effectiveness of the model
- 2.
- Efficiency and practicality
- 3.
- Generalization performance verification
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hao, S.; Chu, Z.; Li, Q.; Fang, J.; Chen, L.; Liu, J. Research Status and Development Trend of Near-Bit MWD in Underground Coal Mine. Coal Geol. Explor. 2023, 51, 10–19. [Google Scholar] [CrossRef]
- Fischer, F.J. Analysis of Drillstrings in Curved Boreholes. In Proceedings of the Fall Meeting of the Society of Petroleum Engineers of AIME, Houston, TX, USA, 6–9 October 1974; p. SPE-5071-MS. [Google Scholar]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning Long-Term Dependencies with Gradient Descent Is Difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar] [CrossRef]
- Karlsson, H.; Brassfield, T.; Krueger, V. Performance Drilling Optimization. In Proceedings of the SPE/IADC Drilling Conference and Exhibition, New Orleans, LA, USA, 5–8 March 1985; p. SPE-13474-MS. [Google Scholar]
- Birades, M.; Fenoul, R. A Microcomputer Program for Prediction of Bottomhole Assembly Trajectory. SPE Drill. Eng. 1988, 3, 167–172. [Google Scholar] [CrossRef]
- Su, Y. A Method of Limiting Curvature and Its Applications. Acta Pet. Sin. 1997, 18, 110–114. [Google Scholar] [CrossRef]
- Eren, T.; Suicmez, V.S. Directional Drilling Positioning Calculations. J. Nat. Gas Sci. Eng. 2020, 73, 103081. [Google Scholar] [CrossRef]
- Sawaryn, S.J.; Thorogood, J.L. A Compendium of Directional Calculations Based on the Minimum Curvature Method. SPE Drill. Complet. 2005, 20, 24–36. [Google Scholar] [CrossRef]
- Liu, X.; Liu, R.; Sun, M. New Techniques Improve Well Planning and Survey Calculation for Rotary-Steerable Drilling. In Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, Kuala Lumpur, Malaysia, 13–15 September 2004; p. SPE-87976-MS. [Google Scholar]
- Landar, S.; Velychkovych, A.; Mykhailiuk, V. Numerical and Analytical Models of the Mechanism of Torque and Axial Load Transmission in a Shock Absorber for Drilling Oil, Gas and Geothermal Wells. Eng. Solid Mech. 2024, 12, 207–220. [Google Scholar]
- Velichkovich, A. Design Features of Shell Springs for Drilling Dampers. Chem. Pet. Eng. 2007, 43, 458–461. [Google Scholar]
- WANG, Y.; YANG, P.; SHI, G.; SUN, Z. A Novel Method for Predicting Wellbore Trajectory Based on Support Vector Machine. Acta Pet. Sin. 2005, 26, 98. [Google Scholar]
- Yang, L.; Tian, J.; Liu, Q.; Dai, L.; Hu, Z.; Li, J. The Multidirectional Vibration and Coupling Dynamics of Drill String and Its Influence on the Wellbore Trajectory. J. Mech. Sci. Technol. 2020, 34, 2681–2692. [Google Scholar] [CrossRef]
- Huang, M.; Zhou, K.; Wang, L.; Zhou, J. Application of Long Short-Term Memory Network for Wellbore Trajectory Prediction. Pet. Sci. Technol. 2024, 42, 3185–3204. [Google Scholar] [CrossRef]
- Ye, S. Study of the Predicting Model for Directional Drilling Trajectory Controlling Based on Neural Network in Tunnel. Drill. Eng. 2024, 51, 104–110. [Google Scholar]
- Partridge, D. Network Generalization Differences Quantified. Neural Netw. 1996, 9, 263–271. [Google Scholar] [CrossRef]
- Li, Q.; Li, R.; Ji, K.; Dai, W. Kalman Filter and Its Application. In Proceedings of the 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), Tianjin, China, 1–3 November 2015; pp. 74–77. [Google Scholar]
- Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations Using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734. [Google Scholar]
- Luo, F.; Liu, J.; Chen, X.; Li, S.; Yao, X.; Chen, D. Intelligent Method for Predicting Formation Pore Pressure in No. 5 Fault Zone in Shunbei Oilfield Based on BP and LSTM Neural Network. Oil Drill. Prod. Technol. 2024, 44, 506–514. [Google Scholar] [CrossRef]
- Zhang, C.; Song, X.; Liu, Z.; Ma, B.; Lv, Z.; Su, Y.; Li, G.; Zhu, Z. Real-Time and Multi-Objective Optimization of Rate-of-Penetration Using Machine Learning Methods. Geoenergy Sci. Eng. 2023, 223, 211568. [Google Scholar] [CrossRef]
- Lecun, Y. A Theoretical Framework for Back-Propagation. In Proceedings of the 1988 Connectionist Models Summer School, Pittsburgh, PA, USA, 17–26 June 1998; IEEE Computer Society Press: Los Alamitos, CA, USA, 1988; Volume 1, pp. 21–28. Available online: https://www.researchgate.net/publication/2360531_A_Theoretical_Framework_for_Back-Propagation (accessed on 24 July 2025).
- Wen, J.; Zhao, J.L.; Luo, S.W.; Han, Z. The Improvements of BP Neural Network Learning Algorithm. In Proceedings of the WCC 2000—ICSP 2000. 2000 5th International Conference on Signal Processing Proceedings. 16th World Computer Congress 2000, Beijing, China, 21–25 August 2000; Volume 3, pp. 1647–1649. [Google Scholar]
- Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; Springer Nature: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Ko, K.; Kim, S.; Kwon, H. Selective Audio Perturbations for Targeting Specific Phrases in Speech Recognition Systems. Int. J. Comput. Intell. Syst. 2025, 18, 103. [Google Scholar] [CrossRef]
Case | Learning Rate | GRU Nerves | Batch Size | Dropout Rate |
---|---|---|---|---|
1 | 0.001 | 32 | 16 | 0.2 |
2 | 0.001 | 64 | 32 | 0.3 |
3 | 0.001 | 128 | 48 | 0.4 |
4 | 0.005 | 32 | 32 | 0.4 |
5 | 0.005 | 64 | 48 | 0.2 |
6 | 0.005 | 128 | 16 | 0.3 |
7 | 0.01 | 32 | 48 | 0.3 |
8 | 0.01 | 64 | 16 | 0.4 |
9 | 0.01 | 128 | 32 | 0.2 |
Depth (m) | Azimuth (°) | Dip Angle (°) | Tool Face (°) | Formation Types |
---|---|---|---|---|
0 | 78.48 | 10.37 | 333.00 | limestone |
3 | 79.11 | 10.29 | 20.00 | limestone |
6 | 78.61 | 10.31 | 21.00 | limestone |
9 | 78.63 | 10.30 | 22.00 | limestone |
12 | 78.63 | 10.30 | 23.00 | limestone |
15 | 78.63 | 10.30 | 24.00 | limestone |
18 | 73.46 | 11.13 | 25.00 | limestone |
… | … | … | … | … |
297 | 77.86 | 4.61 | 172.00 | limestone |
Depth (m) | Azimuth (°) | Dip Angle (°) | Tool Face (°) | Formation Types |
---|---|---|---|---|
300 | 78.00 | 5.01 | 242.00 | limestone |
303 | 79.08 | 5.42 | 312.00 | limestone |
306 | 78.69 | 5.63 | 22.00 | limestone |
309 | 79.06 | 6.22 | 92.00 | limestone |
312 | 78.39 | 6.52 | 162.00 | limestone |
315 | 78.74 | 6.06 | 232.00 | limestone |
318 | 78.32 | 5.61 | 302.00 | limestone |
… | … | … | … | … |
450 | 77.69 | 6.22 | 142.00 | limestone |
Algorithm | MSE (Dip) | MSE (Azi) | R2 (Dip) | R2 (Azi) | Training Time (s) | Memory Usage Increment (MB) | Total Number of Model Parameters |
---|---|---|---|---|---|---|---|
BP | 0.21 | 0.78 | 0.18 | 0.22 | 2.05 | 51.7 | 6882 |
LSTM | 0.09 | 0.34 | 0.66 | 0.63 | 2.44 | 97.05 | 27,690 |
GRU | 0.08 | 0.24 | 0.68 | 0.75 | 2.95 | 95.96 | 22,650 |
Pi-GRU | 0.01 | 0.06 | 0.95 | 0.93 | 3.89 | 154.87 | 91,394 |
CNN-BiLSTM | 0.03 | 0.26 | 0.87 | 0.74 | 3.26 | 137.72 | 87,346 |
Transform | 0.22 | 0.82 | 0.11 | 0.18 | 3.33 | 111.23 | 21,106 |
Evaluation Index | Pi-GRU | Hardware Capabilities (Jetson TX2) |
---|---|---|
Reasoning delay | 0.21 ms | ≤80 ms |
Train computing power | 0.29 GFLOPS | 1.3 TFLOPS |
Reasoning computing power | 0.093 GFLOPS | 1.3 TFLOPS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Hu, Y.; Wu, Z. Research on Wellbore Trajectory Prediction Based on a Pi-GRU Model. Appl. Sci. 2025, 15, 8317. https://doi.org/10.3390/app15158317
Liu H, Hu Y, Wu Z. Research on Wellbore Trajectory Prediction Based on a Pi-GRU Model. Applied Sciences. 2025; 15(15):8317. https://doi.org/10.3390/app15158317
Chicago/Turabian StyleLiu, Hanlin, Yule Hu, and Zhenkun Wu. 2025. "Research on Wellbore Trajectory Prediction Based on a Pi-GRU Model" Applied Sciences 15, no. 15: 8317. https://doi.org/10.3390/app15158317
APA StyleLiu, H., Hu, Y., & Wu, Z. (2025). Research on Wellbore Trajectory Prediction Based on a Pi-GRU Model. Applied Sciences, 15(15), 8317. https://doi.org/10.3390/app15158317