Effect of Individualized Whole-Body Vibration Exercise on Locomotion and Postural Control in a Person with Multiple Sclerosis: A 5-Year Case Report
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant
2.2. Study Design and Procedures
2.3. Individualized WBV Load
2.4. Whole-Body Vibration Sessions
2.5. Surface Electromyography (sEMG)
2.6. Gait Analysis and sEMG Activity
2.7. Postural Control
2.8. Handgrip Strength Test (HGS) and Synchronized sEMG Activity
2.9. Serum Collection
2.10. Magnetic Resonance Imaging
2.11. Subjective Comments
2.12. Statistics and Data Analysis
3. Results
3.1. Gait Analysis and sEMG
3.2. Postural Control
3.3. Handgrip Strength Test and sEMG
3.4. Hormonal and Creatine Kinase Acute and Residual Responses
3.5. Magnetic Resonance Imaging
3.6. Subjective Comments
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noseworthy, J.H.; Lucchinetti, C.; Rodriguez, M.; Weinshenker, B.G. Multiple Sclerosis. N. Engl. J. Med. 2000, 343, 938–952. [Google Scholar] [CrossRef]
- Jakimovski, D.; Bittner, S.; Zivadinov, R.; Morrow, S.A.; Benedict, R.H.; Zipp, F.; Weinstock-Guttman, B. Multiple Sclerosis. Lancet 2024, 403, 183–202. [Google Scholar] [CrossRef]
- Compston, A.; Coles, A. Multiple Sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
- McGinley, M.P.; Goldschmidt, C.H.; Rae-Grant, A.D. Diagnosis and Treatment of Multiple Sclerosis: A Review. JAMA 2021, 325, 765. [Google Scholar] [CrossRef]
- Martin, C.L.; Phillips, B.A.; Kilpatrick, T.J.; Butzkueven, H.; Tubridy, N.; McDonald, E.; Galea, M.P. Gait and Balance Impairment in Early Multiple Sclerosis in the Absence of Clinical Disability. Mult. Scler. 2006, 12, 620–628. [Google Scholar] [CrossRef]
- Socie, M.J.; Motl, R.W.; Pula, J.H.; Sandroff, B.M.; Sosnoff, J.J. Gait Variability and Disability in Multiple Sclerosis. Gait Posture 2013, 38, 51–55. [Google Scholar] [CrossRef]
- Wens, I.; Dalgas, U.; Vandenabeele, F.; Krekels, M.; Grevendonk, L.; Eijnde, B.O. Multiple Sclerosis Affects Skeletal Muscle Characteristics. PLoS ONE 2014, 9, e108158. [Google Scholar] [CrossRef]
- Mamoei, S.; Hvid, L.G.; Boye Jensen, H.; Zijdewind, I.; Stenager, E.; Dalgas, U. Neurophysiological Impairments in Multiple Sclerosis—Central and Peripheral Motor Pathways. Acta Neurol. Scand. 2020, 142, 401–417. [Google Scholar] [CrossRef]
- Ng, A.V.; Miller, R.G.; Gelinas, D.; Kent-Braun, J.A. Functional Relationships of Central and Peripheral Muscle Alterations in Multiple Sclerosis. Muscle Nerve 2004, 29, 843–852. [Google Scholar] [CrossRef]
- Filli, L.; Sutter, T.; Easthope, C.S.; Killeen, T.; Meyer, C.; Reuter, K.; Lörincz, L.; Bolliger, M.; Weller, M.; Curt, A.; et al. Profiling Walking Dysfunction in Multiple Sclerosis: Characterisation, Classification and Progression over Time. Sci. Rep. 2018, 8, 4984. [Google Scholar] [CrossRef]
- Comber, L.; Galvin, R.; Coote, S. Gait Deficits in People with Multiple Sclerosis: A Systematic Review and Meta-Analysis. Gait Posture 2017, 51, 25–35. [Google Scholar] [CrossRef]
- Crenshaw, S.J.; Royer, T.D.; Richards, J.G.; Hudson, D.J. Gait Variability in People with Multiple Sclerosis. Mult. Scler. 2006, 12, 613–619. [Google Scholar] [CrossRef]
- Di Giminiani, R.; Di Lorenzo, D.; La Greca, S.; Russo, L.; Masedu, F.; Totaro, R.; Padua, E. Angle-Angle Diagrams in the Assessment of Locomotion in Persons with Multiple Sclerosis: A Preliminary Study. Appl. Sci. 2022, 12, 7223. [Google Scholar] [CrossRef]
- Prosperini, L.; Castelli, L. Spotlight on Postural Control in Patients with Multiple Sclerosis. Degener. Neurol. Neuromuscul. Dis. 2018, 8, 25–34. [Google Scholar] [CrossRef]
- Jackson, R.T.; Epstein, C.M.; De l’Aune, W.R. Abnormalities in Posturography and Estimations of Visual Vertical and Horizontal in Multiple Sclerosis. Am. J. Otol. 1995, 16, 88–93. [Google Scholar]
- Prosperini, L.; Pozzilli, C. The Clinical Relevance of Force Platform Measures in Multiple Sclerosis: A Review. Mult. Scler. Int. 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Corvillo, I.; Varela, E.; Armijo, F.; Alvarez-Badillo, A.; Armijo, O.; Maraver, F. Efficacy of Aquatic Therapy for Multiple Sclerosis: A Systematic Review. Eur. J. Phys. Rehabil. Med. 2017, 53, 944–952. [Google Scholar] [CrossRef]
- Cruickshank, T.M.; Reyes, A.R.; Ziman, M.R. A Systematic Review and Meta-Analysis of Strength Training in Individuals With Multiple Sclerosis Or Parkinson Disease. Medicine 2015, 94, e411. [Google Scholar] [CrossRef]
- Dalgas, U.; Stenager, E.; Ingemann-Hansen, T. Multiple Sclerosis and Physical Exercise: Recommendations for the Application of Resistance-, Endurance- and Combined Training. Mult. Scler. 2008, 14, 35–53. [Google Scholar] [CrossRef]
- Hortobágyi, T.; Granacher, U.; Fernandez-del-Olmo, M.; Howatson, G.; Manca, A.; Deriu, F.; Taube, W.; Gruber, M.; Márquez, G.; Lundbye-Jensen, J.; et al. Functional Relevance of Resistance Training-Induced Neuroplasticity in Health and Disease. Neurosci. Biobehav. Rev. 2021, 122, 79–91. [Google Scholar] [CrossRef]
- Petajan, J.H.; Gappmaier, E.; White, A.T.; Spencer, M.K.; Mino, L.; Hicks, R.W. Impact of Aerobic Training on Fitness and Quality of Life in Multiple Sclerosis. Ann. Neurol. 1996, 39, 432–441. [Google Scholar] [CrossRef]
- Donzé, C.; Massot, C. Rehabilitation in Multiple Sclerosis in 2021. Presse Médicale 2021, 50, 104066. [Google Scholar] [CrossRef]
- Rietberg, M.B.; Brooks, D.; Uitdehaag, B.M.; Kwakkel, G. Exercise Therapy for Multiple Sclerosis. Cochrane Database Syst. Rev. 2005, 25, 1–31. [Google Scholar] [CrossRef]
- White, L.J.; Castellano, V. Exercise and Brain Health—Implications for Multiple Sclerosis. Sports Med. 2008, 38, 91–100. [Google Scholar] [CrossRef]
- White, L.J.; Castellano, V. Exercise and Brain Health–Implications for Multiple Sclerosis: Part II–Immune Factors and Stress Hormones. Sports Med. 2008, 38, 179–186. [Google Scholar] [CrossRef]
- Briken, S.; Rosenkranz, S.C.; Keminer, O.; Patra, S.; Ketels, G.; Heesen, C.; Hellweg, R.; Pless, O.; Schulz, K.-H.; Gold, S.M. Effects of Exercise on Irisin, BDNF and IL-6 Serum Levels in Patients with Progressive Multiple Sclerosis. J. Neuroimmunol. 2016, 299, 53–58. [Google Scholar] [CrossRef]
- Liao, L.-R.; Huang, M.; Lam, F.M.H.; Pang, M.Y.C. Effects of Whole-Body Vibration Therapy on Body Functions and Structures, Activity, and Participation Poststroke: A Systematic Review. Phys. Ther. 2014, 94, 1232–1251. [Google Scholar] [CrossRef]
- Stania, M.; Juras, G.; Słomka, K.; Chmielewska, D.; Król, P. The Application of Whole-Body Vibration in Physiotherapy–A Narrative Review. Acta Physiol. Hung. 2016, 103, 133–145. [Google Scholar] [CrossRef]
- Rittweger, J. Vibration as an Exercise Modality: How It May Work, and What Its Potential Might Be. Eur. J. Appl. Physiol. 2010, 108, 877–904. [Google Scholar] [CrossRef]
- Pollock, R.D.; Woledge, R.C.; Martin, F.C.; Newham, D.J. Effects of Whole Body Vibration on Motor Unit Recruitment and Threshold. J. Appl. Physiol. 2012, 112, 388–395. [Google Scholar] [CrossRef]
- Mileva, K.N.; Bowtell, J.L.; Kossev, A.R. Effects of Low-Frequency Whole-Body Vibration on Motor-Evoked Potentials in Healthy Men: Corticospinal Excitability during Whole-Body Vibration Exercise. Exp. Physiol. 2009, 94, 103–116. [Google Scholar] [CrossRef]
- Cardinale, M.; Bosco, C. The use of vibration as an exercise intervention. Exerc. Sport. Sci. Rev. 2003, 31, 3–7. [Google Scholar] [CrossRef]
- Cochrane, D.J.; Stannard, S.R.; Firth, E.C.; Rittweger, J. Acute Whole-Body Vibration Elicits Post-Activation Potentiation. Eur. J. Appl. Physiol. 2010, 108, 311–319. [Google Scholar] [CrossRef]
- Fischer, M.; Vialleron, T.; Laffaye, G.; Fourcade, P.; Hussein, T.; Chèze, L.; Deleu, P.-A.; Honeine, J.-L.; Yiou, E.; Delafontaine, A. Long-Term Effects of Whole-Body Vibration on Human Gait: A Systematic Review and Meta-Analysis. Front. Neurol. 2019, 10, 627. [Google Scholar] [CrossRef]
- Duchateau, J.; Semmler, J.G.; Enoka, R.M. Training Adaptations in the Behavior of Human Motor Units. J. Appl. Physiol. 2006, 101, 1766–1775. [Google Scholar] [CrossRef]
- Enoka, R.M.; Duchateau, J. Rate Coding and the Control of Muscle Force. Cold Spring Harb. Perspect. Med. 2017, 7, a029702. [Google Scholar] [CrossRef]
- Wist, S.; Clivaz, J.; Sattelmayer, M. Muscle Strengthening for Hemiparesis after Stroke: A Meta-Analysis. Ann. Phys. Rehabil. Med. 2016, 59, 114–124. [Google Scholar] [CrossRef]
- Ribeiro, V.G.C.; Lacerda, A.C.R.; Santos, J.M.; Coelho-Oliveira, A.C.; Fonseca, S.F.; Prates, A.C.N.; Flor, J.; Garcia, B.C.C.; Tossige-Gomes, R.; Leite, H.R.; et al. Efficacy of Whole-Body Vibration Training on Brain-Derived Neurotrophic Factor, Clinical and Functional Outcomes, and Quality of Life in Women with Fibromyalgia Syndrome: A Randomized Controlled Trial. J. Healthc. Eng. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Di Giminiani, R.; Rucci, N.; Capuano, L.; Ponzetti, M.; Aielli, F.; Tihanyi, J. Individualized Whole-Body Vibration: Neuromuscular, Biochemical, Muscle Damage and Inflammatory Acute Responses. Dose-Response 2020, 18, 155932582093126. [Google Scholar] [CrossRef]
- Gyulai, G.; Rácz, L.; Di Giminiani, R.; Tihanyi, J. Effect of Whole Body Vibration Applied on Upper Extremity Muscles. Acta Physiol. Hung. 2013, 100, 37–47. [Google Scholar] [CrossRef]
- Kvorning, T.; Bagger, M.; Caserotti, P.; Madsen, K. Effects of Vibration and Resistance Training on Neuromuscular and Hormonal Measures. Eur. J. Appl. Physiol. 2006, 96, 615–625. [Google Scholar] [CrossRef]
- Broekmans, T.; Roelants, M.; Alders, G.; Feys, P.; Thijs, H.; Eijnde, B. Exploring the Effects of a 20-Week Whole-Body Vibration Training Programme on Leg Muscle Performance and Function in Persons with Multiple Sclerosis. J. Rehabil. Med. 2010, 42, 866–872. [Google Scholar] [CrossRef]
- Claerbout, M.; Gebara, B.; Ilsbroukx, S.; Verschueren, S.; Peers, K.; Van Asch, P.; Feys, P. Effects of 3 Weeks’ Whole Body Vibration Training on Muscle Strength and Functional Mobility in Hospitalized Persons with Multiple Sclerosis. Mult. Scler. 2012, 18, 498–505. [Google Scholar] [CrossRef]
- Hilgers, C.; Mündermann, A.; Riehle, H.; Dettmers, C. Effects of Whole-Body Vibration Training on Physical Function in Patients with Multiple Sclerosis. NRE 2013, 32, 655–663. [Google Scholar] [CrossRef]
- Krause, A.; Lee, K.; Freyler, K.; Bührer, T.; Gollhofer, A.; Ritzmann, R. Whole-Body Vibration Impedes the Deterioration of Postural Control in Patients with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2019, 31, 134–140. [Google Scholar] [CrossRef]
- Mason, R.R.; Cochrane, D.J.; Denny, G.J.; Firth, E.C.; Stannard, S.R. Is 8 Weeks of Side-Alternating Whole-Body Vibration a Safe and Acceptable Modality to Improve Functional Performance in Multiple Sclerosis? Disabil. Rehabil. 2012, 34, 647–654. [Google Scholar] [CrossRef]
- Schuhfried, O.; Mittermaier, C.; Jovanovic, T.; Pieber, K.; Paternostro-Sluga, T. Effects of Whole-Body Vibration in Patients with Multiple Sclerosis: A Pilot Study. Clin. Rehabil. 2005, 19, 834–842. [Google Scholar] [CrossRef]
- Schyns, F.; Paul, L.; Finlay, K.; Ferguson, C.; Noble, E. Vibration Therapy in Multiple Sclerosis: A Pilot Study Exploring Its Effects on Tone, Muscle Force, Sensation and Functional Performance. Clin. Rehabil. 2009, 23, 771–781. [Google Scholar] [CrossRef]
- Wolfsegger, T.; Assar, H.; Topakian, R. 3-Week Whole Body Vibration Does Not Improve Gait Function in Mildly Affected Multiple Sclerosis Patients—A Randomized Controlled Trial. J. Neurol. Sci. 2014, 347, 119–123. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Eftekhari, E.; Etemadifar, M. Effects of Whole Body Vibration on Hormonal & Functional Indices in Patients with Multiple Sclerosis. Indian. J. Med. Res. 2015, 142, 450. [Google Scholar] [CrossRef]
- Escudero-Uribe, S.; Hochsprung, A.; Heredia-Camacho, B.; Izquierdo-Ayuso, G. Effect of Training Exercises Incorporating Mechanical Devices on Fatigue and Gait Pattern in Persons with Relapsing-Remitting Multiple Sclerosis. Physiother. Can. 2017, 69, 292–302. [Google Scholar] [CrossRef]
- Santos-Filho, S.D.; Cameron, M.H.; Bernardo-Filho, M. Benefits of Whole-Body Vibration with an Oscillating Platform for People with Multiple Sclerosis: A Systematic Review. Mult. Scler. Int. 2012, 2012, 1–6. [Google Scholar] [CrossRef]
- Di Giminiani, R.; Tihanyi, J.; Safar, S.; Scrimaglio, R. The Effects of Vibration on Explosive and Reactive Strength When Applying Individualized Vibration Frequencies. J. Sports Sci. 2009, 27, 169–177. [Google Scholar] [CrossRef]
- Di Giminiani, R.; Masedu, F.; Tihanyi, J.; Scrimaglio, R.; Valenti, M. The Interaction between Body Position and Vibration Frequency on Acute Response to Whole Body Vibration. J. Electromyogr. Kinesiol. 2013, 23, 245–251. [Google Scholar] [CrossRef]
- Di Giminiani, R.; Fabiani, L.; Baldini, G.; Cardelli, G.; Giovannelli, A.; Tihanyi, J. Hormonal and Neuromuscular Responses to Mechanical Vibration Applied to Upper Extremity Muscles. PLoS ONE 2014, 9, e111521. [Google Scholar] [CrossRef]
- Di Giminiani, R.; Masedu, F.; Padulo, J.; Tihanyi, J.; Valenti, M. The EMG Activity–Acceleration Relationship to Quantify the Optimal Vibration Load When Applying Synchronous Whole-Body Vibration. J. Electromyogr. Kinesiol. 2015, 25, 853–859. [Google Scholar] [CrossRef]
- McGrath, R.; Lang, J.J.; Ortega, F.B.; Chaput, J.-P.; Zhang, K.; Smith, J.; Vincent, B.; Piñero, J.C.; Garcia, M.C.; Tomkinson, G.R. Handgrip Strength Asymmetry Is Associated with Slow Gait Speed and Poorer Standing Balance in Older Americans. Arch. Gerontol. Geriatr. 2022, 102, 104716. [Google Scholar] [CrossRef]
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker For Older Adults. CIA 2019, 14, 1681–1691. [Google Scholar] [CrossRef]
- Iyengar, V.; Santos, M.J.; Ko, M.; Aruin, A.S. Grip Force Control in Individuals With Multiple Sclerosis. Neurorehabil Neural Repair. 2009, 23, 855–861. [Google Scholar] [CrossRef]
- MacKenzie, E.G.; Snow, N.J.; Chaves, A.R.; Reza, S.Z.; Ploughman, M. Weak Grip Strength among Persons with Multiple Sclerosis Having Minimal Disability Is Not Related to Agility or Integrity of the Corticospinal Tract. Mult. Scler. Relat. Disord. 2024, 88, 105741. [Google Scholar] [CrossRef]
- Sahraian, M.A.; Eshaghi, A. Role of MRI in Diagnosis and Treatment of Multiple Sclerosis. Clin. Neurol. Neurosurg. 2010, 112, 609–615. [Google Scholar] [CrossRef]
- Delecluse, C.; Roelants, M.; Verschueren, S. Strength Increase after Whole-Body Vibration Compared with Resistance Training. Med. Sci. Sports Exerc. 2003, 35, 1033–1041. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of Recommendations for SEMG Sensors and Sensor Placement Procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Di Giminiani, R.; La Greca, S.; Marinelli, S.; Attanasio, M.; Masedu, F.; Mazza, M.; Valenti, M. Locomotion and Postural Control in Young Adults with Autism Spectrum Disorders: A Novel Kinesiological Assessment. JFMK 2024, 9, 185. [Google Scholar] [CrossRef]
- Marinelli, S.; La Greca, S.; Mazzaferro, D.; Russo, L.; Di Giminiani, R. A focus on exercise prescription and assessment for a safe return to sport participation following a patellar tendon reconstruction in a soccer player. Acta Kinesiol. 2024, 18, 13–23. [Google Scholar] [CrossRef]
- Cavanagh, P.R. The Biomechanics of Lower Extremity Action in Distance Running. Foot Ankle 1987, 7, 197–217. [Google Scholar] [CrossRef]
- Decker, L.; Berge, C.; Renous, S.; Penin, X. An Alternative Approach to Normalization and Evaluation for Gait Patterns: Procrustes Analysis Applied to the Cyclograms of Sprinters and Middle-Distance Runners. J. Biomech. 2007, 40, 2078–2087. [Google Scholar] [CrossRef]
- Zeni, J.A.; Richards, J.G.; Higginson, J.S. Two Simple Methods for Determining Gait Events during Treadmill and Overground Walking Using Kinematic Data. Gait Posture 2008, 27, 710–714. [Google Scholar] [CrossRef]
- Hershler, C.; Milner, M. Angle—Angle Diagrams in the Assessment of Locomotion. Am. J. Phys. Med. 1980, 59, 109–125. [Google Scholar]
- Cronin, N.J.; Kumpulainen, S.; Joutjärvi, T.; Finni, T.; Piitulainen, H. Spatial Variability of Muscle Activity during Human Walking: The Effects of Different EMG Normalization Approaches. Neuroscience 2015, 300, 19–28. [Google Scholar] [CrossRef]
- Masedu, F.; Angelozzi, M.; Di Giminiani, R.; Valenti, M. The Use of Fractal Dimension Methods in Clinical Epidemiology: An Application for Postural Assessment. EBPH 2013, 10, 9. [Google Scholar] [CrossRef]
- Rhea, C.K.; Kiefer, A.W.; Haran, F.J.; Glass, S.M.; Warren, W.H. A New Measure of the CoP Trajectory in Postural Sway: Dynamics of Heading Change. Med. Eng. Phys. 2014, 36, 1473–1479. [Google Scholar] [CrossRef]
- Klein, L.J. Evaluation of the Hand and Upper Extremity. In Fundamentals of Hand Therapy; Elsevier: Amsterdam, The Netherlands, 2014; pp. 67–86. ISBN 978-0-323-09104-6. [Google Scholar]
- Patterson, K.K.; Gage, W.H.; Brooks, D.; Black, S.E.; McIlroy, W.E. Evaluation of Gait Symmetry after Stroke: A Comparison of Current Methods and Recommendations for Standardization. Gait Posture 2010, 31, 241–246. [Google Scholar] [CrossRef]
- Khan, F.; Amatya, B. Rehabilitation in Multiple Sclerosis: A Systematic Review of Systematic Reviews. Arch. Phys. Med. Rehabil. 2017, 98, 353–367. [Google Scholar] [CrossRef]
- Heesen, C.; Böhm, J.; Reich, C.; Kasper, J.; Goebel, M.; Gold, S. Patient Perception of Bodily Functions in Multiple Sclerosis: Gait and Visual Function Are the Most Valuable. Mult. Scler. 2008, 14, 988–991. [Google Scholar] [CrossRef]
- Horak, F.B.; Wrisley, D.M.; Frank, J. The Balance Evaluation Systems Test (BESTest) to Differentiate Balance Deficits. Phys. Ther. 2009, 89, 484–498. [Google Scholar] [CrossRef]
- Mancini, M.; Salarian, A.; Carlson-Kuhta, P.; Zampieri, C.; King, L.; Chiari, L.; Horak, F.B. ISway: A Sensitive, Valid and Reliable Measure of Postural Control. J. Neuroeng. Rehabil. 2012, 9, 59. [Google Scholar] [CrossRef]
- Stein, B.E.; Stanford, T.R. Multisensory Integration: Current Issues from the Perspective of the Single Neuron. Nat. Rev. Neurosci. 2008, 9, 255–266. [Google Scholar] [CrossRef]
- Sosnoff, J.J.; Sung, J. Reducing Falls and Improving Mobility in Multiple Sclerosis. Expert. Rev. Neurother. 2015, 15, 655–666. [Google Scholar] [CrossRef]
- Bautmans, I.; Van Hees, E.; Lemper, J.-C.; Mets, T. The Feasibility of Whole Body Vibration in Institutionalised Elderly Persons and Its Influence on Muscle Performance, Balance and Mobility: A Randomised Controlled Trial [ISRCTN62535013]. BMC Geriatr. 2005, 5, 17. [Google Scholar] [CrossRef]
- Santin-Medeiros, F.; Rey-López, J.P.; Santos-Lozano, A.; Cristi-Montero, C.S.; Garatachea Vallejo, N. Effects of Eight Months of Whole-Body Vibration Training on the Muscle Mass and Functional Capacity of Elderly Women. J. Strength. Cond. Res. 2015, 29, 1863–1869. [Google Scholar] [CrossRef]
- Sievänen, H.; Karinkanta, S.; Moisio-Vilenius, P.; Ripsaluoma, J. Feasibility of Whole-Body Vibration Training in Nursing Home Residents with Low Physical Function: A Pilot Study. Aging Clin. Exp. Res. 2014, 26, 511–517. [Google Scholar] [CrossRef]
- Souron, R.; Besson, T.; Millet, G.Y.; Lapole, T. Acute and Chronic Neuromuscular Adaptations to Local Vibration Training. Eur. J. Appl. Physiol. 2017, 117, 1939–1964. [Google Scholar] [CrossRef]
- Lamers, I.; Kelchtermans, S.; Baert, I.; Feys, P. Upper Limb Assessment in Multiple Sclerosis: A Systematic Review of Outcome Measures and Their Psychometric Properties. Arch. Phys. Med. Rehabil. 2014, 95, 1184–1200. [Google Scholar] [CrossRef]
- Ritzmann, R.; Kramer, A.; Gruber, M.; Gollhofer, A.; Taube, W. EMG Activity during Whole Body Vibration: Motion Artifacts or Stretch Reflexes? Eur. J. Appl. Physiol. 2010, 110, 143–151. [Google Scholar] [CrossRef]
- Bongiovanni, L.G.; Hagbarth, K.E. Tonic Vibration Reflexes Elicited during Fatigue from Maximal Voluntary Contractions in Man. J. Physiol. 1990, 423, 1–14. [Google Scholar] [CrossRef]
- Marconi, B.; Filippi, G.M.; Koch, G.; Pecchioli, C.; Salerno, S.; Don, R.; Camerota, F.; Saraceni, V.M.; Caltagirone, C. Long-Term Effects on Motor Cortical Excitability Induced by Repeated Muscle Vibration during Contraction in Healthy Subjects. J. Neurol. Sci. 2008, 275, 51–59. [Google Scholar] [CrossRef]
- Steyvers, M.; Levin, O.; Verschueren, S.M.; Swinnen, S.P. Frequency-Dependent Effects of Muscle Tendon Vibration on Corticospinal Excitability: A TMS Study. Exp. Brain Res. 2003, 151, 9–14. [Google Scholar] [CrossRef]
- Ritzmann, R.; Kramer, A.; Bernhardt, S.; Gollhofer, A. Whole Body Vibration Training—Improving Balance Control and Muscle Endurance. PLoS ONE 2014, 9, e89905. [Google Scholar] [CrossRef]
- Kjølhede, T.; Siemonsen, S.; Wenzel, D.; Stellmann, J.-P.; Ringgaard, S.; Pedersen, B.G.; Stenager, E.; Petersen, T.; Vissing, K.; Heesen, C.; et al. Can Resistance Training Impact MRI Outcomes in Relapsing-Remitting Multiple Sclerosis? Mult. Scler. 2018, 24, 1356–1365. [Google Scholar] [CrossRef]
- Bianchi, V.; Locatelli, V.; Rizzi, L. Neurotrophic and Neuroregenerative Effects of GH/IGF1. IJMS 2017, 18, 2441. [Google Scholar] [CrossRef]
- Gironi, M.; Solaro, C.; Meazza, C.; Vaghi, M.; Montagna, L.; Rovaris, M.; Batocchi, A.P.; Nemni, R.; Albertini, R.; Zaffaroni, M.; et al. Growth Hormone and Disease Severity in Early Stage of Multiple Sclerosis. Mult. Scler. Int. 2013, 2013, 1–5. [Google Scholar] [CrossRef]
- Sicotte, N.L.; Giesser, B.S.; Tandon, V.; Klutch, R.; Steiner, B.; Drain, A.E.; Shattuck, D.W.; Hull, L.; Wang, H.-J.; Elashoff, R.M.; et al. Testosterone Treatment in Multiple Sclerosis: A Pilot Study. Arch. Neurol. 2007, 64, 683. [Google Scholar] [CrossRef]
- Cardinale, M.; Soiza, R.L.; Leiper, J.B.; Gibson, A.; Primrose, W.R. Hormonal Responses to a Single Session of Wholebody Vibration Exercise in Older Individuals. Br. J. Sports Med. 2010, 44, 284–288. [Google Scholar] [CrossRef]
- Di Loreto, C.; Ranchelli, A.; Lucidi, P.; Murdolo, G.; Parlanti, N.; De Cicco, A.; Tsarpela, O.; Annino, G.; Bosco, C.; Santeusanio, F.; et al. Effects of Whole-Body Vibration Exercise on the Endocrine System of Healthy Men. J. Endocrinol. Invest. 2004, 27, 323–327. [Google Scholar] [CrossRef]
- Erskine, J.; Smillie, I.; Leiper, J.; Ball, D.; Cardinale, M. Neuromuscular and Hormonal Responses to a Single Session of Whole Body Vibration Exercise in Healthy Young Men. Clin. Physio Funct. Imaging 2007, 27, 242–248. [Google Scholar] [CrossRef]
- Fassbender, K.; Schmidt, R.; Mößner, R.; Kischka, U.; Kühnen, J.; Schwartz, A.; Hennerici, M. Mood Disorders and Dysfunction of the Hypothalamic-Pituitary-Adrenal Axis in Multiple Sclerosis: Association With Cerebral Inflammation. Arch. Neurol. 1998, 55, 66. [Google Scholar] [CrossRef]
Variable | 1st Workload | 2nd Workload | 3rd Workload | 4th Workload | 5th Workload | 6th Workload | 7th Workload | 8th Workload |
---|---|---|---|---|---|---|---|---|
Frequencies (Hz) | 28.9 | 28.9 | 28.9 | 28.9 | 28.9 | 28.9 | 28.9 | 28.9 |
Displacement (mm) | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
WBV series × reps | 1 × 7 | 1 × 8 | 2 × 5 | 2 × 5 | 2 × 5 | 2 × 5 | 2 × 5 | 2 × 5 |
WBV duration (s) | 30 | 30 | 30 | 60 | 60 | 60 | 30 | 60 |
Rest time from reps. (s) | 120 | 60 | 30 | 60 | 60 | 60 | 30 | 60 |
Rest time from series (s) | / | / | 240 | 180 | 240 | 120 | 160 | 120 |
Weekly frequency | 2 | 2 | 2 | 3 | 2 | 3 | 3 | 3 |
Position assumed | High squat | High squat | High squat | High squat | High/Half alternation | High/Half alternation | Half squat | Half squat * |
Total session | 4 | 4 | 32 | 40 | 20 | 14 | 12 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Greca, S.; Marinelli, S.; Totaro, R.; Pistoia, F.; Di Giminiani, R. Effect of Individualized Whole-Body Vibration Exercise on Locomotion and Postural Control in a Person with Multiple Sclerosis: A 5-Year Case Report. Appl. Sci. 2025, 15, 8351. https://doi.org/10.3390/app15158351
La Greca S, Marinelli S, Totaro R, Pistoia F, Di Giminiani R. Effect of Individualized Whole-Body Vibration Exercise on Locomotion and Postural Control in a Person with Multiple Sclerosis: A 5-Year Case Report. Applied Sciences. 2025; 15(15):8351. https://doi.org/10.3390/app15158351
Chicago/Turabian StyleLa Greca, Stefano, Stefano Marinelli, Rocco Totaro, Francesca Pistoia, and Riccardo Di Giminiani. 2025. "Effect of Individualized Whole-Body Vibration Exercise on Locomotion and Postural Control in a Person with Multiple Sclerosis: A 5-Year Case Report" Applied Sciences 15, no. 15: 8351. https://doi.org/10.3390/app15158351
APA StyleLa Greca, S., Marinelli, S., Totaro, R., Pistoia, F., & Di Giminiani, R. (2025). Effect of Individualized Whole-Body Vibration Exercise on Locomotion and Postural Control in a Person with Multiple Sclerosis: A 5-Year Case Report. Applied Sciences, 15(15), 8351. https://doi.org/10.3390/app15158351