Application and Extension of the Short-Range Order Configuration, SROC, Model in Bismuth Borate Glasses
Abstract
Featured Application
Abstract
1. Introduction
2. Theoretical Background: The Lever Rule and the Short-Range Order Configuration Model
2.1. The Conventional Lever Rule
- Condition I: In the composition range, four nodes are fundamental. These correspond to the neutral, N; meta, M; pyro, P; and ortho, O, nominal compositions.
- Condition II: At each interval between the fundamental nodes, only two types of structural units are allowed. These units correspond to the two fundamental nodes that define the interval.
- Range I (0 ≤ x ≤ 0.50)
- Condition III: Each function of the molar fractions presents a maximum value 1 at the node that represents the particular unit and reaches 0 at the two adjacent nodes.
2.2. The Original SROC Model
2.3. Comments on the SROC Model
3. Results and Discussion
3.1. The SROC Model in Bismuth Borate Glasses
- Region I: (between nodes N and M)
3.2. The Augmented SROC Model, ASROC
- Region IIa
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
Abbreviations
SROC | Short-range order configuration |
ASROC | Augmented short-range order configuration |
References
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics, 1st ed.; W.B. Saunders Company: Philadelphia, PA, USA, 1976. [Google Scholar]
- Santos, S.N.C.; Almeida, J.M.P.; Paula, K.T.; Tomazio, N.B.; Mastelaro, V.R.; Mendonça, C.R. Characterization of the Third-Order Optical Nonlinearity Spectrum of Barium Borate Glasses. Opt. Mater. 2017, 73, 16–19. [Google Scholar] [CrossRef]
- Venkata Rao, K.; Babu, S.; Venkataiah, G.; Ratnakaram, Y.C. Optical Spectroscopy of Dy3+ Doped Borate Glasses for Luminescence Applications. J. Mol. Struct. 2015, 1094, 274–280. [Google Scholar] [CrossRef]
- Torimoto, A.; Masai, H.; Okada, G.; Kawaguchi, N.; Yanagida, T. Emission Properties of Ce-Doped Alkaline Earth Borate Glasses for Scintillator Applications. Opt. Mater. 2017, 73, 517–522. [Google Scholar] [CrossRef]
- Kirdsiri, K.; Rajaramakrishna, R.; Damdee, B.; Kim, H.J.; Nuntawong, N.; Horphathum, M.; Kaewkhao, J. Influence of Alkaline Earth Oxides on Eu3+ Doped Lithium Borate Glasses for Photonic, Laser and Radiation Detection Material Applications. Solid State Sci. 2019, 89, 57–66. [Google Scholar] [CrossRef]
- Al-Buriahi, M.S.; Sriwunkum, C.; Arslan, H.; Tonguc, B.T.; Bourham, M.A. Investigation of Barium Borate Glasses for Radiation Shielding Applications. Appl. Phys. A 2020, 126, 68. [Google Scholar] [CrossRef]
- Khajonrit, J.; Montreeuppathum, A.; Kidkhunthod, P.; Chanlek, N.; Poo-arporn, Y.; Pinitsoontorn, S.; Maensiri, S. New Transparent Materials for Applications as Supercapacitors: Manganese-Lithium-Borate Glasses. J. Alloys Compd. 2018, 763, 199–208. [Google Scholar] [CrossRef]
- Dua, V.; Arya, S.K.; Singh, K. Review on Transition Metals Containing Lithium Borate Glasses Properties, Applications and Perspectives. J. Mater. Sci. 2023, 58, 8678–8699. [Google Scholar] [CrossRef]
- Ege, D.; Zheng, K.; Boccaccini, A.R. Borate Bioactive Glasses (BBG): Bone Regeneration, Wound Healing Applications, and Future Directions. ACS Appl. Bio Mater. 2022, 5, 3608–3622. [Google Scholar] [CrossRef]
- Krogh-Moe, J. The Infrared Spectra of Some Vitreous and Crystalline Borates. Ark. Kemi 1958, 12, 475–480. [Google Scholar]
- Krogh-Moe, J. On the Structure of Boron Oxide and Alkali Borate Glasses. Phys. Chem. Glas. 1960, 1, 26–31. [Google Scholar]
- Krogh-Moe, J. Interpretation of the Infra-Red Spectra of Boron Oxide and Alkali Borate Glasses. Phys. Chem. Glas. 1965, 6, 46–54. [Google Scholar]
- Bray, P.J.; O’Keefe, J.G. Nuclear Magnetic Resonance Investigations of the Structure of Alkali Borate Glasses. Phys. Chem. Glas. 1963, 4, 37–46. [Google Scholar]
- Silver, A.H.; Bray, P.J. Nuclear Magnetic Resonance Absorption in Glass. I. Nuclear Quadrupole Effects in Boron Oxide, Soda Boric Oxide, and Borosilicate Glasses. J. Chem. Phys. 1958, 3, 984–990. [Google Scholar] [CrossRef]
- Bray, P.J.; Feller, S.A.; Jellison, G.E., Jr.; Yun, Y.H. B10 NMR Studies of the Structure of Borate Glasses. J. Non-Cryst. Solids 1980, 38–39, 93–98. [Google Scholar] [CrossRef]
- Kamitsos, E.I.; Chryssikos, G.D. Borate Glass Structure by Raman and Infrared Spectroscopies. J. Mol. Struct. 1991, 247, 1–16. [Google Scholar] [CrossRef]
- Varsamis, C.P.; Kamitsos, E.I.; Chryssikos, G.D. Structure of Fast-Ion-Conducting AgI-Doped Borate Glasses in Bulk and Thin Film Forms. Phys. Rev. B 1999, 60, 3885–3898. [Google Scholar] [CrossRef]
- Machowski, P.M.; Varsamis, C.P.E.; Kamitsos, E.I. Dependence of Sodium Borate Glass Structure on Depth from the Sample Surface. J. Non-Cryst. Solids 2004, 345–346, 213–218. [Google Scholar] [CrossRef]
- Chryssikos, G.D.; Kamitsos, E.I.; Patsis, A.P.; Karakassides, M.A. On the Structure of Alkali Borate Glasses Approaching the Orthoborate Composition. Mater. Sci. Eng. B 1990, 7, 1–4. [Google Scholar] [CrossRef]
- Kamitsos, E.I.; Patsis, A.P.; Karakassides, M.A.; Chryssikos, G.D. Infrared Reflectance Spectra of Lithium Borate Glasses. J. Non-Cryst. Solids 1990, 126, 52–67. [Google Scholar] [CrossRef]
- Kamitsos, E.I.; Patsis, A.P.; Chryssikos, G.D. Infrared Reflectance Investigation of Alkali Diborate Glasses. J. Non-Cryst. Solids 1993, 152, 246–257. [Google Scholar] [CrossRef]
- Aguiar, P.M.; Kroeker, S. Boron Speciation and Non-Bridging Oxygens in High-Alkali Borate Glasses. J. Non-Cryst. Solids 2007, 353, 1834–1839. [Google Scholar] [CrossRef]
- Montouillout, V.; Fan, H.; Del Campo, L.; Ory, S.; Rakhmatullin, A.; Fayon, F.; Malki, M. Ionic Conductivity of Lithium Borate Glasses and Local Structure Probed by High Resolution Solid-Sate NMR. J. Non-Cryst. Solids 2018, 484, 57–64. [Google Scholar] [CrossRef]
- Chatzipanagis, K.I.; Tagiara, N.S.; Kamitsos, E.I.; Barrow, N.; Slagle, I.; Wilson, R.; Greiner, T.; Jesuit, M.; Leonard, N.; Phillips, A.; et al. Structure of Lead Borate Glasses by Raman, 11B MAS, and 207Pb NMR Spectroscopies. J. Non-Cryst. Solids 2022, 589, 121660. [Google Scholar] [CrossRef]
- Song, L.; Wang, Y.; Zhai, T.; Sun, B.; Du, Y.; Feller, S.; Yin, W.; Xu, J.; Hannon, A.C.; Zhu, F. Revealing the Microstructure and Structural Origin of Glass-Forming Range of Magnesium Borate Glass. Ceram. Int. 2025, 51, 18966–18977. [Google Scholar] [CrossRef]
- Swenson, J.; Börjesson, L.; Howells, W.S. Structure of Borate Glasses from Neutron-Diffraction Experiments. Phys. Rev. B 1995, 52, 9310–9319. [Google Scholar] [CrossRef]
- Swenson, J.; Börjesson, L.; Howells, W.S. Structure of Fast-Ion-Conducting Lithium and Sodium Borate Glasses by Neutron Diffraction and Reverse Monte Carlo Simulations. Phys. Rev. B 1998, 57, 13514–13526. [Google Scholar] [CrossRef]
- Stone, C.E.; Wright, A.C.; Sinclair, R.N.; Feller, S.A.; Affatigato, M.; Hogan, D.L.; Nelson, N.D.; Vira, C.; Dimitriev, Y.B.; Gattef, E.M.; et al. Structure of Bismuth Borate Glasses. Phys. Chem. Glas. 2000, 41, 409–412. [Google Scholar]
- Fischer, H.E.; Barnes, A.C.; Salmon, P.S. Neutron and X-Ray Diffraction Studies of Liquids and Glasses. Rep. Prog. Phys. 2006, 69, 233–299. [Google Scholar] [CrossRef]
- Kajinami, A.; Harada, Y.; Inoue, S.; Deki, S.; Umesaki, N. The Structural Analysis of Zinc Borate Glass by Laboratory EXAFS and X-Ray Diffraction Measurements. Jpn. J. Appl. Phys. 1999, 38, 132. [Google Scholar] [CrossRef]
- Dalba, G.; Fornasini, P.; Kuzmin, A.; Monti, F.; Sanson, A.; Sipr, O.; Rocca, F. XANES and EXAFS Modelling of Configurational Disorder in Silver Borate Glasses. Phys. Scr. 2005, 115, 149–151. [Google Scholar] [CrossRef]
- Kuzmin, A.; Dalba, G.; Fornasini, P.; Rocca, F.; Šipr, O. X-Ray Absorption Spectroscopy of Strongly Disordered Glasses: Local Structure around Ag Ions in g−Ag2O∙nB2O3. Phys. Rev. B 2006, 73, 174110. [Google Scholar] [CrossRef]
- Hannon, A.C. Neutron Diffraction Techniques for Structural Studies of Glasses. In Modern Glass Characterization; Wiley: New York, NY, USA, 2015; pp. 158–240. ISBN 978-1-118-23086-2. [Google Scholar]
- Rocca, F. Structural Studies of Ionically Conductive Glasses by EXAFS. J. Phys. IV Proc. 1992, 02, C2-97–C2-106. [Google Scholar] [CrossRef]
- Mastelaro, V.; Zanotto, E. X-Ray Absorption Fine Structure (XAFS) Studies of Oxide Glasses—A 45-Year Overview. Materials 2018, 11, 204. [Google Scholar] [CrossRef]
- Varsamis, C.P.; Vegiri, A.; Kamitsos, E.I. A Molecular Dynamics Study of Li-Doped Borate Glasses. Condens. Matter Phys. 2001, 4, 119. [Google Scholar] [CrossRef]
- Varsamis, C.-P.E.; Vegiri, A.; Kamitsos, E.I. Molecular Dynamics Investigation of Lithium Borate Glasses: Local Structure and Ion Dynamics. Phys. Rev. B 2002, 65, 104203. [Google Scholar] [CrossRef]
- Vegiri, A.; Varsamis, C.-P.E.; Kamitsos, E.I. Composition and Temperature Dependence of Cesium-Borate Glasses by Molecular Dynamics. J. Chem. Phys. 2005, 123, 014508. [Google Scholar] [CrossRef]
- Sahu, P.; Pente, A.A.; Singh, M.D.; Chowdhri, I.A.; Sharma, K.; Goswami, M.; Ali, S.k.M.; Shenoy, K.T.; Mohan, S. Molecular Dynamics Simulation of Amorphous SiO2, B2 O3, Na2 O–SiO2, Na2 O–B2 O3, and Na2 O–B2 O3–SiO2 Glasses with Variable Compositions and with Cs2 O and SrO Dopants. J. Phys. Chem. B 2019, 123, 6290–6302. [Google Scholar] [CrossRef]
- Kato, T.; Lodesani, F.; Urata, S. Boron Coordination and Three-membered Ring Formation in Sodium Borate Glasses: A Machine-learning Molecular Dynamics Study. J. Am. Ceram. Soc. 2024, 107, 2888–2900. [Google Scholar] [CrossRef]
- Ohkubo, T.; Sasaki, S.; Masuno, A.; Tsuchida, E. Ab Initio Molecular Dynamics Study of Trivalent Rare Earth Rich Borate Glasses: Structural Insights and Formation Mechanisms. J. Phys. Chem. B 2024, 128, 11800–11813. [Google Scholar] [CrossRef]
- Ohkubo, T.; Urata, S.; Imamura, Y.; Taniguchi, T.; Ishioka, N.; Tanida, M.; Tsuchida, E.; Deng, L.; Du, J. Modeling the Structure and Dynamics of Lithium Borosilicate Glasses with Ab Initio Molecular Dynamics Simulations. J. Phys. Chem. C 2021, 125, 8080–8089. [Google Scholar] [CrossRef]
- Varsamis, C.P.E.; Makris, N.; Valvi, C.; Kamitsos, E.I. Short-Range Structure, the Role of Bismuth and Property–Structure Correlations in Bismuth Borate Glasses. Phys. Chem. Chem. Phys. 2021, 23, 10006–10020. [Google Scholar] [CrossRef]
- Topper, B.; Möncke, D.; Youngman, R.E.; Valvi, C.; Kamitsos, E.I.; Varsamis, C.P.E. Zinc Borate Glasses: Properties, Structure and Modelling of the Composition-Dependence of Borate Speciation. Phys. Chem. Chem. Phys. 2023, 25, 5967–5988. [Google Scholar] [CrossRef]
- Bajaj, A.; Khanna, A.; Chen, B.; Longstaffe, J.G.; Zwanziger, U.-W.; Zwanziger, J.W.; Gómez, Y.; González, F. Structural Investigation of Bismuth Borate Glasses and Crystalline Phases. J. Non-Cryst. Solids 2009, 355, 45–53. [Google Scholar] [CrossRef]
x | |||||
---|---|---|---|---|---|
0.20 | 0.250 | 0.330 | 0.420 | - | - |
0.30 | - | 0.408 | 0.306 | 0.286 | - |
0.40 | - | 0.430 | 0.140 | 0.430 |
SROC | |||||
---|---|---|---|---|---|
N ( | 0 | 0 | 0 | 1 | 0 |
M ( | 0 | 0 | 0.63 | 0 | 0.37 |
P ( | 0.43 | 0.14 | 0 | 0 | 0.43 |
SROC | |||||
---|---|---|---|---|---|
N (x = | 0 | 0 | 0 | 1 | 0 |
M (x = 0.25) | 0 | 0 | 0.63 | 0 | 0.37 |
0.3 (x = 0.3) | 0 | 0.29 | 0.30 | 0 | 0.41 |
P (x = 0.4 | 0.43 | 0.14 | 0 | 0 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valvi, C.; Varsamis, C.-P. Application and Extension of the Short-Range Order Configuration, SROC, Model in Bismuth Borate Glasses. Appl. Sci. 2025, 15, 8354. https://doi.org/10.3390/app15158354
Valvi C, Varsamis C-P. Application and Extension of the Short-Range Order Configuration, SROC, Model in Bismuth Borate Glasses. Applied Sciences. 2025; 15(15):8354. https://doi.org/10.3390/app15158354
Chicago/Turabian StyleValvi, Christina, and Christos-Platon Varsamis. 2025. "Application and Extension of the Short-Range Order Configuration, SROC, Model in Bismuth Borate Glasses" Applied Sciences 15, no. 15: 8354. https://doi.org/10.3390/app15158354
APA StyleValvi, C., & Varsamis, C.-P. (2025). Application and Extension of the Short-Range Order Configuration, SROC, Model in Bismuth Borate Glasses. Applied Sciences, 15(15), 8354. https://doi.org/10.3390/app15158354