Identification of Hexagonal Boron Nitride Thickness on SiO2/Si Substrates by Colorimetry and Contrast
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | two-dimensional |
hBN | haxagonal boron nitride |
TMD | transition metal dichalcogenide |
RGB | red-green-blue |
L | luminance |
NA | numerical aperture |
References
- Catellani, A.; Posternak, M.; Baldereschi, A.; Freeman, A.J. Bulk and surface electronic structure of hexagonal boron nitride. Phys. Rev. B 1987, 36, 6105. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Gong, Y.; Zhou, W.; Ma, L.; Yu, J.; Idrobo, J.C.; Jung, J.; MacDonald, A.H.; Vajtai, R.; Lou, J.; et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 2013, 4, 2541. [Google Scholar] [CrossRef] [PubMed]
- Li, L.H.; Cervenka, J.; Watanabe, K.; Taniguchi, T.; Chen, Y. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 2014, 8, 1457–1462. [Google Scholar] [CrossRef] [PubMed]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Mayorov, A.S.; Gorbachev, R.V.; Morozov, S.V.; Britnell, L.; Jalil, R.; Ponomarenko, L.A.; Blake, P.; Novoselov, K.S.; Watanabe, K.; Taniguchi, T.; et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 2011, 11, 2396–2399. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Wu, Z.; Han, Y.; Xu, S.; Wang, L.; Ye, W.; Han, T.; He, Y.; Cai, Y.; et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 2015, 6, 7315. [Google Scholar] [CrossRef]
- Cadiz, F.; Courtade, E.; Robert, C.; Wang, G.; Shen, Y.; Cai, H.; Taniguchi, T.; Watanabe, K.; Carrere, H.; Lagarde, D.; et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 2017, 7, 021026. [Google Scholar] [CrossRef]
- Ajayi, O.A.; Ardelean, J.V.; Shepard, G.D.; Wang, J.; Antony, A.; Taniguchi, T.; Watanabe, K.; Heinz, T.F.; Strauf, S.; Zhu, X.; et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater. 2017, 4, 031011. [Google Scholar] [CrossRef]
- Stier, A.V.; Wilson, N.P.; Velizhanin, K.A.; Kono, J.; Xu, X.; Crooker, S.A. Magnetooptics of Exciton Rydberg States in a Monolayer Semiconductor. Phys. Rev. Lett. 2018, 120, 057405. [Google Scholar] [CrossRef] [PubMed]
- Raja, A.; Waldecker, L.; Zipfel, J.; Cho, Y.; Brem, S.; Ziegler, J.D.; Kulig, M.; Taniguchi, T.; Watanabe, K.; Malic, E.; et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 2019, 14, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Slobodeniuk, A.O.; Molas, M.R. Exciton spectrum in atomically thin monolayers: The role of hBN encapsulation. Phys. Rev. B 2023, 108, 035427. [Google Scholar] [CrossRef]
- Arora, H.; Jung, Y.; Venanzi, T.; Watanabe, K.; Taniguchi, T.; Hübner, R.; Schneider, H.; Helm, M.; Honer, J.C.; Erbe, A. Effective Hexagonal Boron Nitride Passivation of Few-Layered InSe and GaSe to Enhance Their Electronic and Optical Properties. ACS Appl. Mater. Interfaces 2019, 11, 43480. [Google Scholar] [CrossRef] [PubMed]
- Yue, D.; Rong, X.; Han, S.; Cao, P.; Zeng, Y.; Xu, W.; Fang, M.; Liu, W.; Zhu, D.; Lu, Y. High Photoresponse Black Phosphorus TFTs Capping with Transparent Hexagonal Boron Nitride. Membranes 2021, 11, 952. [Google Scholar] [CrossRef] [PubMed]
- Seitz, M.; Gant, P.; Castellanos-Gomez, A.; Prins, F. Long-Term Stabilization of Two-Dimensional Perovskites by Encapsulation with Hexagonal Boron Nitride. Nanomaterials 2019, 9, 1120. [Google Scholar] [CrossRef] [PubMed]
- Petrone, N.; Meric, T.C.; Wang, L.; Shepard, K.L.; Hone, J. Flexible Graphene Field-Effect Transistors Encapsulated in Hexagonal Boron Nitride. Nano Lett. 2015, 9, 8953. [Google Scholar] [CrossRef]
- Martini, L.; Mišeikis, V.; Esteban, D.; Azpeitia, J.; Pezzini, S.; Paletti, P.; Ochapski, M.W.; Convertino, D.; Hernandez, M.G.; Jimenez, I.; et al. Scalable High-Mobility Graphene/hBN Heterostructures. ACS Appl. Mater. Interfaces 2023, 15, 37794. [Google Scholar] [CrossRef]
- Wierzbowski, J.; Klein, J.; Sigger, F.; Straubinger, C.; Kremser, M.; Taniguchi, T.; Watanabe, K.; Wurstbauer, U.; Holleitner, A.W.; Kaniber, M.; et al. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit. Sci. Rep. 2017, 7, 12383. [Google Scholar] [CrossRef]
- Fang, H.; Han, B.; Robert, C.; Semina, M.; Lagarde, D.; Courtade, E.; Taniguchi, T.; Watanabe, K.; Amand, T.; Urbaszek, B.; et al. Control of the Exciton Radiative Lifetime in van der Waals heterostructures. Phys. Rev. Lett. 2019, 123, 067401. [Google Scholar] [CrossRef]
- Cianci, S.; Blundo, E.; Tuzi, F.; Pettinari, G.; Olkowska-Pucko, K.; Parmenopoulou, E.; Peeters, D.B.; Miriametro, A.; Taniguchi, T.; Watanabe, K.; et al. Spatially Controlled Single Photon Emitters in hBN-Capped WS2 Domes. Adv. Optical Mater. 2023, 11, 2202953. [Google Scholar] [CrossRef]
- Blundo, E.; Tuzi, F.; Cuccu, M.; Fiorentin, M.R.; Pettinari, G.; Patra, A.; Cianci, S.; Kudrynskyi, Z.R.; Felici, M.; Taniguchi, T.; et al. Giant Light Emission Enhancement in Strain-Engineered InSe/MS2 (M = Mo or W) van der Waals Heterostructures. Nano Lett. 2025, 25, 3375. [Google Scholar] [CrossRef]
- Falin, A.; Cai, Q.; Santos, E.J.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S.; Watanabe, K.; Taniguchi, T.; et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 2017, 8, 15815. [Google Scholar] [CrossRef]
- Wang, G.; Dai, Z.; Xiao, J.; Feng, S.; Weng, C.; Liu, L.; Xu, Z.; Huang, R.; Zhang, Z. Bending of multilayer van der Waals materials. Phys. Rev. Lett. 2019, 123, 116101. [Google Scholar] [CrossRef] [PubMed]
- Blundo, E.; Surrente, A.; Spirito, D.; Pettinari, G.; Yildirim, T.; Chavarin, C.A.; Baldassarre, L.; Felici, M.; Polimeni, A. Vibrational properties in highly strained hexagonal boron nitride bubbles. Nano Lett. 2022, 22, 1525. [Google Scholar] [CrossRef]
- Cianci, S.; Blundo, E.; Felici, M.; Polimeni, A.; Pettinari, G. Tailoring the optical properties of 2D transition metal dichalcogenides by strain. Opt. Mater. 2022, 125, 112087. [Google Scholar] [CrossRef]
- Shandilya, P.K.; Fröch, J.E.; Mitchell, M.; Lake, D.P.; Kim, S.; Toth, M.; Behera, B.; Healey, C.; Aharonovich, I.; Barclay, P.E. Hexagonal boron nitride cavity optomechanics. Nano Lett. 2019, 19, 1343–1350. [Google Scholar] [CrossRef]
- Dai, S.; Fei, Z.; Ma, Q.; Rodin, A.; Wagner, M.; McLeod, A.; Liu, M.; Gannett, W.; Regan, W.; Watanabe, K.; et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 2014, 343, 1125–1129. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.D.; Kretinin, A.V.; Chen, Y.; Giannini, V.; Fogler, M.M.; Francescato, Y.; Ellis, C.T.; Tischler, J.G.; Woods, C.R.; Giles, A.J.; et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 2014, 5, 5221. [Google Scholar] [CrossRef]
- Duan, J.; Chen, R.; Li, J.; Jin, K.; Sun, Z.; Chen, J. Launching phonon polaritons by natural boron nitride wrinkles with modifiable dispersion by dielectric environments. Adv. Mater. 2017, 29, 1702494. [Google Scholar] [CrossRef]
- Tran, T.T.; Bray, K.; Ford, M.J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37–41. [Google Scholar] [CrossRef]
- Tran, T.T.; Elbadawi, C.; Totonjian, D.; Lobo, C.J.; Grosso, G.; Moon, H.; Englund, D.R.; Ford, M.J.; Aharonovich, I.; Toth, M. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano 2016, 10, 7331–7338. [Google Scholar] [CrossRef] [PubMed]
- Bourrellier, R.; Meuret, S.; Tararan, A.; Stéphan, O.; Kociak, M.; Tizei, L.H.; Zobelli, A. Bright UV single photon emission at point defects in h-BN. Nano Lett. 2016, 16, 4317–4321. [Google Scholar] [CrossRef] [PubMed]
- Vogl, T.; Lu, Y.; Lam, P.K. Room temperature single photon source using fiber-integrated hexagonal boron nitride. J. Phys. D Appl. Phys. 2017, 50, 295101. [Google Scholar] [CrossRef]
- Fournier, C.; Plaud, A.; Roux, S.; Pierret, A.; Rosticher, M.; Watanabe, K.W.; Taniguchi, T.; Buil, S.; Quélin, X.; Barjon, J.; et al. Position-controlled quantum emitters with reproducible emission wavelength in hexagonal boron nitride. Nat. Commun. 2021, 12, 3779. [Google Scholar] [CrossRef]
- Montblanch, A.R.P.; Barbone, M.; Aharonovich, I.; Atatüre, M.; Ferrari, A.C. Layered materials as a platform for quantum technologies. Nat. Nanotechnol. 2023, 18, 555. [Google Scholar] [CrossRef]
- Jungwirth, N.R.; Calderon, B.; Ji, Y.; Spencer, M.G.; Flatté, M.E.; Fuchs, G.D. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett. 2016, 16, 6052. [Google Scholar] [CrossRef]
- Qian, C.; Villafañe, V.; Schalk, M.; Astakhov, G.V.; Kentsch, U.; Helm, M.; Soubelet, P.; Wilson, N.P.; Rizzato, R.; Mohr, S.; et al. Unveiling the Zero-Phonon Line of the Boron Vacancy Center by Cavity-Enhanced Emission. Nano Lett. 2022, 22, 5137. [Google Scholar] [CrossRef]
- Qian, C.; Villafañe, V.; Petrić, M.M.; Soubelet, P.; Stier, A.V.; Finley, J.J. Coupling of MoS2 Excitons with Lattice Phonons and Cavity Vibrational Phonons in Hybrid Nanobeam Cavities. Phys. Rev. Lett. 2023, 130, 126901. [Google Scholar] [CrossRef]
- Gottscholl, A.; Kianinia, M.; Soltamov, V.; Orlinskii, S.; Mamin, G.; Bradac, C.; Kasper, C.; Krambrock, K.; Sperlich, A.; Toth, M.; et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 2020, 19, 540. [Google Scholar] [CrossRef]
- Stern, H.L.; Gu, Q.; Jarman, J.; Barker, S.E.; Mendelson, N.; Chugh, D.; Schott, S.; Tan, H.H.; Sirringhaus, H.; Aharonovich, I.; et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 2022, 13, 618. [Google Scholar] [CrossRef]
- Rizzato, R.; Schalk, M.; Mohr, S.; Hermann, J.C.; Leibold, J.P.; Bruckmaier, F.; Salvitti, G.; Qian, C.; Ji, P.; Astakhov, G.V.; et al. Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing. Nat. Commun. 2023, 14, 5089. [Google Scholar] [CrossRef]
- Blundo, E.; Polimeni, A. Alice (and Bob) in Flatland. Nano Lett. 2024, 24, 9777. [Google Scholar] [CrossRef]
- Mhenni, A.B.; Kadow, W.; Metelski, M.; Paulus, A.O.; Dijkstra, A.; Watanabe, K.; Taniguchi, T.; Tongay, S.A.; Barbone, M.; Finley, J.J.; et al. Gate-tunable Bose-Fermi mixture in a strongly correlated moiré bilayer electron system. arXiv 2024, arXiv:2410.07308. [Google Scholar]
- Xu, Y.; Liu, S.; Rhodes, D.A.; Watanabe, K.; Taniguchi, T.; Hone, J.; Elser, V.; Mak, K.F.; Shan, J. Correlated insulating states at fractional fillings of moiré superlattices. Nature 2020, 587, 214. [Google Scholar] [CrossRef]
- Mahdikhanysarvejahany, F.; Shanks, D.N.; Klein, M.; Wang, Q.; Koehler, M.R.; Mandrus, D.G.; Taniguchi, T.; Watanabe, K.; Monti, O.L.; Leroy, B.J.; et al. Localized Interlayer Excitons in MoSe2/WSe2 Heterostructures without a moiré Potential. Nat. Commun. 2022, 13, 5354. [Google Scholar] [CrossRef]
- Britnell, L.; Gorbachev, R.V.; Jalil, R.; Belle, B.D.; Schedin, F.; Katsnelson, M.I.; Eaves, L.; Morozov, S.V.; Mayorov, A.S.; Peres, N.M.R.; et al. Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers. Nano Lett. 2012, 12, 1707. [Google Scholar] [CrossRef] [PubMed]
- Ghiasi, T.S.; Quereda, J.; van Wees, B.J. Bilayer h-BN barriers for tunneling contacts in fully-encapsulated monolayer MoSe2 field-effect transistors. 2D Mater. 2019, 6, 015002. [Google Scholar] [CrossRef]
- Cheng, R.; Wang, F.; Yin, L.; Xu, K.; Shifa, T.A.; Wen, Y.; Zhan, X.; Li, J.; Jiang, C.; Wang, Z.; et al. Multifunctional tunneling devices based on graphene/h-BN/MoSe2 van der Waals heterostructures. Appl. Phys. Lett. 2017, 110, 173507. [Google Scholar] [CrossRef]
- Cheng, R.; Wang, F.; Yin, L.; Wang, Z.; Wen, Y.; Shifa, T.A.; He, J. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron. 2018, 1, 356. [Google Scholar] [CrossRef]
- Blake, P.; Hill, E.W.; Neto, A.H.C.; Novoselov, K.S.; Jiang, D.; Yang, R.; Booth, T.J.; Geim, A.K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124. [Google Scholar] [CrossRef]
- Ni, Z.H.; Wang, H.M.; Kasim, J.; Fan, H.M.; Yu, T.; Wu, Y.H.; Feng, Y.P.; Shen, Z.X. Graphene Thickness Determination Using Reflection and Contrast Spectroscopy. Nano Lett. 2007, 7, 2758. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, J.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Xiong, Q.; Zhang, H. Rapid and Reliable Thickness Identification of Two-Dimensional Nanosheets Using Optical Microscopy. ACS Nano 2013, 7, 10344. [Google Scholar] [CrossRef]
- Müller, M.R.; Gumprich, A.; Ecik, E.; Kallis, K.T.; Winkler, F.; Kardynal, B.; Petrov, I.; Kunze, U.; Knoch, J. Visibility of two-dimensional layered materials on various substrates. J. Appl. Phys. 2015, 118, 145305. [Google Scholar] [CrossRef]
- Cartamil-Bueno, S.J.; Steeneken, P.G.; Centeno, A.; Zurutuza, A.; van der Zant, H.S.J.; Houri, S. Colorimetry Technique for Scalable Characterization of Suspended Graphene. J. Appl. Phys. 2016, 16, 6792. [Google Scholar] [CrossRef]
- Puebla, S.; Li, H.; Zhang, H.; Castellanos-Gomez, A. Apparent Colors of 2D Materials. Adv. Photonics Res. 2022, 3, 2100221. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Y.; Wan, Y.; Rong, X.; Xie, Z.; Wang, W.; Dai, L. Measuring the Refractive Index of Highly Crystalline Monolayer MoS2 with High Confidence. Sci. Rep. 2015, 5, 8440. [Google Scholar] [CrossRef] [PubMed]
- Felton, J.; Blundo, E.; Kudrynskyi, Z.; Ling, S.; Bradford, J.; Pettinari, G.; Cooper, T.; Wadge, M.; Kovalyuk, Z.; Polimeni, A.; et al. Hydrogen-Induced Conversion of SnS2 into SnS or Sn: A Route to Create SnS2/SnS Heterostructures. Small 2022, 18, 2202661. [Google Scholar] [CrossRef] [PubMed]
- Evans, B.L.; Young, P.A. Optical absorption and dispersion in molybdenum disulphide. Proc. R. Soc. Lond. Ser. A 1965, 284, 402. [Google Scholar]
- Anzai, Y.; Yamamoto1, M.; Genchi, S.; Watanabe, K.; Taniguchi, T.; Ichikawa, S.; Fujiwara, Y.; Tanaka, H. Broad range thickness identification of hexagonal boron nitride by colors. Appl. Phys. Express 2019, 12, 055007. [Google Scholar] [CrossRef]
- Krecmarová, M.; Andres-Penares, D.; Fekete, L.; Ashcheulov, P.; Molina-Sánchez, A.; Canet-Albiach, R.; Gregora, I.; Mortet, V.; Martínez-Pastor, J.P.; Sánchez-Royo, J.F. Optical Contrast and Raman Spectroscopy Techniques Applied to Few-Layer 2D Hexagonal Boron Nitride. Nanomaterials 2019, 9, 1047. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Kim, M.; Hussain, M.; Akhtar, I.; Naqvi, B.A.; Shehzad, M.A.; Nguyen, V.H.; Jung, J.; Seo, Y. Visibility of hexagonal boron nitride on transparent substrates. Nanotechnology 2020, 31, 195701. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, V.; Xie, Y.; Zheng, X.Q.; Feng, P.X.L. Optical contrast signatures of hexagonal boron nitride on a device platform. Opt. Mater. Express. 2019, 9, 1223. [Google Scholar] [CrossRef]
- Gorbachev, R.V.; Riaz, I.; Nair, R.R.; Jalil, R.; Britnell, L.; Belle, B.D.; Hill, E.W.; Novoselov, K.S.; Watanabe, K.; Taniguchi, T.; et al. Hunting for Monolayer Boron Nitride: Optical and Raman Signatures. Small 2011, 7, 465. [Google Scholar] [CrossRef]
- Zhang, T.; Qiao, S.; Xue, H.; Wang, Z.; Yao, C.; Wang, X.; Feng, K.; Li, L.J.; Ki, D.K. Accurate Layer-Number Determination of Hexagonal Boron Nitride Using Optical Characterization. Nano Lett. 2024, 24, 14774. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.L.; Zhang, X.; Wu, J.B.; Tan, P.H. Optical contrast determination of the thickness of SiO2 film on Si substrate partially covered by two-dimensional crystal flakes. Sci. Bull. 2015, 60, 806. [Google Scholar] [CrossRef]
- Kats, M.A.; Byrnes, S.J.; Blanchard, R.; Kolle, M.; Genevet, P.; Aizenberg, J.; Capasso, F. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings. Appl. Phys. Lett. 2013, 103, 101104. [Google Scholar] [CrossRef]
- Kanematsu, T.; Koida, K. Large enhancement of simultaneous color contrast by white flanking contours. Sci. Rep. 2020, 10, 20136. [Google Scholar] [CrossRef]
- Sinha, A.; Soman, A.; Das, U.; Hegedus, S.; Gupta, M.C. Nanosecond Pulsed Laser Patterning of Interdigitated Back Contact Heterojunction Silicon Solar Cells. IEEE J. Photovolt. 2020, 10, 1648. [Google Scholar] [CrossRef]
- Saravanan, C. Color Image to Grayscale Image Conversion. Int. Conf. Comput. Eng. Appl. 2010, 2, 196. [Google Scholar]
hBN Thickness | Optimum SiO2 Thickness | Second Choice SiO2 Thickness |
---|---|---|
0–10 nm | 70 nm | 280 nm |
10–40 nm | 90 nm | 297 nm |
40–50 nm | 271 nm | 70 nm, 280 nm, (90 nm, 297 nm) |
50–65 nm | 280 nm | (90 nm, 297 nm) |
65–100 nm | 297 nm | (90 nm, 271 nm, 70 nm) |
100–115 nm | 70 nm | (90 nm, 280 nm) |
115–128 nm | 90 nm | 280 nm |
128–137 nm | 70 nm | 150 nm, 280 nm, (90 nm) |
137–141 nm | 150 nm | 280 nm, (90 nm) |
141–150 nm | 90 nm | (280 nm) |
150–155 nm | (90 nm) | (280 nm) |
155–180 nm | 90 nm | (280 nm) |
180–200 nm | 70 nm | (90 nm, 280 nm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blundo, E.; Schmidt, N.H.T.; Stier, A.V.; Finley, J.J. Identification of Hexagonal Boron Nitride Thickness on SiO2/Si Substrates by Colorimetry and Contrast. Appl. Sci. 2025, 15, 8400. https://doi.org/10.3390/app15158400
Blundo E, Schmidt NHT, Stier AV, Finley JJ. Identification of Hexagonal Boron Nitride Thickness on SiO2/Si Substrates by Colorimetry and Contrast. Applied Sciences. 2025; 15(15):8400. https://doi.org/10.3390/app15158400
Chicago/Turabian StyleBlundo, Elena, Niklas H. T. Schmidt, Andreas V. Stier, and Jonathan J. Finley. 2025. "Identification of Hexagonal Boron Nitride Thickness on SiO2/Si Substrates by Colorimetry and Contrast" Applied Sciences 15, no. 15: 8400. https://doi.org/10.3390/app15158400
APA StyleBlundo, E., Schmidt, N. H. T., Stier, A. V., & Finley, J. J. (2025). Identification of Hexagonal Boron Nitride Thickness on SiO2/Si Substrates by Colorimetry and Contrast. Applied Sciences, 15(15), 8400. https://doi.org/10.3390/app15158400