Leveraging IGOOSE-XGBoost for the Early Detection of Subclinical Mastitis in Dairy Cows
Abstract
1. Introduction
1.1. Background
1.2. Methodological Approach
1.3. Paper Structure
2. Relevant Methods and Theories
2.1. XGBoost Model
2.2. GOOSE Optimization Algorithm
3. Improved GOOSE Optimization Algorithm (IGOOSE)
3.1. Elite Opposition-Based Learning Strategy (EOBL)
3.2. Adaptive Nonlinear Control Parameter
3.3. Golden Sine Strategy
3.4. Algorithm Flow Chart
4. Performance Testing and Comparison
5. Prediction Model for Subclinical Mastitis in Dairy Cows Based on IGOOSE-XGboost
5.1. Data Processing
5.2. Building the IGOOSE-XGBoost Classification Model
5.2.1. Evaluation Metrics for Classification Models
5.2.2. Building an IGOOSE-XGBoost Classification Model for Subclinical Mastitis in Dairy Cows
5.3. Building the IGOOSE-XGBoost Regression Model for Subclinical Mastitis in Dairy Cows
5.3.1. Correlation Analysis
5.3.2. Evaluation Indicators for Regression Models
5.3.3. Building the IGOOSE-XGBoost Regression Model
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vargová, M.; Zigo, F.; Výrostková, J.; Farkašová, Z.; Rehan, I.F. Biofilm-Producing Ability of Staphylococcus Aureus Obtained from Surfaces and Milk of Mastitic Cows. Vet. Sci. 2023, 10, 386. [Google Scholar] [CrossRef]
- Kerro Dego, O.; Vidlund, J. Staphylococcal Mastitis in Dairy Cows. Front. Vet. Sci. 2024, 11, 1356259. [Google Scholar] [CrossRef] [PubMed]
- Sahu, C.; Manimaran, A.; Kumaresan, A.; Rajendran, D.; Sivaram, M. Role of Trisodium Citrate and Nanominerals in Mastitis Management in Dairy Animals: A Review. Agric. Rev. 2025, 46, 272–279. [Google Scholar] [CrossRef]
- Deshapriya, R.M.C.; Rahularaj, R.; Ranasinghe, R. Mastitis, Somatic Cell Count and Milk Quality: An Overview. Sri Lanka Vet. J. 2019, 66, 1–12. [Google Scholar] [CrossRef]
- Hisira, V.; Zigo, F.; Kadaši, M.; Klein, R.; Farkašová, Z.; Vargová, M.; Mudroň, P. Comparative Analysis of Methods for Somatic Cell Counting in Cow’s Milk and Relationship between Somatic Cell Count and Occurrence of Intramammary Bacteria. Vet. Sci. 2023, 10, 468. [Google Scholar] [CrossRef] [PubMed]
- Mammadova, N.; Keskin, İ. Application of the Support Vector Machine to Predict Subclinical Mastitis in Dairy Cattle. Sci. World J. 2013, 2013, 603897. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, R.; Wang, N.; Zhang, J.; Xiao, B.; Huang, F.; Chen, A. Milk Somatic Cell Count: From Conventional Microscope Method to New Biosensor-Based Method. Trends Food Sci. Technol. 2023, 135, 102–114. [Google Scholar] [CrossRef]
- Bobbo, T.; Matera, R.; Pedota, G.; Manunza, A.; Cotticelli, A.; Neglia, G.; Biffani, S. Exploiting Machine Learning Methods with Monthly Routine Milk Recording Data and Climatic Information to Predict Subclinical Mastitis in Italian Mediterranean Buffaloes. J. Dairy Sci. 2023, 106, 1942–1952. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, Y.; Liu, H. Feature Selection of Recessive Mastitis in Dairy Cows Based on Improved Moth-Flame Optimization Algorithm. Heilongjiang Anim. Husb. Vet. Med. 2024, 66, 8–16. [Google Scholar]
- Satoła, A.; Satoła, K. Performance Comparison of Machine Learning Models Used for Predicting Subclinical Mastitis in Dairy Cows: Bagging, Boosting, Stacking, and Super-Learner Ensembles versus Single Machine Learning Models. J. Dairy Sci. 2024, 107, 3959–3972. [Google Scholar] [CrossRef]
- Sheik, A.G.; Malla, M.A.; Srungavarapu, C.S.; Patan, A.K.; Kumari, S.; Bux, F. Prediction of Wastewater Quality Parameters Using Adaptive and Machine Learning Models: A South African Case Study. J. Water Process Eng. 2024, 67, 106185. [Google Scholar] [CrossRef]
- Khalil, M.; AlSayed, A.; Liu, Y.; Vanrolleghem, P.A. An Integrated Feature Selection and Hyperparameter Optimization Algorithm for Balanced Machine Learning Models Predicting N2O Emissions from Wastewater Treatment Plants. J. Water Process Eng. 2024, 63, 105512. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, K.; Liu, Z.; Ma, T.; Luo, R.; Chen, H.; Wang, X.; Ge, W.; Sun, H. Prediction and Explanation of Debris Flow Velocity Based on Multi-Strategy Fusion Stacking Ensemble Learning Model. J. Hydrol. 2024, 638, 131347. [Google Scholar] [CrossRef]
- Kwakye, B.D.; Li, Y.; Mohamed, H.H.; Baidoo, E.; Asenso, T.Q. Particle Guided Metaheuristic Algorithm for Global Optimization and Feature Selection Problems. Expert Syst. Appl. 2024, 248, 123362. [Google Scholar] [CrossRef]
- Hamad, R.K.; Rashid, T.A. GOOSE Algorithm: A Powerful Optimization Tool for Real-World Engineering Challenges and Beyond. Evol. Syst. 2024, 15, 1249–1274. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. Dung Beetle Optimizer: A New Meta-Heuristic Algorithm for Global Optimization. J. Supercomput. 2023, 79, 7305–7336. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New Metaheuristic Algorithm for Solving Optimization Problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Niu, Y.; He, K.; Wang, Y. A Grey Wolf Optimizer Combined with Artificial Fish Swarm Algorithm for Engineering Design Problems. Ain Shams Eng. J. 2024, 15, 102797. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris Hawks Optimization: Algorithm and Applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Sun, K.; Huo, J.; Jia, H.; Liu, Q.; Yang, J.; Cai, C. Nonlinear Optimization of Optical Camera Multiparameter via Triple Integrated Gradient-Based Optimizer Algorithm. Opt. Laser Technol. 2024, 179, 111294. [Google Scholar] [CrossRef]
- Costache, R.; Arabameri, A.; Moayedi, H.; Pham, Q.B.; Santosh, M.; Nguyen, H.; Pandey, M.; Pham, B.T. Flash-Flood Potential Index Estimation Using Fuzzy Logic Combined with Deep Learning Neural Network, Naïve Bayes, XGBoost and Classification and Regression Tree. Geocarto Int. 2022, 37, 6780–6807. [Google Scholar] [CrossRef]
- Joe, H.; Kim, H.-G. Multi-Label Classification with XGBoost for Metabolic Pathway Prediction. BMC Bioinform. 2024, 25, 52. [Google Scholar] [CrossRef]
- Meng, W.; Meng, X.; Wang, J.; Li, G.; Liu, B.; Kan, G.; Lu, J.; Zhao, L.; Zhi, P. Prediction of the Shear Wave Speed of Seafloor Sediments in the Northern South China Sea Based on an XGBoost Algorithm. Front. Mar. Sci. 2024, 11, 1307768. [Google Scholar] [CrossRef]
- Fu, J.; Wu, C.; Wang, J.; Haque, M.M.; Geng, L.; Meng, J. Lithium-Ion Battery SOH Prediction Based on VMD-PE and Improved DBO Optimized Temporal Convolutional Network Model. J. Energy Storage 2024, 87, 111392. [Google Scholar] [CrossRef]
- Han, X.; Gao, M.; Shen, W.; Liu, H.; Dai, B.; He, Y.; Liu, H. A Framework for Generating Anomaly Analysis Comments in DHI Interpretation Report. Comput. Electron. Agric. 2023, 214, 108331. [Google Scholar] [CrossRef]
- De Oliveira Padilha, D.A.; Evangelista, A.F.; Valloto, A.A.; Zadra, L.E.F.; De Almeida, R.; De Almeida Teixeira, R.; Dias, L.T. Genetic Association between Fat-to-Protein Ratio and Traits of Economic Interest in Early Lactation Holstein Cows in Brazil. Trop. Anim. Health Prod. 2024, 56, 90. [Google Scholar] [CrossRef]
- YE, W.; MA, Z.; YU, Y.; HAN, B. Incidence Status of Mastitis in Dairy Cows and Its Prevention and Treatment Measures in China. Chin. J. Anim. Sci. 2023, 59, 343–348. [Google Scholar]
- Chen, R.; Wang, Z.; Yang, Z.; Zhu, X.; Ji, D.; Mao, Y. Association of IL8 -105G/A with Mastitis Somatic Cell Score in Chinese Holstein Dairy Cows. Anim. Biotechnol. 2015, 26, 143–147. [Google Scholar] [CrossRef]
- Carvalho-Sombra, T.C.F.; Fernandes, D.D.; Bezerra, B.M.O.; Nunes-Pinheiro, D.C.S. Systemic Inflammatory Biomarkers and Somatic Cell Count in Dairy Cows with Subclinical Mastitis. Vet. Anim. Sci. 2021, 11, 100165. [Google Scholar] [CrossRef]
- Karthik, A.; Hamatta, H.S.A.; Patthi, S.; Krubakaran, C.; Kumar Pradhan, A.; Rachapudi, V.; Shuaib, M.; Rajaram, A. Ensemble-Based Multimodal Medical Imaging Fusion for Tumor Segmentation. Biomed. Signal Process. Control 2024, 96, 106550. [Google Scholar] [CrossRef]
- Amiri, M.H.; Mehrabi Hashjin, N.; Montazeri, M.; Mirjalili, S.; Khodadadi, N. Hippopotamus Optimization Algorithm: A Novel Nature-Inspired Optimization Algorithm. Sci. Rep. 2024, 14, 5032. [Google Scholar] [CrossRef]
- Shohag, M.J.I.; Tian, S.; Sriti, N.; Liu, G. Enhancing Bok Choy Growth through Synergistic Effects of Hydrogel and Different Nitrogen Fertilizer Forms. Sci. Hortic. 2024, 336, 113400. [Google Scholar] [CrossRef]
- Che, Z.; Peng, C. Improving Support Vector Regression for Predicting Mechanical Properties in Low-Alloy Steel and Comparative Analysis. Mathematics 2024, 12, 1153. [Google Scholar] [CrossRef]
- Yang, J.; Kuang, J.; Wang, G.; Zhang, Q.; Liu, Y.; Liu, Q.; Xia, D.; Li, S.; Wang, X.; Wu, D. Adaptive Three-Way KNN Classifier Using Density-Based Granular Balls. Inf. Sci. 2024, 678, 120858. [Google Scholar] [CrossRef]
- Han, R. Application of Inertial Navigation High Precision Positioning System Based on SVM Optimization. Syst. Soft Comput. 2024, 6, 200105. [Google Scholar] [CrossRef]
- Wang, L.; Chi, J.; Ding, Y.; Yao, H.; Guo, Q.; Yang, H. Transformer Fault Diagnosis Method Based on SMOTE and NGO-GBDT. Sci. Rep. 2024, 14, 7179. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Chen, Z.; Francis, A.; Li, S.; Liao, B.; Xiao, D.; Ha, T.; Li, J.; Ding, L.; Cao, X. Egret Swarm Optimization Algorithm: An Evolutionary Computation Approach for Model Free Optimization. Biomimetics 2022, 7, 144. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Mohammadi-Dehcheshmeh, M.; Ebrahimie, E.; Petrovski, K.R. Comprehensive Analysis of Machine Learning Models for Prediction of Sub-Clinical Mastitis: Deep Learning and Gradient-Boosted Trees Outperform Other Models. Comput. Biol. Med. 2019, 114, 103456. [Google Scholar] [CrossRef]
- Fadul-Pacheco, L.; Delgado, H.; Cabrera, V.E. Exploring Machine Learning Algorithms for Early Prediction of Clinical Mastitis. Int. Dairy J. 2021, 119, 105051. [Google Scholar] [CrossRef]
No. | Function | Fmin | |
---|---|---|---|
Unimodal Function | 1 | Shifted and full Rotated Zakharoy Function | 300 |
Basic Functions | 2 | Shifted and full Rotated Rosenbrock’s Function | 400 |
3 | Shifted and full Rotated Expanded Schaffer’s F6 Function | 600 | |
4 | Shifted and full Rotated Non-Continuous Rastrigin’s Function | 800 | |
5 | Shifted and full Rotated Levy Function | 900 | |
Hybrid Functions | 6 | Hybrid Function 1 (N = 3) | 1800 |
7 | Hybrid Function 2 (N = 6) | 2000 | |
8 | Hybrid Function 3 (N = 5) | 2200 | |
Composition Functions | 9 | Composition Function 1 (N = 5) | 2300 |
10 | Composition Function 1 (N = 5) | 2400 | |
11 | Composition Function 1 (N = 5) | 2600 | |
12 | Composition Function 1 (N = 5) | 2700 | |
Search range: [−100, 100] D |
Function | Evaluation Criterion | DBO | HBA | GWO | HHO | GOOSE | IGOOSE |
---|---|---|---|---|---|---|---|
F1 | std | 3.23 × 102 | 2.10 × 106 | 1.57 × 102 | 1.24 × 101 | 5.70 × 10−5 | 8.45 × 10−5 |
avg | 4.49 × 102 | 3.50 × 102 | 3.60 × 102 | 3.51 × 102 | 3.45 × 102 | 3.00 × 102 | |
F2 | std | 3.17 × 101 | 1.29 × 101 | 2.41 × 101 | 6.19 × 101 | 1.32 × 101 | 2.56 × 101 |
avg | 4.27 × 102 | 4.07 × 102 | 4.28 × 102 | 4.58 × 102 | 4.08 × 102 | 4.17 × 102 | |
F3 | std | 6.96 × 101 | 1.05 × 101 | 1.06 × 101 | 1.06 × 101 | 1.15 × 101 | 1.90 × 101 |
avg | 6.09 × 102 | 6.00 × 102 | 6.01 × 102 | 6.19 × 102 | 6.62 × 102 | 6.02 × 102 | |
F4 | std | 1.03 × 101 | 7.90 × 10 | 7.17 × 10 | 7.84 × 10 | 2.05 × 101 | 3.56 × 101 |
avg | 8.31 × 102 | 8.19 × 102 | 8.17 × 102 | 8.27 × 102 | 8.48 × 102 | 8.00 × 102 | |
F5 | std | 1.19 × 102 | 4.50 × 101 | 2.69 × 101 | 1.23 × 102 | 5.14 × 102 | 2.50 × 102 |
avg | 9.97 × 102 | 9.23 × 102 | 9.19 × 102 | 1.38 × 103 | 2.04 × 103 | 1.27 × 103 | |
F6 | std | 2.05 × 103 | 2.16 × 103 | 2.34 × 103 | 2.68 × 103 | 1.99 × 103 | 1.82 × 103 |
avg | 5.10 × 103 | 5.63 × 103 | 5.11 × 103 | 5.84 × 103 | 5.72 × 103 | 5.08 × 103 | |
F7 | std | 1.19 × 101 | 6.20 × 101 | 2.35 × 101 | 3.46 × 101 | 5.92 × 101 | 1.35 × 101 |
avg | 2.03 × 103 | 2.02 × 103 | 2.03 × 103 | 2.07 × 103 | 2.14 × 103 | 2.03 × 103 | |
F8 | std | 7.92 × 101 | 3.03 × 101 | 5.84 × 101 | 1.24 × 101 | 1.31 × 102 | 1.09 × 101 |
avg | 2.23 × 103 | 2.23 × 103 | 2.22 × 103 | 2.23 × 103 | 2.43 × 103 | 2.22 × 103 | |
F9 | std | 1.03 × 101 | 2.68 × 101 | 4.32 × 101 | 3.39 × 101 | 4.62 × 101 | 1.73 × 101 |
avg | 2.54 × 103 | 2.54 × 103 | 2.58 × 103 | 2.57 × 103 | 2.56 × 103 | 2.44 × 103 | |
F10 | std | 6.22 × 101 | 5.71 × 101 | 6.87 × 101 | 1.18 × 102 | 6.41 × 102 | 1.60 × 101 |
avg | 2.40 × 103 | 2.40 × 103 | 2.50 × 103 | 2.42 × 103 | 2.51 × 103 | 2.40 × 103 | |
F11 | std | 1.21 × 102 | 1.25 × 102 | 1.18 × 102 | 3.04 × 102 | 3.46 × 102 | 6.65 × 101 |
avg | 2.71 × 103 | 2.67 × 103 | 2.96 × 103 | 2.93 × 103 | 3.68 × 103 | 2.65 × 103 | |
F12 | std | 1.42 × 101 | 3.13 × 101 | 1.24 × 101 | 4.42 × 101 | 8.63 × 101 | 2.88 × 101 |
avg | 2.87 × 103 | 2.88 × 103 | 2.91 × 103 | 2.94 × 103 | 2.91 × 103 | 2.77 × 103 |
No. | Variable | Mean | Standard Deviation |
---|---|---|---|
x1 | Parity | 1.1 | 0.37 |
x2 | Lactation Persistence | 101.38 | 10.39 |
x3 | Days in milk | 138.86 | 64.90 |
x4 | WHI | 99.98 | 26.33 |
x5 | Milk yield | 1.16 | 0.16 |
x6 | Fore milk yield | 11.41 | 2.49 |
x7 | Milk Fat Percentage | 4.46 | 0.85 |
x8 | Peak Milk Yield | 0.27 | 0.90 |
x9 | Protein Percentage | 3.7376 | 0.3657 |
x10 | Peak Lactation Day | 100.88 | 9.48 |
x11 | Fat-to-Protein Ratio | 1.19 | 0.28 |
x12 | 305-Day Milk Yield | 7696 | 1684 |
x13 | Urea Nitrogen | 8.55 | 16.90 |
x14 | Total Milk Volume | 33.37 | 6.69 |
x15 | Milk Loss | 0.1789 | 0.6414 |
x16 | Total Milk Fat | 7720.51 | 1666.25 |
x17 | Economic Loss | 0.4915 | 0.7616 |
x18 | Total Protein | 206.36 | 59.64 |
x19 | Corrected Milk | 166.42 | 49.42 |
x20 | Adult equivalents | 8828.01 | 1863.72 |
x21 | SCS | 2.1 | 1.3 |
Algorithm | Average Accuracy | Average Recall | Average Precision | Average F1 Score | Average Fitness Value | Average Number of Features |
---|---|---|---|---|---|---|
SSA | 0.83 ± 0.016 | 0.80 ± 0.018 | 0.75 ± 0.017 | 0.77 ± 0.015 | 0.170 ± 0.0024 | 9.12 ± 0.42 |
HBA | 0.81 ± 0.014 | 0.83 ± 0.016 | 0.77 ± 0.014 | 0.79 ± 0.014 | 0.161 ± 0.0021 | 10.08 ± 0.45 |
CPO | 0.83 ± 0.015 | 0.85 ± 0.017 | 0.71 ± 0.016 | 0.75 ± 0.015 | 0.163 ± 0.0023 | 6.05 ± 0.31 |
DBO | 0.80 ± 0.017 | 0.78 ± 0.019 | 0.73 ± 0.018 | 0.77 ± 0.016 | 0.163 ± 0.0022 | 6.07 ± 0.33 |
GOOSE | 0.84 ± 0.015 | 0.84 ± 0.017 | 0.74 ± 0.016 | 0.79 ± 0.014 | 0.163 ± 0.0021 | 7.10 ± 0.38 |
IGOOSE | 0.85 ± 0.013 | 0.87 ± 0.015 | 0.76 ± 0.014 | 0.80 ± 0.013 | 0.151 ± 0.0019 | 6.04 ± 0.28 |
Algorithm | Average Accuracy | Average Recall | Average Precision | Average F1 Score | Average Fitness Value |
---|---|---|---|---|---|
SSA | 0.83 ± 0.015 | 0.81 ± 0.017 | 0.80 ± 0.016 | 0.79 ± 0.015 | 0.158 ± 0.0023 |
HBA | 0.84 ± 0.014 | 0.83 ± 0.016 | 0.79 ± 0.015 | 0.80 ± 0.014 | 0.147 ± 0.0021 |
CPO | 0.84 ± 0.015 | 0.87 ± 0.016 | 0.78 ± 0.015 | 0.85 ± 0.014 | 0.148 ± 0.0022 |
DBO | 0.84 ± 0.016 | 0.89 ± 0.017 | 0.84 ± 0.016 | 0.79 ± 0.015 | 0.148 ± 0.0023 |
GOOSE | 0.85 ± 0.014 | 0.84 ± 0.016 | 0.78 ± 0.015 | 0.81 ± 0.014 | 0.146 ± 0.0020 |
IGOOSE | 0.87 ± 0.012 | 0.88 ± 0.014 | 0.89 ± 0.013 | 0.88 ± 0.012 | 0.145 ± 0.0018 |
Evaluation Indicators | SVR | GBDT | KNN | XGBoost |
---|---|---|---|---|
Average R2 | 0.578 ± 0.016 | 0.611 ± 0.015 | 0.485 ± 0.018 | 0.631 ± 0.13 |
Average MAE | 0.646 ± 0.021 | 0.565 ± 0.021 | 0.727 ± 0.023 | 0.552 ± 0.016 |
Average MSE | 0.753 ± 0.024 | 0.571 ± 0.019 | 0.934 ± 0.026 | 0.565 ± 0.017 |
Average RMSE | 0.868 ± 0.022 | 0.753 ± 0.020 | 0.967 ± 0.024 | 0.758 ± 0.018 |
Evaluation Indicators | SSA | WOA | ESOA | GOOSE | IGOOSE |
---|---|---|---|---|---|
Average R2 | 0.585 ± 0.015 | 0.623 ± 0.014 | 0.598 ± 0.015 | 0.642 ± 0.013 | 0.663 ± 0.012 |
Average MAE | 0.675 ± 0.019 | 0.585 ± 0.016 | 0.667 ± 0.018 | 0.531 ± 0.014 | 0.526 ± 0.013 |
Average MSE | 0.910 ± 0.022 | 0.799 ± 0.018 | 0.870 ± 0.020 | 0.521 ± 0.015 | 0.511 ± 0.014 |
Average RMSE | 0.954 ± 0.021 | 0.848 ± 0.019 | 0.932 ± 0.020 | 0.722 ± 0.016 | 0.693 ± 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, R.; Dai, Y. Leveraging IGOOSE-XGBoost for the Early Detection of Subclinical Mastitis in Dairy Cows. Appl. Sci. 2025, 15, 8763. https://doi.org/10.3390/app15158763
Guo R, Dai Y. Leveraging IGOOSE-XGBoost for the Early Detection of Subclinical Mastitis in Dairy Cows. Applied Sciences. 2025; 15(15):8763. https://doi.org/10.3390/app15158763
Chicago/Turabian StyleGuo, Rui, and Yongqiang Dai. 2025. "Leveraging IGOOSE-XGBoost for the Early Detection of Subclinical Mastitis in Dairy Cows" Applied Sciences 15, no. 15: 8763. https://doi.org/10.3390/app15158763
APA StyleGuo, R., & Dai, Y. (2025). Leveraging IGOOSE-XGBoost for the Early Detection of Subclinical Mastitis in Dairy Cows. Applied Sciences, 15(15), 8763. https://doi.org/10.3390/app15158763