Technological Progress in Sulfur-Based Construction Materials: The Role of Modified Sulfur Cake in Concrete and Bitumen
Abstract
1. Introduction
2. Materials and Methods
3. Sulfur Cake
3.1. Composition and Properties
3.2. Processing and Modification Technologies
3.2.1. Chemical Modifications
3.2.2. Blending with Additives
4. Technological Developments of Sulfur in Construction
4.1. Modified Sulfur Cake Concrete
Concrete Type | Additive(s) | Additive Content | Compressive Strength MPa | Tensile/Flexural Strength MPs | Durability | Ref. |
---|---|---|---|---|---|---|
Sulfur concrete | Sulfur binder (100% replacement) | 100% of binder | 40–60 (24 h cure) | 3–8 flexural | High chemical resistance, very low water absorption (<0.05%), high acid/alkali resistance, excellent freeze–thaw stability | [68,71,72,73] |
Fiber-reinforced | Steel/glass/polypropylene fibers | 0.5–2.5% vol | 35–70 | 5–12 tensile; up to 15 flexural | Enhanced toughness, crack control, impact and fatigue resistance | [74,75] |
Polymer-modified | SBR, acrylics, epoxy, silanes | 5–20% by cement weight | 45–70 | 4–7 tensile; 7–12 flexural | Improved permeability, early strength gain, chemical/weather resistance | [76,77] |
Fly ash concrete | Class F/C fly ash | 15–40% cement replacement | 35–60 (28–90 d) | 2.5–4.5 tensile | Long-term strength gain, Improved sulfate/chloride resistance; lower heat of hydration | [78,79] |
Silica fume concrete | Amorphous SiO2 | 5–15% cement replacement | 60–90 | 5–8 (tensile), 9–14 (flexural) | Ultra-low permeability; enhanced early strength; ASR mitigation | [80,81] |
Geopolymer concrete | Fly ash/GGBS + NaOH/Na2SiO3 activators | ~100% binder replacement | 40–80 | 4–6 tensile; 6–10 flexural | Excellent acid resistance, thermal stability >400 °C, 80% CO2 reduction | [43,67,82] |
4.2. Modified Sulfur Cake Bitumen Technologies
5. Challenges and Future Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wagenfeld, J.G.; Al-Ali, K.; Almheiri, S.; Slavens, A.F.; Calvet, N. Sustainable applications utilizing sulfur, a by-product from oil and gas industry: A state-of-the-art review. Waste Manag. 2019, 95, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Rappold, T.A.; Lackner, K.S. Large scale disposal of waste sulfur: From sulfide fuels to sulfate sequestration. Energy 2010, 35, 1368–1380. [Google Scholar] [CrossRef]
- Avşar, C.; Çelik, E.; Ertunç, S. Discussion on the relation between carbon emissions and solid waste management to develop a sustainable business model. Environ. Qual. Manag. 2025, 34, e70028. [Google Scholar] [CrossRef]
- Halfyard, J.E.; Hawboldt, K. Separation of elemental sulfur from hydrometallurgical residue: A review. Hydrometallurgy 2011, 109, 80–89. [Google Scholar] [CrossRef]
- Majumder, A.; Ray, B.C. Environmental considerations. In Sinter Plants: Evolution, Challenges, and Future Perspectives; Majumder, A., Ray, B.C., Eds.; Springer: Singapore, 2025; pp. 111–134. [Google Scholar]
- Ongarbayev, Y.; Tileuberdi, Y.; Baimagambetova, A.; Imanbayev, Y.; Kanzharkan, Y.; Zhambolova, A.; Kydyrali, A. Modification of sulfur cake—Waste from sulfuric acid production. Processes 2024, 12, 2048. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Khan, A.; Ezati, P.; Tammina, S.K.; Priyadarshi, S.; Bhattacharya, T.; Rhim, J.W. Sulfur recycling into value-added materials: A review. Environ. Chem. Lett. 2023, 21, 1673–1699. [Google Scholar] [CrossRef]
- Vlahović, M.; Tee, K.F.; Vušović, N.; Savić, A.; Pejić, J.; Đorđević, N. Advanced sulfur-polymer composites for sustainable construction: Optimized production and structural performance under acidic exposure. Constr. Build. Mater. 2025, 484, 141794. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban, E.M.; Mailyan, L.R.; Meskhi, B.; Chernil’nik, A.; Ananova, O. Structure formation, rheology and properties of sulfur concrete mixtures and sulfur concrete modified with bitumen and stone flour. Case Stud. Constr. Mater. 2024, 20, e02917. [Google Scholar] [CrossRef]
- Chen, C.; Song, M.; Huang, G.; Li, R. Foam FeSO4 modified limestone sulfur concrete for non-stink and high-rate nitrogen and phosphorus removal from wastewater. Water Res. 2025, 271, 122996. [Google Scholar] [CrossRef]
- Giwa, I.; Dempsey, M.; Fiske, M.; Kazemian, A. 3D printed sulfur-regolith concrete performance evaluation for waterless extraterrestrial robotic construction. Autom. Constr. 2024, 165, 105571. [Google Scholar] [CrossRef]
- Fediuk, R.; Mugahed Amran, Y.H.; Mosaberpanah, M.A.; Danish, A.; El-Zeadani, M.; Klyuev, S.V.; Vatin, N. A critical review on the properties and applications of sulfur-based concrete. Materials 2020, 13, 4712. [Google Scholar] [CrossRef]
- Burenina, O.N.; Andreeva, A.V.; Savvinova, M.E.; Nikolaeva, L.A. Study of influence of finely dispersed additives from local raw materials on strength properties of sulfur concrete. Inorg. Mater. Appl. Res. 2024, 15, 1018–1022. [Google Scholar] [CrossRef]
- Amanova, N.; Turaev, K.; Shadhar, M.H.; Tadjixodjayeva, U.; Jumaeva, Z.; Berdimurodov, E.; Hosseini-Bandegharaei, A. Sulfur-based concrete: Modifications, advancements, and future prospects. Constr. Build. Mater. 2024, 435, 136765. [Google Scholar] [CrossRef]
- Zhou, T.; Xie, S.; Kabir, S.F.; Cao, L.; Fini, E.H. Effect of sulfur on bio-modified rubberized bitumen. Constr. Build. Mater. 2021, 273, 122034. [Google Scholar] [CrossRef]
- Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen binders modified with sulfur/organic copolymers. Materials 2022, 15, 1774. [Google Scholar] [CrossRef] [PubMed]
- Gunka, V.; Sidun, I.; Helesh, A.; Demchuk, Y.; Poliak, O.; Vytrykush, N. Modification of asphalt concrete with sulfur-containing waste. Adv. Mater. Sci. Eng. 2024, 1, 5571988. [Google Scholar] [CrossRef]
- Penki, R.; Rout, S.K. Next-generation bitumen: A review on challenges and recent developments in bio-bitumen preparation and usage. Biomass Convers. Biorefin. 2023, 13, 9583–9600. [Google Scholar] [CrossRef]
- Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and bitumen modification: A review on latest advances. Appl. Sci. 2019, 9, 742. [Google Scholar] [CrossRef]
- Tileuberdi, Y.; Imanbayev, Y.; Kanzharkan, Y.; Kidyrali, A.; Frolov, S.; Bektenov, N. Identification and characterization of sulfur cake from Stepnogorsk sulfuric acid plant. Eurasian Chem.-Technol. J. 2024, 26, 265–271. [Google Scholar] [CrossRef]
- Sohn, H.Y.; Kim, B.S. A new process for converting SO2 to sulfur without generating secondary pollutants through reactions involving CaS and CaSO4. Environ. Sci. Technol. 2002, 36, 3020–3024. [Google Scholar] [CrossRef]
- Davenport, W.G.; King, M.J.; Rogers, B.; Weissenberger, A. Sulphuric acid manufacture. In Proceedings of the Southern African Pyrometallurgy 2006 International Conference, Cradle of Humankind, South Africa, 5–8 March 2006; pp. 1–16. [Google Scholar]
- Masotta, M.; Rocchi, I.; Pazzagli, G.; D’Ambrosio, R.; Seggiani, M. Recovery of sulfur from sulfur-rich filter cakes in a rotary kiln: Process optimization. Waste Manag. 2021, 126, 567–577. [Google Scholar] [CrossRef]
- Cai, J.; Zheng, P.; Qaisar, M.; Zhang, J. Elemental sulfur recovery of biological sulfide removal process from wastewater: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2079–2099. [Google Scholar] [CrossRef]
- Guo, Z.; Fu, Z.; Wang, S. Sulfur distribution in coke and sulfur removal during pyrolysis. Fuel Process. Technol. 2007, 88, 935–941. [Google Scholar] [CrossRef]
- Sarapajevaite, G.; Baltakys, K. Purification of sulfur waste under hydrothermal conditions. Waste Biomass Valorization 2021, 12, 3407–3416. [Google Scholar] [CrossRef]
- De Beer, M.; Doucet, F.J.; Maree, J.P.; Liebenberg, L. Synthesis of high-purity precipitated calcium carbonate during the process of recovery of elemental sulphur from gypsum waste. Waste Manag. 2015, 46, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Susman, S.; Rowland, S.C.; Volin, K.J. The purification of elemental sulfur. J. Mater. Res. 1992, 7, 1526–1533. [Google Scholar] [CrossRef]
- Bacon, R.F.; Fanelli, R. Purification of sulfur. Ind. Eng. Chem. 1942, 34, 1043–1048. [Google Scholar] [CrossRef]
- Shen, Y.; Hu, Y.; Wang, M.; Bao, W.; Chang, L.; Xie, K. Speciation and thermal transformation of sulfur forms in high-sulfur coal and its utilization in coal-blending coking process: A review. Chin. J. Chem. Eng. 2021, 35, 70–82. [Google Scholar] [CrossRef]
- Liu, M.; Li, Y.; Yuan, X.; Xu, Y.; Qiao, L.; Wang, Q.; Ma, Q. Life cycle environmental impact assessment of sulfur-based compound fertilizers: A case study in China. ACS Sustain. Chem. Eng. 2022, 10, 2308–2317. [Google Scholar] [CrossRef]
- Li, T.; Lu, G.; Lin, J.; Liang, D.; Hong, B.; Luo, S.; Oeser, M. Volatile organic compounds (VOCs) inhibition and energy consumption reduction mechanisms of using isocyanate additive in bitumen chemical modification. J. Clean. Prod. 2022, 368, 133070. [Google Scholar] [CrossRef]
- Duan, Z.; Wei, S.; Bian, H.; Guan, C.; Zhu, L.; Xia, D. Inclusion as an efficient purification method for specific removal of tricyclic organic sulfur/nitrogen pollutants in fuel and effluent with cyclodextrin polymers. Sep. Purif. Technol. 2021, 254, 117643. [Google Scholar] [CrossRef]
- Zhao, S.; Luo, H.; Ma, A.; Sun, Z.; Zheng, R. Experimental study on mercury removal from coal-fired flue gas by sulfur modified biomass coke with mechanochemical method. Fuel 2022, 309, 122201. [Google Scholar] [CrossRef]
- Fadhil, A.B.; Abdulahad, W.S. Transesterification of mustard (Brassica nigra) seed oil with ethanol: Purification of the crude ethyl ester with activated carbon produced from de-oiled cake. Energy Convers. Manag. 2014, 77, 495–503. [Google Scholar] [CrossRef]
- Gormley, F.J. Sulfur Purification Process. U.S. Patent No. 3,071,445, 1 January 1963. [Google Scholar]
- Zhang, P.; Zhang, X.; Guo, J.; Zheng, Y.; Gao, Z. Mechanical properties of cement-based gel composites reinforced by plant fiber: A review. Gels 2025, 11, 362. [Google Scholar] [CrossRef]
- Mutlu, H.; Ceper, E.B.; Li, X.; Yang, J.; Dong, W.; Ozmen, M.M.; Theato, P. Sulfur chemistry in polymer and materials science. Macromol. Rapid Commun. 2019, 40, e1800650. [Google Scholar] [CrossRef]
- Smith, J.A.; Wu, X.; Berry, N.G.; Hasell, T. High sulfur content polymers: The effect of crosslinker structure on inverse vulcanization. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 1777–1781. [Google Scholar] [CrossRef]
- Kirchgessner, D.A.; Lorrain, J.M. Lignosulfonate-modified calcium hydroxide for sulfur dioxide control. Ind. Eng. Chem. Res. 1987, 26, 2397–2400. [Google Scholar] [CrossRef]
- Kind, K.K.; Wasserman, P.D.; Rochelle, G.T. Effects of salts on preparation and use of calcium silicates for flue gas desulfurization. Environ. Sci. Technol. 1994, 28, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Amrani, A.; Zhang, T.; Ma, Q.; Ellis, G.S.; Tang, Y. The role of labile sulfur compounds in thermochemical sulfate reduction. Geochim. Cosmochim. Acta 2008, 72, 2960–2972. [Google Scholar] [CrossRef]
- Ma, Q.; Ellis, G.S.; Amrani, A.; Zhang, T.; Tang, Y. Theoretical study on the reactivity of sulfate species with hydrocarbons. Geochim. Cosmochim. Acta 2008, 72, 4565–4576. [Google Scholar] [CrossRef]
- Yakovlev, G.I.; Polyanskih, I.S.; Gordina, A.F.; Gumeniuk, A.N. Using technical sulfur as a structuring additive for mineral binders based on calcium sulfate. Eng. Struct. Technol. 2019, 11, 95–100. [Google Scholar] [CrossRef][Green Version]
- Gutarowska, B.; Kotynia, R.; Bieliński, D.; Anyszka, R.; Wręczycki, J.; Piotrowska, M.; Dziugan, P. New sulfur organic polymer-concrete composites containing waste materials: Mechanical characteristics and resistance to biocorrosion. Materials 2019, 12, 2602. [Google Scholar] [CrossRef]
- Gwon, S.; Jeong, Y.; Oh, J.E.; Shin, M. Sustainable sulfur composites with enhanced strength and lightweightness using waste rubber and fly ash. Constr. Build. Mater. 2017, 135, 650–664. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Paisitsrisawat, P.; Rattanasak, U. Strength and resistance to sulfate and sulfuric acid of ground fluidized bed combustion fly ash–silica fume alkali-activated composite. Adv. Powder Technol. 2014, 25, 1087–1093. [Google Scholar] [CrossRef]
- Kamali, M.; Qotbi, A.; Haghani, M.; Vatanpour, V. Novel sulfur-containing 2, 6-diamino pyridine-based polymer as an additive in polyethersulfone: An effective membrane for removal of mercury (II) ion and dye pollutants. React. Funct. Polym. 2023, 193, 105758. [Google Scholar] [CrossRef]
- Zacco, A.; Borgese, L.; Gianoncelli, A.; Struis, R.P.; Depero, L.E.; Bontempi, E. Review of fly ash inertisation treatments and recycling. Environ. Chem. Lett. 2014, 12, 153–175. [Google Scholar] [CrossRef]
- Souaya, E.R.; Elkholy, S.A.; Abd El-Rahman, A.M.M.; El-Shafie, M.; Ibrahim, I.M.; Abo-Shanab, Z.L. Partial substitution of asphalt pavement with modified sulfur. Egypt. J. Pet. 2015, 24, 483–491. [Google Scholar] [CrossRef]
- Barkatt, A.; Okutsu, M. Obtaining elemental sulfur for Martian sulfur concrete. J. Chem. Res. 2022, 46, 80729. [Google Scholar] [CrossRef]
- Beall, P.W.; Neff, J.M. Potential non-traditional uses of by-product E&P produced sulfur in Kazakhstan. In Proceedings of the SPE/EPA/DOE Exploration and Production Environmental Conference, Galveston, TX, USA, 7–9 March 2005; p. SPE-94177. [Google Scholar]
- Sakib, N.; Bhasin, A.; Islam, M.K.; Khan, K.; Khan, M.I. A review of the evolution of technologies to use sulphur as a pavement construction material. Int. J. Pavement Eng. 2021, 22, 392–403. [Google Scholar] [CrossRef]
- Berberova, N.T.; Pivovarova, A.E.; Storozhenko, V.N.; Shinkar, E.V.; Smolyaninov, I.V. The Development of new methods of disposal of processing sulfur wastes from a hydro-carbon feedstock to various sulfur derivatives. KnE Mater. Sci. 2020, 24–30. [Google Scholar] [CrossRef]
- Mohamed, A.M.O.; El-Gamal, M. Sulfur Concrete for the Construction Industry: A Sustainable Development Approach; J. Ross Publishing: Plantation, FL, USA, 2010; 448p. [Google Scholar]
- Hung, A.; Li, M.; Fini, E.H. Effects of elemental sulfur on the aging trajectory and adhesion characteristics of rubber-modified bitumen. ACS Sustain. Chem. Eng. 2021, 9, 16918–16925. [Google Scholar] [CrossRef]
- Boyd, D.A. Sulfur and its role in modern materials science. Angew. Chem. Int. Ed. 2016, 55, 15486–15502. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Zhou, Q.; Gao, P. Applications and challenges of elemental sulfur, nanosulfur, polymeric sulfur, sulfur composites, and plasmonic nanostructures. Crit. Rev. Environ. Sci. Technol. 2019, 49, 2314–2358. [Google Scholar] [CrossRef]
- Likitlersuang, S.; Chompoorat, T. Laboratory investigation of the performances of cement and fly ash modi-fied asphalt concrete mixtures. Int. J. Pavement Res. Technol. 2016, 9, 337–344. [Google Scholar] [CrossRef]
- Al-Taher, M.G.; Hassanin, H.D.; Ibrahim, M.F.; Sawan, A.M. Investigation of the effect of adding silica fume on asphalt concrete properties. Int. J. Eng. Res. 2018, 7, 48–55. [Google Scholar] [CrossRef]
- Öztürk, O.; Öner, A. Long-term durability of bitumen modified sulfur polymer concrete under freeze–thaw cycles. Int. J. Civ. Eng. 2022, 20, 529–543. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Aksoylu, C. Physical, mechanical and structural characteristics of sulfur concrete with bitumen modified sulfur and fly ash. J. Compos. Sci. 2023, 7, 356. [Google Scholar] [CrossRef]
- Wang, R.; Yue, J.; Li, R.; Sun, Y. Evaluation of aging resistance of asphalt binder modified with graphene oxide and carbon nanotubes. J. Mater. Civ. Eng. 2019, 31, 04019274. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X. Influences of superplasticizer, polymer latexes and asphalt emulsions on the pore structure and impermeability of hardened cementitious materials. Constr. Build. Mater. 2014, 53, 392–402. [Google Scholar] [CrossRef]
- Varol, M.; Atimtay, A.T. Effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor. Bioresour. Technol. 2015, 198, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Malviya, R.; Chaudhary, R. Factors affecting hazardous waste solidification/stabilization: A review. J. Hazard. Mater. 2006, 137, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, A.L.; Tayeh, B.A.; Adesina, A.; Isleem, H.F.; Zeyad, A.M. Potential applications of geopolymer concrete in construction: A review. Case Stud. Constr. Mater. 2021, 15, e00733. [Google Scholar] [CrossRef]
- Toutanji, H.A.; Grugel, R.N. Mechanical properties and durability performance of “waterless concrete”. In Earth & Space 2008: Engineering, Science, Construction, and Operations in Challenging Environments, Proceedings of the 11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments, Long Beach, CA, USA, 3 March 2008; Bininenda, W.K., Ed.; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 1–8. [Google Scholar]
- Dugarte, M.; Martinez-Arguelles, G.; Torres, J. Experimental evaluation of modified sulfur concrete for achieving sustainability in industry applications. Sustainability 2018, 11, 70. [Google Scholar] [CrossRef]
- Vlahovic, M.M.; Martinovic, S.P.; Boljanac, T.D.; Jovanic, P.B.; Volkov-Husovic, T.D. Durability of sulfur concrete in various aggressive environments. Constr. Build. Mater. 2011, 25, 3926–3934. [Google Scholar] [CrossRef]
- Ghasemi, S.; Nikudel, M.R.; Zalooli, A.; Khamehchiyan, M.; Alizadeh, A.; Yousefvand, F.; Raeis Ghasemi, A.M. Durability assessment of sulfur concrete and Portland concrete in laboratory conditions and marine environments. J. Mater. Civ. Eng. 2022, 34, 04022167. [Google Scholar] [CrossRef]
- Shin, M.; Kim, K.; Gwon, S.W.; Cha, S. Durability of sustainable sulfur concrete with fly ash and recycled aggregate against chemical and weathering environments. Constr. Build. Mater. 2014, 69, 167–176. [Google Scholar] [CrossRef]
- Na, O.; Lee, G. Mechanical and durability properties of rubberized sulfur concrete using waste tire crumb rubber. Materials 2024, 17, 5269. [Google Scholar] [CrossRef]
- Plizzari, G.; Mindess, S. Fiber-reinforced concrete. In Developments in the Formulation and Reinforcement of Concrete; Mindess, S., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 257–287. [Google Scholar]
- Zhao, N.; Zhang, H.; Xie, P.; Chen, X.; Wang, X. Prediction of compressive strength of multiple types of fiber-reinforced concrete based on optimized machine learning models. Eng. Appl. Artif. Intell. 2025, 152, 110714. [Google Scholar] [CrossRef]
- Liu, B.; Shi, J.; Sun, M.; He, Z.; Xu, H.; Tan, J. Mechanical and permeability properties of polymer-modified concrete using hydrophobic agent. J. Build. Eng. 2020, 31, 101337. [Google Scholar] [CrossRef]
- Gu, J.; Xing, J.; Che, J.; Chin, S.C. Mechanical properties and stress-strain relationship of early strength polymer-modified concrete at different ages. Phys. Chem. Earth Parts A/B/C 2025, 139, 103895. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P. Effect of fly ash on the durability properties of high strength concrete. Procedia Eng. 2011, 14, 1149–1156. [Google Scholar] [CrossRef]
- Gautam, L.; Purbe, M.K.; Sharma, K.V.; Kumar, C.; Kalita, P.P. Environmental impact mitigation and durability enhancement of concrete through fly ash substitution: A comprehensive review. J. Build. Path. Rehab. 2025, 10, 99. [Google Scholar] [CrossRef]
- Bhanja, S.; Sengupta, B. Influence of silica fume on the tensile strength of concrete. Cem. Concr. Res. 2005, 35, 743–747. [Google Scholar] [CrossRef]
- Azizi, M.; Samimi, K. Effect of silica fume on self-compacting earth concrete: Compressive strength, durability and microstructural studies. Constr. Build. Mater. 2025, 472, 140815. [Google Scholar] [CrossRef]
- Raijiwala, D.B.; Patil, H.S. Geopolymer concrete: A concrete of next decade. J. Eng. Res. Stud. 2011, 2, 19–25. [Google Scholar]
- Shi, K.; Ma, F.; Fu, Z.; Lou, B.; Barbieri, D.M.; Li, J.; Yuan, D. Comprehensive evaluation of sulfur content and curing duration effects on the rheological performance of sulfur-extended bitumen. Fuel 2025, 393, 134979. [Google Scholar] [CrossRef]
- Rasheed, S.K.; Al-Hadidy, A.I. Evaluation of sulfur waste as sustainable mineral filler in asphalt paving mixtures. Int. J. Pavement Res. Technol. 2024, 17, 202–215. [Google Scholar] [CrossRef]
- Hu, Y.; Yin, Y.; Sreeram, A.; Liu, J.; Si, W.; Tang, D.; Airey, G.D. Nano-aggregation of asphaltenes and its influence on the multiscale properties of bitumen recycled through multiple ageing and rejuvenation cycles. Chem. Eng. J. 2025, 512, 162348. [Google Scholar] [CrossRef]
- Khavari, B.C.; Shekarriz, M.; Aminnejad, B.; Lork, A.; Vahdani, S. Laboratory evaluation and optimization of mechanical properties of sulfur concrete reinforced with micro and macro steel fibers via response surface methodology. Constr. Build. Mater. 2023, 384, 131434. [Google Scholar] [CrossRef]
- El Gamal, M.; El-Sawy, K.; Mohamed, A.M.O. Integrated mixing machine for sulfur concrete production. Case Stud. Constr. Mater. 2021, 14, e00495. [Google Scholar] [CrossRef]
- Gulzar, M.A.; Rahim, A.; Ali, B.; Khan, A.H. An investigation on recycling potential of sulfur concrete. J. Build. Eng. 2021, 38, 102175. [Google Scholar] [CrossRef]
- Kholmirzayev, S.; Akhmedov, I.; Khamidov, A.; Umarov, I.; Dedakhanov, F.; Hakimov, S. Use of sulfur concrete in reinforced concrete structures. Sci. Innov. 2022, 1, 985–990. [Google Scholar]
- Bieliatynskyi, A.; Yang, S.; Krayushkina, K.; Shao, M.; Ta, M. Study of the possibility of using sulfur asphalt and sulfur concrete in road construction. Mater. Sci.-Pol. 2023, 41, 244–262. [Google Scholar] [CrossRef]
- Khademi, A.G.; Sar, H.I.K. Comparison of sulfur concrete, cement concrete and cement-sulfur concrete and their properties and application. Curr. World Environ. 2015, 10, 201–207. [Google Scholar] [CrossRef]
- Al-Otaibi, S.; Al-Aibani, A.; Al-Bahar, S.; Abdulsalam, M.; Al-Fadala, S. Potential for producing concrete blocks using sulphur polymeric concrete in Kuwait. J. King Saud Univ. Eng. Sci. 2019, 31, 327–331. [Google Scholar] [CrossRef]
- You, X. Research progress of the modification in sulfur concrete. Mater. Sci. Appl. 2021, 12, 353–361. [Google Scholar] [CrossRef]
- Deb, P.; Singh, K.L. Mix design, durability and strength enhancement of cold mix asphalt: A state-of-the-art review. Innov. Infrastruct. Solut. 2022, 7, 61. [Google Scholar] [CrossRef]
- Dulaimi, A.; Al-Busaltan, S.; Kadhim, M.A.; Al-Khafaji, R.; Sadique, M.; Al Nageim, H.; Mahdi, J.M. A sustainable cold mix asphalt mixture comprising paper sludge ash and cement kiln dust. Sustainability 2022, 14, 10253. [Google Scholar] [CrossRef]
- Testa, S.M. Chemical aspects of cold-mix asphalt incorporating contaminated soil. Soil Sedim. Contam. 1995, 4, 191–207. [Google Scholar] [CrossRef]
- Holtzer, M.; Górny, M.; Dańko, R.; Holtzer, M.; Dańko, R. Molds and cores systems in foundry. In Microstructure and Properties of Ductile Iron and Compacted Graphite Iron Castings: The Effects of Mold Sand/Metal Interface Phenomena; Springer: Cham, Switzerland, 2015; pp. 27–42. [Google Scholar]
- Khoshnevis, B.; Yuan, X.; Zahiri, B.; Zhang, J.; Xia, B. Construction by contour crafting using sulfur concrete with planetary applications. Rapid Prototyp. J. 2016, 22, 848–856. [Google Scholar] [CrossRef]
- Yeoh, D.; Boon, K.H.; Jamaluddin, N. Exploratory study on the mechanical and physical properties of concrete containing sulfur. J. Teknol. Sci. Eng. 2015, 77, 179–188. [Google Scholar] [CrossRef]
- Jamil, S.; Idrees, M.; Akbar, A.; Ahmed, W. Investigating the mechanical and durability properties of carbonated recycled aggregate concrete and its performance with SCMs. Buildings 2025, 15, 201. [Google Scholar] [CrossRef]
- Toghroli, A.; Hosseini, S.A.; Farokhizadeh, F. Mechanical and durability properties of coal cinder concrete: Experimental study and GPR-based analysis. Case Stud. Constr. Mater. 2025, 22, e04093. [Google Scholar] [CrossRef]
- Hettiarachchi, C.; Mampearachchi, W. Bitumen. In Handbook of Asphalt Technology; Springer: Singapore, 2025; pp. 1–44. [Google Scholar]
- Łaźniewska-Piekarczyk, B. Research on the possibilities of using sulfur concrete for road infrastructure construction—Assessment based on European standards. Sustainability 2025, 17, 3671. [Google Scholar] [CrossRef]
- Howard, I.L.; Hufft, A.; Schueneman, G.T. Cellulose nanocrystal modified bitumen pavement materials. In Proceedings of the Geotechnical Frontiers 2025, Lousville, KY, USA, 2–5 March 2025; pp. 332–341. [Google Scholar]
- Alobeidyeen, A.; Al-Hanaktah, A.; Assolie, A.A. Sustainable asphalt modification: Innovative use of olive pomace lignin in asphalt binder and concrete mixtures. Int. J. Pav. Res. Technol. 2025, 1–21. [Google Scholar] [CrossRef]
- Yang, P.; Min, Z.; Chen, W.; Yang, S.; Huang, W.; Tao, R.; Chen, H. Crosslinking sites of sulfur and asphalt molecules: A DFT and macroscopic experimental study. Constr. Build. Mater. 2025, 477, 141364. [Google Scholar] [CrossRef]
- Rodrigues, A.L.R.; Falcão, C.C.; Williams, R.C.; Barroso, S.H.D.A. Improvement in rheological properties of polymer-modified asphalt binder through sulfur addition using traditional and advanced analyses. Road Mater. Pavement Des. 2025, 26, 52–64. [Google Scholar] [CrossRef]
- Das, A.K.; Panda, M. Investigation on rheological performance of sulphur modified bitumen (SMB) binders. Constr. Build. Mater. 2017, 149, 724–732. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Le, V.P. Performance evaluation of sulfur as alternative binder additive for asphalt mixtures. Int. J. Pavement Res. Technol. 2019, 12, 380–387. [Google Scholar] [CrossRef]
- Mohsin, H.K.; Latief, R.H. Natural bitumen in hot asphalt mixture: Suitability of using treated natural bitumen instead of petroleum asphalt binder. IIUM Eng. J. 2025, 26, 27–50. [Google Scholar] [CrossRef]
- Gul, M.A.; Khan, K.; Islam, M.K.; Shalabi, F.I.; Ozer, H.; Hajj, R.; Bhasin, A. Evaluation of various factors affecting mix design of sulfur-extended asphalt mixes. Constr. Build. Mater. 2021, 290, 123199. [Google Scholar] [CrossRef]
- Lu, Q.; Sha, A.; Jiao, W.; Shi, K.; Peng, Z.; Song, R. Synergistic effects of sulfur and polyphosphoric acid additives in warm mix bio-rejuvenated asphalt modification. Constr. Build. Mater. 2024, 433, 136676. [Google Scholar] [CrossRef]
- Gladkikh, V.; Korolev, E.; Smirnov, V.; Sukhachev, I. Modeling the rutting kinetics of the sulfur-extended asphalt. Procedia Eng. 2016, 165, 1417–1423. [Google Scholar] [CrossRef]
- Le, H.T.; Korolev, E.V.; Grishina, A.N.; Gladkikh, V.A. Reasons for reduced moisture resistance of sulfur-extended asphalt concrete. Materials 2021, 14, 7218. [Google Scholar] [CrossRef]
- Eisa, M.S.; Basiouny, M.E.; Elbasomy, O.A. Evaluating hot asphalt mixtures of poor quality aggregate with sulphur extended asphalt. Innov. Infrastruct. Solut. 2019, 4, 56. [Google Scholar] [CrossRef]
- Li, J.; Huang, S.; Li, Z.Y.; Liu, J.; Wu, X.N.; Su, D.H.; Song, W.T. Filter cake removal during the cementing and completion stages in CO2 storage wells: Current developments, challenges, and prospects. Energy Technol. 2022, 10, 2101134. [Google Scholar] [CrossRef]
- Borinelli, J.B.; Portillo-Estrada, M.; Costa, J.O.; Pajares, A.; Blom, J.; Hernando, D.; Vuye, C. Emission reduction agents: A solution to inhibit the emission of harmful volatile organic compounds from crumb rubber modified bitumen. Constr. Build. Mater. 2024, 411, 134455. [Google Scholar] [CrossRef]
- Xie, S.; Yi, J.; Zhou, T.; Fini, E.H.; Feng, D. Phase transition process of sulfur in bitumen and its effect on rheological properties of bitumen. Constr. Build. Mater. 2023, 364, 129914. [Google Scholar] [CrossRef]
- Rahman, M.T.; Mohajerani, A.; Giustozzi, F. Recycling of waste materials for asphalt concrete and bitumen: A review. Materials 2020, 13, 1495. [Google Scholar] [CrossRef]
- Saeed, M.H.; Shah, S.A.R.; Arshad, H.; Waqar, A.; Imam, M.A.H.; Sadiq, A.N.; Waseem, M. Sustainable silicon waste material utilization for road construction: An application of modified binder for Marshall stability analysis. Appl. Sci. 2019, 9, 1803. [Google Scholar] [CrossRef]
- Mushtaq, F.; Huang, Z.; Shah, S.A.R.; Zhang, Y.; Gao, Y.; Azab, M.; Anwar, M.K. Performance optimization approach of polymer modified asphalt mixtures with PET and PE wastes: A safety study for utilizing eco-friendly circular economy-based, SDGs concepts. Polymers 2022, 14, 2493. [Google Scholar] [CrossRef]
- Sahoo, K.; Behera, U.S.; Poddar, S. Recycling processes and exploitation of waste to obtain energy and challenges: A mini review. Int. J. Environ. Sci. Technol. 2025, 22, 10933–10956. [Google Scholar] [CrossRef]
- Calandra, P.; Quaranta, S.; Figueira, B.A.M.; Caputo, P.; Porto, M.; Rossi, C.O. Mining wastes to improve bitumen performances: An example of circular economy. J. Colloid Interface Sci. 2022, 614, 277–287. [Google Scholar] [CrossRef]
- Awad, S.; Essam, M.; Boukhriss, A.; Kamar, M.; Midani, M. Properties, purification, and applications of phosphogypsum: A comprehensive review towards circular economy. Mater. Circul. Econom. 2024, 6, 9. [Google Scholar] [CrossRef]
- Shu, K.; Sasaki, K. Occurrence of steel converter slag and its high value-added conversion for environmental restoration in China: A review. J. Clean. Prod. 2022, 373, 133876. [Google Scholar] [CrossRef]
- Alghrafy, Y.M.; El-Badawy, S.M.; Abd Alla, E.S.M. Rheological and environmental evaluation of sulfur extended asphalt binders modified by high-and low-density polyethylene recycled waste. Constr. Build. Mater. 2021, 307, 125008. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, Z.; Liu, H.; Ban, X.; Tian, P.; Yang, Y.; Qian, J. Study on the anti-aging properties of organic attapulgite (OATT) and polyurethane (PU) composite-modified asphalt. Int. J. Pavement Eng. 2024, 25, 2301456. [Google Scholar] [CrossRef]
- Hashami, M.; Ongarbayev, Y.; Tileuberdi, Y.; Imanbayev, Y.; Zhambolova, A.; Kenzhegaliyeva, A.; Mansurov, Z. Integration of coke and CNMs with bitumen: Synthesis, methods, and characterization. Nanomaterials 2025, 15, 842. [Google Scholar] [CrossRef]
- Myslowski, W.; Janiczek, A. Method for production of granulated polymer-asphalt binder and sulfur concrete with participation of sulfur polymer obtained in waste sulfur solvent—Borne modification. U.S. Patent No. 8,500,899, 6 August 2013. [Google Scholar]
- Zhang, N.; Zeng, X.L.; Liao, W.W.; Chen, M.Y.; Zhang, G.; Ren, D.H.; Cheng, H.Y. A novel dynamic membrane-equipped element sulfur-based denitrification reactor for efficient and easily maintainable treatment of high-nitrate wastewater. Water Res. 2025, 283, 123882. [Google Scholar] [CrossRef] [PubMed]
- Bhambhani, B.; Chandra, S.; Bharath, G. Sustainability in road construction by using binders modified with biomass-derived bio-oil–a critical review. Transp. Res. Rec. 2025, 2679, 939–967. [Google Scholar] [CrossRef]
- De Carcer, Í.A.; Masegosa, R.M.; Viñas, M.T.; Sanchez-Cabezudo, M.; Salom, C.; Prolongo, M.G.; Páez, A. Storage stability of SBS/sulfur modified bitumens at high temperature: Influence of bitumen composition and structure. Constr. Build. Mater. 2014, 52, 245–252. [Google Scholar] [CrossRef]
- Yang, X.; Ning, Z.; Feng, X.; He, X.; Tan, S. Methods for improving storage stability of rubber bitumen: A review. J. Clean. Prod. 2024, 449, 141595. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, C.; Lin, J.; Zhao, Y.; Huang, Y.; Shi, M.; Wang, Q. Multistage crystallization strategy for simultaneous recovery of NH4SCN and (NH4)2SO4 from hazardous desulfurization residues: Process optimization and techno-economic assessment. Process Saf. Environ. Prot. 2025, 201, 107221. [Google Scholar] [CrossRef]
- Raza, Y.; Raza, H.; Ahmed, A.; Quazi, M.M.; Jamshaid, M.; Anwar, M.T.; Soudagar, M.E.M. Integration of response surface methodology (RSM), machine learning (ML), and artificial intelligence (AI) for enhancing properties of polymeric nanocomposites—A review. Polym. Compos. 2025, 1–37. [Google Scholar] [CrossRef]
- Onaizi, S.A.; Iddrisu, M. Process and material for removing hydrogen sulfide from subterranean geological formations during drilling operations. U.S. Patent No. 12,275,892, 15 April 2025. [Google Scholar]
- Zabaniotou, A.; Antoniou, N.; Bruton, G. Analysis of good practices, barriers and drivers for ELTs pyrolysis industrial application. Waste Manag. 2014, 34, 2335–2346. [Google Scholar] [CrossRef]
- Li, J. Municipal solid waste incineration ash-incorporated concrete: One step towards environmental justice. Buildings 2021, 11, 495. [Google Scholar] [CrossRef]
- Khalid, A.; Khushnood, R.A.; Mahmood, A.; Ferro, G.A.; Ahmad, S. Synthesis, characterization and applications of nano/micro carbonaceous inerts: A review. Procedia Struct. Integr. 2018, 9, 116–125. [Google Scholar] [CrossRef]
- Abo-Shanab, Z.L.; Altalhi, A.A.; Farag, A.A.; Mohamed, E.A. Assessment of various polymeric sulphur as soft bitumen improver for pavement applications. Int. J. Pavement Eng. 2024, 25, 2400555. [Google Scholar] [CrossRef]
- Prasad, M.N.V. Resource potential of natural and synthetic gypsum waste. In Environmental Materials and Waste; Prasad, M.N.V., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 369–424. [Google Scholar]
- Harman, T.; Youtcheff, J.; Bukowski, J. An Alternative Asphalt Binder, Sulfur-Extended Asphalt (SEA); U.S. Federal Highway Administration: Washington, DC, USA, 2012; No. FHWA-HIF-12-037.
- Ghazidin, H.; Suyatno, S.; Prismantoko, A.; Karuana, F.; Setiyawan, A.; Darmawan, A.; Hariana, H. Impact of additives in mitigating ash-related problems during co-combustion of solid recovered fuel and high-sulfur coal. Energy 2024, 292, 130510. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Chen, S. Effects of different antioxidant intercalated layered double hydroxides on anti-aging properties of asphalt binders. Buildings 2024, 14, 593. [Google Scholar] [CrossRef]
Types of Sulfur Waste | Typical Components | Production Sources | Comparison Notes | Annual Production (Mt/Year) | Ref. |
---|---|---|---|---|---|
Sulfur cake (industrial by-product) | S (40–65%), CaSO4 (20–30%), Ca(OH)2 (5–10%), SiO2, metals | Sulfuric acid plants (e.g., filtration, SO2 scrubbing) | Contains Ca-based binders that may enhance strength; suitable for concrete/bitumen after drying and partial purification. Minor metal content should be controlled to ensure long-term stability. | 12 | [20,23] |
Recovered sulfur from wastewater | S (80–90%), polysulfides, elemental sulfur, organic residues | Biological sulfide removal from municipal/industrial wastewater | Polysulfides are chemically unstable and require stabilization prior to use; otherwise, material durability may be compromised. | 3.5 | [24] |
Sulfur from coke and pyrolysis residue | S (20–40%), fixed carbon, heavy metals (Fe, Ni, V), PAHs, tars | Pyrolysis of coal, petroleum coke combustion, metallurgical residues | Highly contaminated with heavy metals and organics; significantly affects strength and poses environmental risks without advanced purification. | 5 | [25] |
Hydrothermally treated sulfur residues | S (~70–85%), hydrated organics, trace metals, oxidized sulfur species | Hydrothermal treatment of sulfur-rich industrial waste | Improved purity compared to raw residues; suitable for moderate-performance applications, though residual organics may reduce mechanical strength. | 1.2 | [26] |
Properties | Elemental Sulfur | Sulfur Cake | Remarks | Ref. |
---|---|---|---|---|
Sulfur content (wt%) | >98 | 40–65 | Sulfur cake contains lower purity sulfur due to industrial by-product origin | [20,23] |
CaSO4 content (wt%) | 0 | 20–30 | Gypsum phase contributes to structural and chemical performance in concrete | [20,27] |
Ca(OH)2 content (wt%) | 0 | 5–10 | Provides alkalinity and reactive filler behavior | [20] |
Other impurities (SiO2, metals, organics) | <1 | 5–10 | Impurities vary by origin and may have pozzolanic or inert behavior | [20,26] |
Density (g/cm3) | 2.07 | 1.6–2.1 | Lower bulk density in sulfur cake contributes to better workability in mixes | [20] |
Compressive strength of concrete (MPa) | 25–35 | 35–45 | Sulfur cake improves strength due to synergistic phase interactions | [25] |
Treatment Method | Mechanism | Key Advantages | Limitations | Quantitative Data | Ref. |
---|---|---|---|---|---|
Thermal activation | Heating above 120 °C to volatilize moisture and decompose unstable compounds | Simple and scalable—enhances purity and reactivity | Energy-intensive-incomplete impurity removal | Reduces moisture from >5% to <0.5%; improves purity by ~15–20% | [30,31] |
Chemical treatment (Acid washing) | Dissolution of calcium-based impurities (e.g., Ca(OH)2, CaSO4) with acids | Targeted impurity removal—significant sulfur enrichment | Requires neutralization—generates acidic waste | Sulfur content improved by up to 20% | [32] |
Cyclodextrin polymer inclusion | Host-guest complexation with organic sulfur compounds | Highly selective-efficient for trace organic pollutants | Cost of materials—limited to specific organics | >90% removal of tricyclic organics | [33] |
Mechanochemical activation | Ball milling with chemical agents to enhance surface area and reactivity | Simultaneous mechanical and chemical action—improves dispersion | Equipment-intensive—dust generation risks | Enhanced sulfur reactivity and pollutant binding | [34] |
Activated carbon filtration | Adsorption of impurities using bio-derived carbon | Sustainable and reusable—applicable to liquid phase purification | Lower efficiency for solid sulfur cake | Effective in ester purification; potential analog for sulfur | [35] |
Thermal vacuum fusion (patented) | Melting and separation under reduced pressure | High-purity output—applicable to industrial scale | Specialized equipment—high operating cost | Industrial-grade sulfur yield >95% purity | [36] |
Membrane—sulfur bed systems | Combination of dynamic membrane filtration with sulfur-based bioreaction | Continuous operation—high denitrification efficiency | Complex system design—not specific to sulfur cake | >95% nitrate removal; adaptable for sulfur purification | [37] |
Types | Mechanism | Operating T, °C | Polymer Yield/Product Features | Optimal Composition/Ratio | Reaction Products | Limitations | Ref. |
---|---|---|---|---|---|---|---|
Sulfur polymerization (cyclization) | Ring-opening of S8 to form linear polysulfide chains | 160–180 | High linear polysulfide content but thermally unstable | Pure sulfur system | Linear sulfur chains (–S–S–)n | Poor mechanical strength, oxidation-sensitive | [38] |
Sulfur polymerization (crosslinking/inverse vulcanization) | Radical-mediated copolymerization with organic crosslinkers (e.g., divinylbenzene) | 180–220 | Thermally stable copolymers with Tg > 100 °C and tensile strength up to 5.1 MPa | 70:30 to 80:20 wt% sulfur: crosslinker | Crosslinked polysulfide networks (stable above 200 °C) | Requires precise crosslinker design; may emit residual monomers | [39] |
Role of calcium hydroxide [Ca(OH)2] | Neutralization of acidic gases and immobilization of sulfur species | ≥100 for full reactivity | Forms CaS and CaSO3, reducing toxic emissions; affects pH stability | Up to 20 wt% for effective neutralization; excess causes carbonate formation | CaS, CaSO3, CaCO3 depending on gas conditions | May react with CO2 to form unwanted CaCO3; reduces available alkalinity | [40,41] |
Role of calcium sulfate [CaSO4] | Reacts in thermochemical sulfate reduction (TSR), producing reactive sulfur intermediates | ≥250 for TSR [41] | Produces H2S or polysulfides; can initiate further S-crosslinking | 30–50 wt% CaSO4 in mineral-sulfur blends improves structural stability | H2S, SO2, reactive S• radicals in TSR | TSR requires high energy; potential H2S toxicity | [42,43,44] |
Additive Type | Specific Additive | Loading (wt%) | Modified Property | Observed Effect | Ref. |
---|---|---|---|---|---|
Organic modifier | DCPD | 5–10 | Thermal stability, flexibility | Improved elasticity; suppression of sulfur recrystallization | [45] |
Organic modifier | Plasticizers | 2–8 | Workability, flexibility | Easier processing; reduced brittleness | [45] |
Inorganic stabilizer | Fly ash | 20–30 | Compressive strength, density, filler dispersion | >40% increase in strength; lighter composite with uniform microstructure | [46] |
Inorganic stabilizer | Silica fume | 10–15 | Acid and sulfate resistance, microstructure refinement | ~50% enhancement in chemical resistance and long-term durability | [47] |
Inorganic filler | Carbon materials (graphite, carbon black) | 5–15 | Thermal conductivity, crack resistance | Reduced shrinkage; enhanced impermeability and stability under temperature changes | [48,49] |
Combined additives | Fly ash + silica fume | 25–35 Total | Chemical durability, structural strength | Synergistic increase in strength and resistance to aggressive environments | [46,47] |
Organic-inorganic mix | DCPD + fly ash/carbon | 10 + 20 + 30 | Composite performance | Improved corrosion resistance, thermal behavior, and mechanical properties | [45,46] |
Property | MSC-Based Composites | Conventional OPC Concrete/SBS Asphalt | Improvement (%) | Ref. |
---|---|---|---|---|
Compressive strength (MPa) | 45–60 | 30–40 | +40–50 | [62] |
Tensile/flexural strength (MPa) | 5.6–6.2 | 4.2–5.0 | +25–30 | [60] |
Acid resistance (H2SO4, HCl) | 45–60% less degradation | Moderate to high surface degradation | +45–60 | [59] |
Freeze–Thaw stability | <5% mass loss after 100 cycles | 12–15% mass loss | +60–70 | [61] |
Thermal conductivity (W/m·K) | 0.8–1.2 (carbon fillers enhanced) | 0.5–0.6 | +40–60 | [63] |
Water permeability | Significantly reduced | Moderate | Improved impermeability | [64] |
Indicator | Modified Sulfur Cake Bitumen | Traditional Bitumen | References |
---|---|---|---|
Environmental impact | |||
VOC emissions reduction (%) | Up to 35 | High emissions during mixing and paving | [32,117] |
GHG emission reduction (kg CO2/ton) | from 350 to <250 kg CO2/ton | 350 kg CO2/ton | [119,120] |
Processing temperature (°C) | 120–140 | 160–180 | [118,121] |
Circular economy contribution | Utilizes sulfur waste, supports multi-waste valorization | Relies entirely on non-renewable fossil resources | [122,123] |
Waste diversion efficiency | ≥1.5 tons of sulfur waste per 100 tons of asphalt | None | [124,125] |
Mechanical properties | |||
Rutting resistance improvement (%) | Up to 40 deeper resistance | Lower resistance under high load | [126] |
Fatigue life increase (%) | 25–30 extension | Lower fatigue threshold | [127] |
Thermal cracking resistance | Significantly improved at low temperatures | High risk in cold climates | [128] |
Aging index (DSR-based) | Reduced from 2.1 to 1.5 | 2.1 | [107] |
Economic Aspects | |||
Binder cost savings (%) | 15–25 reduction | Higher due to 100 petroleum binder content | [129] |
Life cycle cost reduction (%) | 20–30 over 20 years | Higher due to frequent maintenance | [130] |
Maintenance frequency | Less frequent due to durability | More frequent due to aging and cracking | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashami, M.; Ongarbayev, Y.; Tileuberdi, Y.; Imanbayev, Y.; Zhambolova, A.; Kanzharkan, Y. Technological Progress in Sulfur-Based Construction Materials: The Role of Modified Sulfur Cake in Concrete and Bitumen. Appl. Sci. 2025, 15, 8790. https://doi.org/10.3390/app15168790
Hashami M, Ongarbayev Y, Tileuberdi Y, Imanbayev Y, Zhambolova A, Kanzharkan Y. Technological Progress in Sulfur-Based Construction Materials: The Role of Modified Sulfur Cake in Concrete and Bitumen. Applied Sciences. 2025; 15(16):8790. https://doi.org/10.3390/app15168790
Chicago/Turabian StyleHashami, Muhammad, Yerdos Ongarbayev, Yerbol Tileuberdi, Yerzhan Imanbayev, Ainur Zhambolova, and Yernar Kanzharkan. 2025. "Technological Progress in Sulfur-Based Construction Materials: The Role of Modified Sulfur Cake in Concrete and Bitumen" Applied Sciences 15, no. 16: 8790. https://doi.org/10.3390/app15168790
APA StyleHashami, M., Ongarbayev, Y., Tileuberdi, Y., Imanbayev, Y., Zhambolova, A., & Kanzharkan, Y. (2025). Technological Progress in Sulfur-Based Construction Materials: The Role of Modified Sulfur Cake in Concrete and Bitumen. Applied Sciences, 15(16), 8790. https://doi.org/10.3390/app15168790